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Qualitative robot localisation using information from cast shadows

Paulo Santos

Abstract— Recently, cognitive psychologists and others have
turned their attention to the formerly neglected study of shad-
ows, and the information they purvey. These studies show that
the human perceptual system values information from shadows
very highly, particularly in the perception of depth, even to the
detriment of other cues. However with a few notable exceptions,
computer vision systems have treated shadows not as signal
but as noise. This paper makes a step towards redressing this
imbalance by considering the formal representation of shadows.
We take one particular aspect of reasoning about shadows,
developing the idea that shadows carry information about a
fragment of the viewpoint of the light source. We start from
the observation that the region on which the shadow is cast is
occluded by the caster with respect to the light source and build
a qualitative theory about shadows using a region-based spatial
formalism about occlusion. Using this spatial formalism and a
machine vision system we are able to draw simple conclusions
about domain objects and egolocation for a mobile robot.

I. INTRODUCTION

The purpose of this work is to develop a qualitative spatial
reasoning framework about cast shadows (or shadows for
short) to be used for mobile robot egolocation. Qualitative
spatial reasoning (QSR) aims at the logical formalisation
of space from elementary entities such as regions, line
segments, directions amongst others [1].

This work falls within the logic-based knowledge repre-
sentation (KR) subfield of Artificial Intelligence [2], whose
main goals are: the logic formalisation of reasoning pro-
cesses, capable of inferring knowledge from representations
of the world; the construction of a medium for pragmatically
efficient computation, in which the formal representation
provides the means to organise domain knowledge allowing
for efficient (and consistent) queries, updates and revisions
of the knowledge base; or the rigorous treatment of on-
tological commitments, which provide the base rules that
guide reasoning about the world (for instance, what should
or should not be considered as the effects of actions, what
are the base spatial entities in a domain and so on) [3]. To
illustrate, from the following traditional discourse: “all men
are mortals and Socrates is a man”, we can infer the implicit
fact that “Socrates is mortal”. This can be represented in
a formal language as: {(V x men(z) — mortal(z)) A
men(Socrates)}, from which the inference rule modus po-
nens allows the deduction of mortal(Socrates). Research in
Knowledge Representation works in an analogous way: given
a domain, the task is to find a suitable formal representation
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and inference methods from which only sound facts can be
inferred. Besides this, qualitative spatial reasoning reduces
the domain to their elementary spatial constructs.

From the formalisation of shadows we aim to provide a
computer vision system with inference methods capable of
concluding facts about the position, orientation and motion
of objects in the world from the visual observation of objects
and their shadows. As we show in Section II, the cognitive
(informational) content of shadows is great, and we humans
use this in our day to day perception of depth and motion. A
shadow is caused when an object (a “caster””) comes between
a light source and a surface (a “screen”). Self shading is
what occurs when the caster and screen are the same object,
and the informational content of such shadows has been
investigated at length within the computer vision community
(as shape from shading). However, cast shadows (in which
the caster and screen are different objects) have usually
received less attention in scene understanding. We shall
concern ourselves in this paper with cast shadows, restricting
the investigation to the more common case in which the
caster and screen are largely opaque. The present work
takes one particular aspect on reasoning about cast shadows,
developing the idea that shadows provide the viewpoint of
the light source. In other words, from the viewpoint of the
light source the shadow is completely occluded by the caster.
From this observation we construct a qualitative theory about
shadows upon the spatial theory about occlusion known
as the region occlusion calculus (ROC)[4] and use it for
qualitative egolocation for a mobile robot.
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Fig. 1. Sometimes shadows carry information about objects outside of
view, via the “viewpoint” of the light source; artwork Shadow Stone, by
Andy Goldsworthy.

Section II discusses prior work in shadow reasoning, from
within Philosophy, Psychology and Computer Vision to mo-
tivate the following sections. The region occlusion calculus
(ROC) is discussed in Section III. Section IV presents an



extension of ROC to deal with shadows (which we call
Perceptual Qualitative Relations about Shadows — PQRS),
and Section V provides examples of inferences within the
extended theory. Conclusions are drawn on Section VI.

II. SHADOWS IN THE COGNITIVE SCIENCES

The importance of cast shadows in our depth perception
was intensely exploited in Renaissance paintings [5]. How-
ever the cognitive processes behind the perception of the
external world using shadows as cues have only recently
begun to be investigated [6], [7]. Casati in [8] points out
that cast shadows carry information about the presence and
location of the light source and the caster when they are
inside or outside the observer’s field of view. Shadows also
carry information on the intensity of the source, the shape of
the caster and the texture of the screen, and it is possible to
hypothesise the distance between the caster and the screen
given whether or not the caster and the shadow are in
contact with each other. Another important fact about the
information content of shadows is that they can be seen
as providing the observer with a second viewpoint: that of
the light source, as the shadow depicts the projection of the
caster’s terminator line. The psychological work reported in
[9] suggest that the human perceptual system is biased to
use shadow information on the interpretation of 3D motion
and that shadow information can even over-ride notions of
conservation of object size. This justifies the development
of a shadow processing stage in any cognitively plausible
vision system.

In the field of computer vision much shadow detection
work is centred around the idea of shadow as noise. When
subtracting background from video to find objects of interest,
shadows are a major source of false positives, hence shadow
detection becomes important for noise reduction (see, e.g.,
[10]). When we consider systems which use shadows there
are only a handful: [11] use known 3D locations and their
cast shadows to perform camera calibration and light location
(using known casters and screen to tell about light source);
[12] uses the moving shadows cast by known vertical objects
(flagpoles, the side of buildings) to determine the 3D shape
of objects on the ground (using the shadow to tell about the
shape of the screen). Perhaps most relevant to the current
paper is the work of Balan et al. [13], who use shadows as a
source of information for detailed human pose recognition:
they show that using a single shadow from a fixed light
source can provide a similar disambiguation effect as in using
additional cameras.

In this paper, perception (and reasoning about) cast shad-
ows is understood as the problem of inferring spatial relations
from the observation of objects and their shadows. The use
of cast shadows in such processes, however, presupposes
the solution of the shadow correspondence problem [6],
which involves the segmentation of shadows in scenes and
the connection of shadows to their relative casters [9].
Shadows, like holes, are dependent objects — without a caster,
they do not occur. Matching shadows to their casters is
a hard problem for various reasons: there may be various

competing possibilities to match shadows and objects in a
complex scene (i.e. the shadow correspondence problem is
underconstrained); the screen may not be planar, which may
turn a point-to-point matching into a complex non-linear reg-
istration procedure; and shadows of close objects may merge.
Given these complications, we incorporated a partial solution
to this problem using as heuristics the idea that a shadow
connected to an object is the shadow cast by this object.
A complete solution to the shadow correspondence problem
is outside the scope of this paper. Instead, we concentrate
on formalising the information content of shadows, using
a region-based ontology from a qualitative spatial reasoning
perspective. The next section presents the underlying theories
with which shadows are formalised in this work.

III. BACKGROUND

This section presents the qualitative spatial reasoning
approaches that are used in the development of this research.
A comprehensive overview of this field can be found in [1].

One of the best known QSR approaches is the Region
Connection Calculus (RCC) [14]. RCC is a many-sorted first-
order axiomatisation of spatial relations based on a reflexive,
symmetric and non-transitive dyadic primitive relation of
connectivity (C'/2) between two regions. Informally, assum-
ing two regions x and y, the relation C(z,y), read as “z is
connected with y”, is true if and only if the closures of z
and y have a point in common.

Assuming the C/2 relation, and that x, y and z are
variables for spatial regions, some mereotopological relations
can be defined. Some of them are: DC(z,y), which is read
as “x is disconnected from y”; EQ(x,y): “x is equal to y”;
O(z,y): “x overlaps y”; P(z,y): “x is part of y”; PO(z,y):
“x partially overlaps y”; PP(x,y): “x is a proper part of y”’;
EC(z,y): “x is externally connected with y”; TPP(z, y): “x
is a tangential proper part of y”; NT PP(x,y): “x is a non-
tangential proper part of y”; TPPi/2 and NTPPi/2 are
the inverse relations of TPP/2 and NT PP/2 respectively.

RCC represents qualitative mereotopological relations be-
tween spatial regions independently of any observer’s view-
point. In contrast [15] proposes a lines-of-sight calculus in
order to represent relative positions between pairs of non-
overlapping convex bodies as seen from a particular observer.
The main interest in this formalism is the representation and
manipulation of information about visual occlusion between
objects. Inspired by these ideas, Region Occlusion Calculus
(ROC) [4] was proposed to represent the various possibil-
ities of interposition relations between two arbitrary shaped
objects as an extension of the Region Connection Calculus.
The relations constituting ROC are represented in Figure 2.
These relations are defined over RCC relations along with the
primitive relation TotallyOccludes(x,y,v), which stands
for “x totally occludes y wrt the viewpoint v”.

In order to make explicit both the distinction between
a body and the region of space it occupies, and also the
distinction between a physical body to its projection wrt a
viewpoint, ROC assumes, respectively, the functions r (re-
gion) and ¢ (image). The region function can be understood
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Fig. 2. The 20 ROC relations, where ¢! is the inverse of ¢.

as a mapping from a physical body to its occupancy region.
Similarly, the image function is a mapping from a physical
body to its relative 2D projection wrt a viewpoint. Below we
present those ROC axioms (introduced in [4]) that are used
in our theory of shadows.

Formula (A1) is the ROC axiom that states that “if x
totally occludes y from a viewpoint v, z totally occludes
any part of y”:

(Al) Vz y zv [[TotallyOccludes(z,y,v) A
P(r(z),r(y))] — TotallyOccludes(x, z,v)].

The fact “if x totally occludes y from v, no part of y
totally occludes part of z” is formalised in formula (A2).
(A2) Vz y z v [TotallyOccludes(z,y,v) —

vz ul[P(r(2),r(z)) A P(r(u),r(y))] —
—TotallyOccludes(u, z,v)]]

In order to simplify notation, the following
abbreviations [4] are included in the theory:
Occludes(z,y,v), PartiallyOccludes(z, y,v), and

MututallyOccludes(z,y,v), whose definitions are omitted
here for brevity. With these definitions the 20 ROC relations
(Figure 2) can be defined [4].

IV. PERCEPTUAL QUALITATIVE RELATIONS ABOUT
SHADOWS (PQRS)

For the purposes of this work we assume a static light
source, denoted by the constant symbol L, situated above
the observer'. We also assume that the scenes are observed
from an egocentric point of view that is represented by v. In
order to simplify the notation we also assume that shadows
are cast on a single screen Scr which does not need to be flat,
since (as we shall see) shadow detection in this work does not
take into account the shapes of image regions, but only the
intensity of the pixels composing them. The basic part of the

! An assumption likely to be made by the human perceptual system [16].

theory has a sort for physical bodies (including the casters,
the screen and the shadows): o1, .. . , 0,; sorts for time points:
t1,...,tn; and spatial regions: ri,...,7,. For convenience
we represent shadows by the symbols sq,...,s,. It is as-
sumed throughout this paper that the variables are universally
quantified, unless explicitly stated.

The set of perceptual qualitative relations about shadows
(PQRS) includes the region connection calculus and
a subset of the region occlusion -calculus (ROC)
composed of the relations {NonOccludesDC(o,s,v),
NonOccludesEC (o, s,v), PartiallyOccludesPO(o, s,v),
PartiallyOccludesT PP (o, s,v), TotallyOccludes-
TPPI(o,s,v), TotallyOccludesEQ(o, s,v) and
TotallyOccludesNTPPI(o,s,v)} for a caster o, its
shadow s and a viewpoint v. The remaining ROC relations
(shown in Figure 2) have no model wrt casters and their
cast shadows.

We introduce the predicate Shadow(s, o, Ser, L) that de-
notes that s is a shadow of object o on the screen Scr
from the light source L. It is also convenient to define:
Is_a_Shadow(s,0) = Fscr,l Shadow(s, o, scr,l), stand-
ing for “s is a shadow of o0”.

We can now state as an axiom that the shadow of an object
o is the region in a screen that is totally occluded by the
caster from the light source viewpoint. Formally, we have:

(A3) Shadow(s,o,Scr, L) < PO(r(s),r(Scr)) A
TotallyOccludes(o, s, L) A
=30’ TotallyOccludes(d', 0, L).

The third conjunct of the right-hand side of Formula (A3)
guarantees the existence of the shadow of o.

It follows from (A3) and Axiom (A2) that no shadow
occludes its own caster?, as denoted by Theorem (7'1) below.

(T'1) Shadow(s,o,Ser, L) — —TotallyOccludes(s, o, L).

It is also a consequence of Axiom (A3) and the ROC
axioms that no shadow casts a shadow itself (cf. Theorem
(T2)):

(T2) Shadow(s,o,Scr,L) — =Shadow(s', s, Scr', L).

We can also prove that if two shadows of distinct objects
partially overlap, then the objects will be in a relation of
occlusion wrt the light source, as expressed in Theorem (7'3).

(T3) Shadow(s,o,Scr,L) A 3o'=(o=0") ANO(r(s),r(0))
— Occludes(o,0’, L) V Occludes(o', 0, L).

Theorems (7'1), (72) and (T3) are proved in [17].

We can obtain similar results to those above considering
partial shadows (instead of the whole shadows represented
in Shadow/2), i.e. shadows of parts of casters.

2Note that we are only dealing with cast, and not self attached, shadows.



Relative location

The results above relate the perspective view of shad-
ows and their casters from the light source viewpoint. It
is possible, however, to reason about shadows from arbi-
trary viewpoints: relating shadows with occlusion suggests
the distinction of five regions defined from the lines of
sight between the light source, the caster and its shadow,
as represented in Figure 3(b). Therefore, any viewpoint
v located on Region 1 will observe the shadow s and
the object o as NonOccludesDC(o, s,v); similarly, if
v observes o and s from Region 3 it should see that
PartiallyOccludesPO(o, s,v) and from Region 5 that
TotallyOccludesNTPPI(o, s,v). Region 4 is the surface
defined by the lines of sight from [ tangential to o and s, from
where v would observe TotallyOccludesT PPI(o,s,v).
Region 2, from where v sees NonOccludesEC(o, s,v), is
a bisected conic surface defined by the lines connecting
opposite sides of the object and its shadow, starting at infinity
and stopping at the object.

It is worth noting that, if only the top part of the shadow
is considered, the five regions described above can also
be defined in the case where the shadow is connected to
its caster (cf. Figure 3(a)), whether or not the shadow is
completely cast on the ground.

o

(b)

Fig. 3. (a) a cast shadow connected to its caster; (b) distinct regions implied
by the observation of a shadow and its caster.

By including axioms for left/right information in the
theory (cf. [4] omitted here for brevity), besides of locating
an observer in regions 1, 2, 3 and 4 (shown in Figure 3(b)),
we would be able to say that this observer is on to the left
(or right) of object o and shadow s. Let the terms Region 1
(where ¢ € 1,2,3,4,5) represent the regions in Figure 3(b)
and let the relation located(r, v, 0, s) represent an observer
v located at a region 7 wrt an object o and its shadow s.
Then, we have:

(A4) located(Region 1,v,0,s) «— Is.a_Shadow(s, o) A
NonOccludesDC o, s,v) A v # o;

(A5) located(Region 2,v,0,s) < Is_a_Shadow(s,o) A
NonOccludesEC (o, s,v) A v # o;

(A6) located(Region 3,v,0,s) < Is_a_Shadow(s,o) A
PartiallyOccludesPO(o, s,v) A v # o;

(AT) located(Region 4,v,0,s) «— Is_a_Shadow(s,o) A
TotallyOccludesT PPI(o, s,v) A v # o;

(A8) located(Region 5,v,0,s) «— Is_a_Shadow(s,o) A
TotallyOccludesNT PPI(o,s,v) A v # o.

It is worth noting that (according to Axiom (A3)) PQRS
cannot handle the case where the robot (located on Region
5) totally occludes the screen from the light source, since the
predicate Shadows is false in this case.

In conclusion, formalising the relations between shadows,
casters and observers using ROC facilitates a qualitative
characterisation of the space around objects, that can be used
as relative location for a mobile observer.

V. EXPERIMENTS

We are currently implementing the ideas for relative loca-
tion presented in Section IV on our ActivMedia PeopleBot
using a monocular colour camera. Shadow detection is
accomplished by mapping the images captured by the camera
into a HSV colour space and thresholding on V, whereby
high values (light objects) are filtered out and low values
(dark objects) are casters. Shadows are located within a value
range in between light and dark objects whose thresholds are
found by experimentation. Noise and some spurious shadows
are filtered out by morphological operations.

The experiments where conducted with the robot im-
mersed in a prepared office-like environment containing
target objects and where the light-source was a single sharp
artificial light located above the scene at one side of the room
(cf. Figure 5(a)). The robot was set to navigate through the
room, stopping after a certain time interval to analyse its po-
sition wrt the object-shadow locations introduced in Section
IV. In the robot setup, however, the regions represented in
Figure 3(b) had to be slightly modified in order to account for
the uncertainty in locating the robot on the one-dimensional
regions 2 and 4. This modification is shown in Figure 4,
where regions 2 and 4 are now defined as the shaded spaces
surrounding the respective original regions. Note also in this
figure that the regions exist “behind” the light source and
behind the shadow?, what defines them is the PQRS relation
between the caster and its shadow.

Figure 5(b) shows an example of the sort of segmentation
obtained from robot images.

Experimentl: Egolocation

In our first experiment, the robot collected 118 snapshots
around the target object (the black bucket in Figures 5(a) and
5(b)), which was kept at the centre of the camera view. The
system located the robot correctly into one of the five object-
shadow regions (Figure 4) in 97 out of the 129 snapshots (as
shown in the diagonal of Table I below). Out of the 32 mis-
locations, 60% were related to the borderlines separating two
regions, whereas the remainder were due to noise from the
scene background (mainly dark regions on the wall that were

31f the screen is the floor.



Fig. 4. Distinct regions wrt shadows used in the preliminary experiments.

(a) Robot office-like environment

(b) Example image

Fig. 5. Robot office-like environment and example image

segmented as shadows and linked to the target object). These
results are summarised on Table I that contains a confusion
matrix for the robot localisation task. The first column shows
the actual region where the robot was located and the first
row, the answers given by the system; the correct answers
form the main diagonal of the matrix and are marked in bold
text. It is worth noting that the wrong answers located the
robot in an adjacent region of the correct one, so even these
carry some information about the relative robot’s location.

TABLE I
SUMMARY OF THE RESULTS FOR EGOLOCATION FROM SHADOWS

\ [Region 1[Region 2[Region 3[Region 4[Region 5|

Region 1 40 0 0 0 0
Region 2 11 27 2 0 0
Region 3 0 2 15 0 0
Region 4 0 5 4 6 0
Region 5 0 1 0 1 9

Experiment 2: Egolocation and object depth

Shadows (as well as occlusion) are also important cues for
depth perception. The region occlusion calculus incorporates
a primitive relation for nearness (N(z,y, z), read as “x is
nearer to y than x is to 2”), along with a set of axioms origi-
nally from [18] in order to relate occlusion with comparative
distance. The nearness relation is related with occlusion in
ROC by the following axiom:

(A9) Vz y v [PartiallyOccludes(z,y,v) — N(v,z,y)]

representing that “if a body z partially occludes a body y
wrt some viewpoint v then x is nearer to v than y is to v”.

TABLE I
SUMMARY OF THE EXPERIMENTS USING SHADOWS AS DEPTH CUES.

\ [total trials[egolocation[robot nearness [light source nearness

Region 2 32 22 23 32
Region 3 22 13 14 22
Region 4 4 4 0 0

It is easy to see that Axioms (A3) and (A9) imply the
commonsense fact N (L, o, s) (for a light source L, an object
o and its shadow s) and consequently that N (L, o, Scr). It
is a consequence of this fact that if a shadow s (from caster
0) is observed cast on an object o’ (0 # o') then we know
that o is nearer the light source than o/, even though o is
never directly perceived by the observer (only its shadow).
Formally: Shadow(s,o0,0',L) — N(L,0,0").

Given the information about how some objects are nearer
to the light source than others, and the qualitative egolocation
(discussed in the previous sections), the robot is capable of
inferring the depth of objects wrt itself. The idea is to use
the observation of pairs of objects in such an arrangement
wrt the light source that one of the objects is located in the
middle of a long shadow (which is the combination of the
shadows of both objects) and the other is not (cf. Figure 6).
Thus, in this case, if the robot finds itself located in regions 2,
3 and 4 (Figure 4) it can infer that the object in the middle
of the shadow (i.e., the one that has a shadow of another
object cast on itself) is further from the robot than the other,
because any location in regions 2, 3 and 4 will be closer to
the object that is nearer to the light source. If the robot is
located on region 1, however, no conclusion can be drawn
wrt object’s relative positions using cast shadows.

Fig. 6. Two objects and the segmented combination of their shadows.

In order to experiment these ideas in our scenario, we
collected 58 poses with two objects in positions such that
the shadow of one object is partially cast on the other, with
the robot located in regions 2, 3 or 4 wrt the object that has
no shadow cast on it (cf. Figure 6). Thus, by segmenting
objects and shadows, we obtained the results shown in table
II below for the robot egolocation and the relative location
of the two objects in the scene.

From these results we can conclude that the system
could always find the relative depth of objects wrt the light
source (as shown in the last column of Table II). Moreover,



whenever the robot located itself correctly in regions 2 and
3, it could decide the depth of scene objects.

In general, the classification errors were due to the
threshold filters used to segment shadows from objects, the
thresholds where over sensitive to changes in the intensity
of the light source (note that the robot environment was also
receiving natural light from the lab windows, cf. Figure 5(a)).
The errors in the decision of nearness where due to the fact
that the segmentation sometimes did not get a combination
of the shadow of both objects in the scene, but two separate
shadows instead. In these cases the split shadows perceived
by the robot prevented it from determining object depth. In
region 3 the caster and its shadow are partially occluded,
and (in some cases) not much of the shadow is left to be
pickled out by the vision system, causing the self-localisation
to err. We are currently investigating two avenues to improve
these results: one idea is to use the relative location diagram
(Figure 3(b)) to generate expectations about where the robot
is, if the expectation contradicts the observation, the robot
should vary the thresholds selecting those where the best
match between expectation and observation occurs; a second
idea is to use Markov Random fields to segment shadows,
casters and background.

VI. DISCUSSION AND OPEN ISSUES

This paper has identified the perception of cast shadows
as an open problem within knowledge representation and
computer vision, and has presented the theory Perceptual
Qualitative Relations about Shadows (PQRS) which allows
simple inferences about qualitative relations between caster,
shadow, light source and screen. This formalism was used to
prove several theorems on commonsense facts about space,
and it has been experimented on the task of qualitative self-
localisation by evaluating its inferences on images collected
by a mobile robot vision system.

Cast shadows and their relations to our depth percep-
tions were extensively studied during the Renaissance [5];
however, only recently the perception of shadows has being
considered as a subject for scientific enquiry [6]. This paper
is a first step towards providing a rigorous account of the
information content of shadows using formal knowledge
representation techniques. It is worth pointing out that the
choice of a qualitative theory does not preclude the use of
quantitative or statistical methods, but complements them
by making explicit the knowledge content from a domain.
The purpose of qualitative methods is to add a more abstract
layer to a robotic (or computer vision) system, whereby it
is possible to make inferences about the knowledge encoded
and also to prove theorems about the theory proposed.

The inclusion of probabilistic reasoning (along with logic
inferences) in PQRS is on our research agenda, as the rig-
orous treatment of uncertainty is essential in order to extend
this theory towards more natural environments. Integrating
the proposed qualitative self-localisation method with other
robot localisation frameworks is also a task to be done
in order to enhance the robustness of our method, and to
improve the efficiency of the localisation task.

PQRS can be used on environments with multiple light
sources if there is a dominant source (as in our experiments),
i.e., if it is possible to single out the shadows cast by one
source. More research is needed to extend PQRS to work in
environments with light sources of equal intensities.

We expect that the ideas presented in this work can be
further integrated in intelligent vision and robotic systems in
order to endow them with the basic machinery for reasoning
about space using the entire spectrum of perceptual cues
contained in the visual observation of the world.
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