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1 Introduction

In this paper we wish to consider independence concepts associated with
full conditional measures [23]. That is, we wish to allow conditioning to
be a primitive notion, defined even on null events (events of zero probabil-
ity). The advantages of a probability theory that takes conditioning as a
primitive have been explored by many authors, such as de Finetti [20] and
his followers [12, 16], Rényi [47], Krauss [37] and Dubins [23]. A significant
number of philosophers have argued for serious consideration of null events
[1, 29, 38, 41, 45, 48, 49, 50, 51], as have economists and game theorists
[7, 8, 31, 32, 33, 42]. Null events, or closely related concepts, have also
appeared repeatedly in the literature on artificial intelligence: ranking and
ordinal measures [17, 28, 49, 59] have direct interpretations as “layers” of
full conditional measures [12, 26, 43]; some of the most general principles of
default reasoning can be interpreted through various types of lexicographic
probabilities [5, 6, 25, 44, 36]; and as a final example, the combination of
probabilities and logical constraints in expert systems must often deal with
zero probabilities [2, 9, 12, 21].
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The goal of this paper is to compare concepts of independence for events
and variables in the context of full conditional measures. Our strategy is to
evaluate concepts of independence by the graphoid properties they satisfy
(Section 3 reviews the theory of graphoids). This strategy is motivated by
two observations. First, the graphoid properties have been often advocated
as a compact set of properties that any concept of independence should
satisfy. Even though some of the graphoid properties may have more lim-
ited scope than others, they offer a good starting point for discussions of
independence. Second, the graphoid properties are useful in proving results
about conditional probabilities, graphs, lattices, and other models [19]. In
Sections 4 and 5 we analyze existing and new concepts of independence. We
show that several key graphoid properties can fail due to null events.

2 Full Conditional Measures

In this paper, in order to avoid controversies about countable additivity for
probability, we restrict ourselves to finite state spaces: Ω = {ω1, . . . , ωN};
any subset of Ω is an event. We use A, B, C to denote events and W ,
X, Y , Z to denote (sets of) random variables; by A(X), B(Y ), C(X) and
D(Y ) we denote events defined either by X or by Y . Events such as {X =
x} ∩ {Y 6= y} ∩ {Z = z} are denoted simply as {X = x, Y 6= y Z = z}.

A probability measure is a set function P : 2Ω → R such that P(Ω) = 1,
P(A) ≥ 0 for all A, and P(A ∪ B) = P(A) + P(B) for disjoint A and B.
Given a probability measure, the probability of A conditional on B is usually
defined to be P(A∩B)/P(B) when P(B) > 0; conditional probability is not
defined if B is a null event. Stochastic independence of events A and B
requires that P(A ∩ B) = P(A)P(B); or equivalently that P(A|B) = P(A)
when P(B) > 0. Conditional stochastic independence of events A and B
given event C requires that P(A ∩B|C) = P(A|C)P(B|C) if C is non-null.
These concepts of independence can be extended to sets of events and to
random variables by requiring more complex factorizations [22].

A different theory of probability ensues if we take conditional probability
as a truly primitive concept, as already advocated by Keynes [35] and de
Finetti [20]. The first question is the domain of probabilistic assessments.
Rényi [47] investigates the general case where P : B × C → R, where B is
a Boolean algebra and C is an arbitrary subset of B (Rényi also requires
σ-additivity). Popper considers a similar set-up [45]. Here we focus on
P : B × (B\∅)→ R, where B is again a Boolean algebra [37], such that for
every event C 6= ∅:

1. P(C|C) = 1;

2. P(A|C) ≥ 0 for all A;

3. P(A ∪B|C) = P(A|C) + P(B|C) for all disjoint A and B;
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A Ac

B bβc1 α
Bc b1− βc1 1− α

Table 1. A simple full conditional measure (α, β ∈ (0, 1)) where P(A) = 0
and P(B|A) = β.

4. P(A∩B|C) = P(A|B∩C)P(B|C) for all A and B such that B∩C 6= ∅.

This fourth axiom is often stated as P(A|C) = P(A|B)P(B|C) when A ⊆
B ⊆ C and B 6= ∅ [4]. We refer to such a P as a full conditional mea-
sure, following Dubins [23]; there are other names in the literature, such
as conditional probability measure [37] and complete conditional probability
system [42]. Whenever the conditioning event C is equal to Ω, we suppress
it and write the “unconditional” probability P(A) instead of P(A|Ω).

Full conditional measures place no restrictions on conditioning on null
events. If B is null, the constraint P(A∩B) = P(A|B)P(B) is trivially true,
and P(A|B) must be defined separately from P(B) and P(A ∩B). For any
two events A and B, indicate by A � B the fact that P(B|A ∪ B) = 0.
Then we can partition Ω into events L0, . . . , LK , where K ≤ N , such that
Li � Li+1 for i ∈ {0, . . . ,K − 1} if K > 0. Each event Li is a “layer” of P,
and the decomposition in layers always exists for any finite algebra. Coletti
and Scozzafava denote by ◦(A) the index i of the first layer Li such that
P(A|Li) > 0; they propose the convention ◦(∅) = ∞ [12]. They also refer
to ◦(A) as the zero-layer of A; here we will use the term layer level of A
for the same purpose. Note that some authors use a different terminology,
where the ith “layer” is

⋃K
j=i Lj rather than Li [12, 37].

Coletti and Scozzafava also define the conditional layer number ◦(A|B)
as ◦(A ∩B)− ◦(B) (defined only if ◦(B) is finite).

Any full conditional measure can be represented as a sequence of strictly
positive probability measures P0, . . . ,PK , where the support of Pi is re-
stricted to Li; that is, Pi : 2Li → R. This result is proved assuming complete
assessments in general spaces (not just finite) by Krauss [37] and Dubins [23],
and it has been derived for partial assessments by Coletti [10, 12].

We have, for events A, B:

• P(B|A) = P(B|A ∩ L◦(A)) [4, Lemma 2.1a].

• ◦(A ∪B) = min(◦(A) , ◦(B)).

• Either ◦(A) = 0 or ◦(Ac) = 0.

The following simple result will be useful later.



4 F. G. Cozman, T. Seidenfeld

Lemma 2.1. Consider two random variables X and Y , event A(X) defined
by X and event B(Y ) defined by Y such that A(X)∩B(Y ) 6= ∅. If P(Y =
y|{X = x} ∩ B(Y )) = P(Y = y|B(Y )) for every x ∈ A(X) such that
{X = x} ∩B(Y ) 6= ∅, then P(Y = y|A(X) ∩B(Y )) = P(Y = y|B(Y )).

Proof. We have (all summations run over {x ∈ A(X) : x ∩B(Y ) 6= ∅}):

P(Y = y|A(X) ∩B(Y )) =

=
∑

P(X = x, Y = y|A(X) ∩B(Y ))

=
∑

P(Y = y|{X = x} ∩A(X) ∩B(Y ))× P(X = x|A(X) ∩B(Y ))

=
∑

P(Y = y|{X = x} ∩B(Y ))P(X = x|A(X) ∩B(Y ))

=
∑

P(Y = y|B(Y ))P(X = x|A(X) ∩B(Y ))

= P(Y = y|B(Y ))
∑

P(X = x|A(X) ∩B(Y ))

= P(Y = y|B(Y )).

q.e.d.

The following notation will be useful. If A is such that ◦(A) = i and
P(A|Li) = p, we write bpci. If ◦(A) = 0 and P(A) = p, we simply write p
instead of bpc0. Table 1 illustrates this notation.

There are several decision theoretic derivations of full conditional mea-
sures. The original arguments of de Finetti concerning called-off gam-
bles [20] have been formalized in several ways [34, 46, 57, 58]. Deriva-
tions based on axioms on preferences have also been presented, both by
Myerson [42] and by Blume et al. [7]. The last derivation is particularly
interesting as it is based on non-Archimedean preferences and lexicographic
preferences.

3 Graphoids

If we read (X⊥⊥Y |Z) as “variable X is stochastically independent of vari-
able Y given variable Z,” then the following properties are true:

Symmetry: (X⊥⊥Y |Z)⇒ (Y ⊥⊥X |Z)

Decomposition: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥W |(Y, Z))

Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z))⇒ (X⊥⊥(W,Y ) |Z)
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Instead of interpreting ⊥⊥ as stochastic independence, we could take this
relation to indicate an abstract concept of independence. The properties
just outlined are then referred to as the graphoid properties, and any three-
place relation that satisfies these properties is called a graphoid. Note that
we are following terminology proposed by Geiger et al. in [27]; the term
“graphoid” often means slightly different concepts [18, 43]. In fact, often
the four properties just listed are called semi-graphoid properties, and the
term “graphoid” is reserved to a relation that satisfies the semi-graphoid
properties plus:

Intersection: (X⊥⊥W |(Y, Z)) & (X⊥⊥Y |(W,Z))⇒ (X⊥⊥(W,Y ) |Z)

As the intersection property can already fail for stochastic independence in
the presence of null events [14], it is less important than the other proper-
ties in the context of the present paper. But the intersection property is
important for understanding Basu’s First Theorem of statistical inference,
as shown by San Martin et al. [39].

Finally, the following property is sometimes presented together with the
previous ones [43]:

Redundancy: (X⊥⊥Y |X)

If we interpret W , X, Y and Z as sets of variables, redundancy implies
that any property that is valid for disjoint sets of variables is also valid in
general — because given symmetry, redundancy, decomposition and con-
traction, (X⊥⊥Y |Z)⇔ (X\Z⊥⊥Y \Z |Z) as noted by Pearl [43].

Graphoids offer a compact and intuitive abstraction of independence.
As an example of application, several key results in the theory of Bayesian
networks can be proved just using the graphoid properties, and are conse-
quently valid for many possible generalizations of Bayesian networks [27].
Several authors have employed the graphoid properties as a benchmark to
evaluate concepts of independence [3, 55, 52]; we follow the same strategy
in this paper.

4 Epistemic and coherent irrelevance and
independence

Because conditional probabilities are defined even on null events, we might
consider a concise definition of independence: events A and B are indepen-
dent iff P(A|B) = P(A). However, this definition is not entirely satisfactory
because it guarantees neither P(A|Bc) = P(A) nor P(B|A) = P(B) (fail-
ure of symmetry can be observed in Table 1). In this section we study
the graphoid properties of three concepts of irrelevance/independence that
attempt to correct these deficiencies. We collect results on epistemic and
strong coherent irrelevance/independence, and then we explore the new con-
cepts of weak coherent irrelevance/independence.
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4.1 Epistemic irrelevance/independence
Keynes faced the problem of non-symmetric independence, in his theory of
probability, by defining first a concept of irrelevance and then “symmetriz-
ing” it [35]: B is irrelevant to A iff P(A|B) = P(A); A and B are indepen-
dent iff A is irrelevant to B and B is irrelevant to A. Walley strenghtened
Keynes’ definitions in his theory of imprecise probabilities: B is irrelevant
to A iff P(A|B) = P(A|Bc) = P(A); independence is the symmetrized con-
cept [56].1 Note that Crisma has further strenghtened Walley’s definitions
by requiring logical independence [16] (we later discuss logical independence
in more detail).
We follow Walley in using epistemic irrelevance of B to A to mean

P(A|B) = P(A) if B 6= ∅ and P(A|Bc) = P(A) if Bc 6= ∅. (4.1)

Epistemic independence refers to the symmetrized concept. Clearly epis-
temic irrelevance/independence can be extended to sets of events, random
variables, and to concepts of conditional irrelevance/independence [56]. We
wish to focus on:

Definition 4.1. Random variables X are epistemically irrelevant to ran-
dom variables Y conditional on random variables Z, denoted by

(X EIR Y | Z)

if P(Y = y|{X = x, Z = z}) = P(Y = y|Z = z) for all values x, y, z
whenever these probabilities are defined.

Epistemice independence, denoted using similar triplets with the symbol
EIN , is the symmetrized concept.

We now consider the relationship between these concepts and the graph-
oid properties. Because irrelevance is not symmetric, there are several pos-
sible versions of the properties that might be of interest. For example, two
different versions of weak union are (X EIR (W,Y ) | Z)⇒ (X EIRW | (Y, Z))
and ((W,Y ) EIRX | Z) ⇒ (W EIRX | (Y, Z)), and there are two additional
possible versions. Decomposition also has four versions, while contraction
and intersection have eight versions each. We single out two versions for
each property, which we call the direct and the reverse versions. The direct
version is obtained by writing the property as initially stated in Section
3, just replacing ⊥⊥ by EIR . The reverse version is obtained by switch-
ing every statement of irrelevance. Thus we have given respectively the

1Levi has also proposed P(A|B) = P(A) as a definition of irrelevance, without con-
sidering the symmetrized concept [38]. Both Levi’s and Walley’s definitions are geared
towards sets of full conditional measures, but clearly they specialize to a single full con-
ditional measure.
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direct and reverse versions of weak union in this paragraph (similar dis-
tinctions have appeared in the literature for various concepts of irrelevance
[15, 24, 40, 52, 55]).

The following proposition relates epistemic irrelevance/independence
with the graphoid properties (several results in the proposition can be ex-
tracted from Vantaggi’s results [52]).

Proposition 4.2. Epistemic irrelevance satisfies the graphoid properties
of direct and reverse redundancy, direct and reverse decomposition, reverse
weak union, and direct and reverse contraction. If W and Y are logically
independent, then epistemic irrelevance satisfies reverse intersection. All
other versions of the graphoid properties and intersection fail for epistemic
irrelevance. Epistemic independence satisfies symmetry, redundancy, de-
composition and contraction — weak union and intersection fail for epis-
temic independence.

Proof. For epistemic irrelevance, the proof of direct and reverse redun-
dancy, direct and reverse decomposition, reverse weak union and reverse
contraction is obtained from the proof of Theorem 5.4, by taking A(X) =
B(Y ) = Ω. For direct contraction ((X EIR Y | Z) & (X EIRW | (Y,Z)) ⇒
(X EIR (W,Y ) | Z)), consider that if (X,Z) 6= ∅,

P(W,Y |X,Z) = P(W |X,Y, Z)P(Y |X,Z)
= P(W |Y,Z)P(Y |Z)
= P(W,Y |Z),

where the term P(W |X,Y, Z)P(Y |X,Z) is only defined when (X,Y, Z) is
nonempty (if it is empty, then the other equalities are valid because both
sides are equal to zero). All other versions of graphoid properties fail for
epistemic irrelevance, as shown by measures in Tables 2, 3, 7, and 8. For
epistemic independence, symmetry is true by definition; redundancy, de-
composition and contraction follow from their direct and reverse versions
for epistemic irrelevance; Table 2 displays failure of weak union, and Table
3 displays failure of intersection. q.e.d.

4.2 Strong coherent irrelevance/independence
Coletti and Scozzafava have proposed a concept of independence that ex-
plicitly deals with layers [11, 13, 52]. They define the following condition:

Definition 4.3. The Coletti-Scozzafava condition on (B,A) holds iff B 6=
∅ 6= Bc and ◦(A|B) = ◦(A|Bc) and ◦(Ac|B) = ◦(Ac|Bc), where these
layer numbers are computed with respect to probabilities over the events
{A ∩B,A ∩Bc, Ac ∩B,Ac ∩Bc}.
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w0y0 w1y0 w0y1 w1y1

x0 α bβc2 1− α b1− βc2
x1 bαc1 bγc3 b1− αc1 b1− γc3

Table 2. Failure of direct weak union for epistemic irrelevance/inde-
pendence (α, β, γ ∈ (0, 1), with α 6= β 6= γ). The full conditional measure
in the table satisfies (X EIN (W,Y )) but fails (X EIR Y |W ).

w0y0 w1y0 w0y1 w1y1

x0 b1c3 bβc1 b(1− β)c1 b1c5
x1 b1c2 α (1− α) b1c4

Table 3. Failure of versions of intersection for epistemic irrelevance/inde-
pendence (α, β ∈ (0, 1), with α 6= β). The full conditional measure in the
table satisfies (X EINW | Y ) and (X EIN Y |W ), but not (X EIR (W,Y )).

A Ac

B b1c1 α
Bc b1c2 1− α

A Ac

B 1 b1c2
Bc b1c1 b1c4

Table 4. Violations of the Coletti-Scozzafava condition, where α ∈ (0, 1).

The Coletti-Scozzafava condition focuses only on the four events {A ∩
B,A∩Bc, Ac∩B,Ac∩Bc}; consequently, it never deals with layer numbers
larger than 3.2 Situations that violate the Coletti-Scozzafava condition are
depicted in Table 4.3

Coletti and Scozzafava then define independence of B to A as: satisfac-
tion of the Coletti-Scozzafava condition on (B,A) plus epistemic irrelevance
of B to A. The concept is not symmetric (Table 1).

Another important aspect of the Coletti-Scozzafava condition is that if
B (or Bc) is empty, then B is not deemed irrelevant to any other event.
Coletti and Scozzafava argue that their condition deals adequately with
logical independence, as follows. Consider a table containing layer numbers
for events {A ∩ B,A ∩ Bc, Ac ∩ B,Ac ∩ Bc}. Every entry can be either
finite or infinite; thus we have 16 configurations insofar as this distinction

2We thank Andrea Capotorti for bringing this fact to our attention.
3The example in Table 4 (right) fails the following result by Coletti and Scozzava

[12, Theorem 17]: if A and B are logically independent, then P(A|B) = P(A|Bc) and
P(B|A) = P(B|Ac) imply ◦(Ac|B) = ◦(Ac|Bc). But this result is true when we focus on
the restricted set of events {A ∩B, A ∩Bc, Ac ∩B, Ac ∩Bc}.
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is concerned. One of these configurations is impossible (the one with four
infinite entries). The other configurations can be divided in the cases de-
picted in Table 5. The Coletti-Scozzafava condition blocks the irrelevance
of B to A in the second, third, fourth, sixth and seventh tables. Most cases
of logical independence are thus removed. (However, the fifth table does
not fail the Coletti-Scozzafava condition even though displays a situation
of logical dependence,4 as noted by Coletti and Scozzafava [12, Proposition
2].)

Vantaggi extends the main ideas in Coletti and Scozzafava’s concept of
independence by proposing a condition that can be stated as follows:

Definition 4.4. The conditional Coletti-Scozzafava condition on variables
(Y,X) given variables Z holds iff for all values x, y, z,

{Y = y, Z = z} 6= ∅ and {Y 6= y, Z = z} 6= ∅,

and
◦(X = x|Y = y, Z = z) = ◦(X = x|Y 6= y, Z = z)

and
◦(X 6= x|Y = y, Z = z) = ◦(X 6= x|Y 6= y, Z = z) ,

where these layer numbers are computed with respect to {{X = x, Y =
y, Z = z}, {X = x, Y 6= y, Z = z}, {X 6= x, Y = y, Z = z}, {X 6= x, Y 6=
y, Z = z}}.

Vantaggi then proposes a concept, here referred to as strong coherent
irrelevance:5 Y is strongly coherently irrelevant to X given Z if (i) Y
is epistemically irrelevant to X given Z, and (ii) the conditional Coletti-
Scozzafava condition holds on (Y,X) given Z [52, Definition 7.1]. This is a
very stringent concept, as strong coherent irrelevance requires Y and Z to
be logically independent.

As shown by Vantaggi [52], strong coherent irrelevance fails symmetry,
direct and reverse redundancy, and direct weak union. Her results imply
that a symmetrized concept of strong coherent independence fails redun-
dancy and weak union (Table 2). Note also that strong coherent irrelevance
fails direct intersection, as shown by Table 3.

4We thank Barbara Vantaggi for bringing this fact to our attention.
5It should be noted that Vantaggi’s concepts of independence correspond to irrelevance

in our terminology (she also studies special cases where symmetry holds [54]). Also,
Vantaggi’s writing of properties is different from ours; for example, her reverse weak
union property is our direct weak union property.
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A Ac

B a b
Bc c d

A Ac

B a ∞
Bc c d

A Ac

B a ∞
Bc ∞ d

A Ac

B ∞ b
Bc c ∞

A Ac

B a ∞
Bc c ∞

A Ac

B a b
Bc ∞ ∞

A Ac

B a ∞
Bc ∞ ∞

Table 5. Cases for the Coletti-Scozzafava and layer conditions.

4.3 The layer condition and weak coherent
irrelevance/independence

In this sub-section we consider a condition on layer numbers that relaxes the
Coletti-Scozzafava condition in two ways. First, we remove the restriction
on the set of events that must be taken into account to determine layer
numbers, Second, we replace conjunction with material implication in the
case B (or Bc) is empty, as this replacement will lead to a host of interesting
properties. In Section 6 we comment on our reasons to make these changes
and on their consequences.

Definition 4.5. The layer condition on (B,A) holds iff whenever B 6= ∅ 6=
Bc then ◦(A|B) = ◦(A|Bc) and ◦(Ac|B) = ◦(Ac|Bc).

The first thing to note is that the layer condition is symmetric.6

Proposition 4.6. If A and B satisfy the layer condition on (B,A), they
satisfy the layer condition on (A,B).

Proof. Define a = ◦(A ∩B); b = ◦(A ∩Bc); c = ◦(Ac ∩B); d = ◦(Ac ∩Bc).
Each one of these four layer levels may be finite or infinite. There are
thus 16 situations; one is impossible and six others always violate the layer
condition. Suppose then that no layer level is infinite and assume a = 0, as
one of the four entries must be 0. The first table in Table 5 illustrates this
case. Regardless of the value of b, ◦(Bc) = b because ◦(A ∩Bc)−◦(Bc) = 0
by hypothesis. Then c−0 = d−b, thus d = c+b, and the table is symmetric.
Now, if ◦(A ∩B) 6= 0, then we can always re-label rows and columns so that
the top left entry is zero, and the same reasoning follows. The remaining
cases are illustrated by the fifth, sixth, and seventh tables in Table 5, where
the result is immediate. q.e.d.

6The Coletti-Scozzavafa condition is not symmetric, as shown by the sixth table in
Table 5.
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Consequently, it is enough to indicate that two events satisfy the layer
condition, without mentioning a “direction” (B,A) or (A,B). We have:

Proposition 4.7. Events A and B satisfy the layer condition iff ◦(A|B) =
◦(A), ◦(A|Bc) = ◦(A), ◦(Ac|B) = ◦(Ac) and ◦(Ac|Bc) = ◦(Ac) whenever
the relevant quantities are defined.

Proof. Direct by verifying all tables in Table 5 (it may be necessary to re-
label rows and columns to deal with the nine relevant situations discussed
in the proof of Proposition 4.6). q.e.d.

The previous result directly implies equivalence of the layer condition
and a more obviously symmetric condition:7

Corollary 4.8. Events A and B satisfy the layer condition iff

◦(A ∩B) = ◦(A) + ◦(B) , ◦(A ∩Bc) = ◦(A) + ◦(Bc) ,

◦(Ac ∩B) = ◦(Ac) + ◦(B) , ◦(Ac ∩Bc) = ◦(Ac) + ◦(Bc) .

We now consider a version of the layer condition for random variables,
clearly similar to Vantaggi’s conditional Coletti-Scozzafava condition:8

Definition 4.9. The conditional layer condition on variables (Y,X) given
variables Z holds iff for all values x, y, z, whenever {Y = y, Z = z} 6= ∅
and {Y 6= y, Z = z} 6= ∅, then

◦(X = x|Y = y, Z = z) = ◦(X = x|Y 6= y, Z = z)

and
◦(X 6= x|Y = y, Z = z) = ◦(X 6= x|Y 6= y, Z = z) .

Before we propose concepts of irrelevance/independence based on the
conditional layer condition, we examine some useful properties of this con-
dition.

Proposition 4.10. The conditional layer condition is equivalent to

◦(X = x|Y = y, Z = z) = ◦(X = x|Z = z) (4.2)

for all x, y, z such that {Y = y, Z = z} 6= ∅.

7This result was suggested to us by Matthias Troffaes.
8We note that Vantaggi’s Definition 7.3 from [52] uses a condition that is very close to

the conditional layer condition in Definition 4.9; the difference basically is that Vantaggi
requires every layer number to be computed with respect to {{X = x, Y = y, Z =
z}, {X = x, Y 6= y, Z = z}, {X 6= x, Y = y, Z = z}, {X 6= x, Y 6= y, Z = z}}.
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Proof. Assume the conditional layer condition; using Proposition 4.7 for
every {Z = z}, we obtain ◦(X = x|Y = y, Z = z) = ◦(X = x|Z = z) for all
x, y and z such that {Y = y, Z = z} 6= ∅. Now assume Expression (4.2),
and denote by B(Y ) an event defined by Y such that B(Y )∩{Z = z} 6= ∅.
Then we have

◦(X = x|B(Y ) ∩ {Z = z}) =
= min

y∈B(Y )
◦(X = x, Y = y|Z = z)− min

y∈B(Y )
◦(Y = y|Z = z)

= min
y∈B(Y )

(◦(X = x|Y = y, Z = z) + ◦(Y = y|Z = z))

− min
y∈B(Y )

◦(Y = y|Z = z)

= min
y∈B(Y )

(◦(X = x|Z = z) + ◦(Y = y|Z = z))

− min
y∈B(Y )

◦(Y = y|Z = z)

= ◦(X = x|Z = z) + min
y∈B(Y )

◦(Y = y|Z = z)

− min
y∈B(Y )

◦(Y = y|Z = z)

= ◦(X = x|Z = z) ,

where the minima are taken with respect to values of Y that are logically in-
dependent of {Z = z}. Thus the first part of the conditional layer condition
is satisfied. For the second part, note that

◦(X 6= x|B(Y ) ∩ {Z = z}) = min
x′ 6=x
◦(X = x′|B(Y ) ∩ {Z = z})

= min
x′ 6=x
◦(X = x′|Z = z)

= ◦(X 6= x|Z = z) .

q.e.d.

A more obviously symmetric version of the conditional layer condition is:

Corollary 4.11. The conditional layer condition is equivalent to

◦(X = x, Y = y|Z = z) = ◦(X = x|Z = z) + ◦(Y = y|Z = z) (4.3)

for all x,y,z such that {Z = z} 6= ∅.

Proof. The fact that Expression (4.3) implies Expression (4.2) is immedi-
ate from the definition of ◦(X = x, Y = y|Z = z). To prove the converse,
consider the two possible cases. For all y, z such that {Y = y, Z = z} 6= ∅,
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Proposition 4.10 directly yields the result as we have ◦(X = x, Y = y|Z = z)−
◦(Y = y|Z = z) = ◦(X = x|Z = z). If instead {Y = y, Z = z} = ∅, then
◦(X = x, Y = y|Z = z) = ◦(Y = y|Z = z) =∞ and Expression (4.3) is sat-
isfied regardless of ◦(X = x|Z = z). q.e.d.

Denote by (X LC Y | Z) the fact that X and Y satisfy the conditional
layer condition given Z. It is interesting to note that this relation is a
graphoid.

Proposition 4.12. The relation (X LC Y | Z) satisfies symmetry, redun-
dancy, decomposition and contraction; if X and Y are logically independent
given Z, then intersection is satisfied.

Proof. Symmetry follows from Expression (4.3). In order to show Re-
dundancy (i.e., (Y ⊥⊥X |X)), we need to show that

◦(X = x1|Y = y,X = x2) = ◦(X = x1|X = x2) .

If x1 6= x2, ◦(X = x1|Y = y,X = x2) = ◦(X = x1|X = x2) =∞; if x1 = x2,
we obtain

◦(X = x1, Y = y,X = x1)− ◦(X = x1, Y = y) = 0 =
= ◦(X = x1, X = x2)− ◦(X = x1) .

Let us now show Decomposition (i.e., (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |Z)).
We have that

◦(W = w,X = x|Z = z) =
= min

y
◦(W = w,X = x, Y = y|Z = z)

= min
y
◦(X = x|Z = z) + ◦(W = w, Y = y|Z = z)

= ◦(X = x|Z = z) + min
y
◦(W = w, Y = y|Z = z)

= ◦(X = x|Z = z) + ◦(W = w|Z = z) .

Moving on to Weak union (i.e., ((W,Y )⊥⊥X |Z)⇒ (W ⊥⊥X |(Y, Z))), we
have by hypothesis that

◦(X = x|W = w, Y = y, Z = z) = ◦(X = x|Z = z) ,

and from this (by Decomposition) we obtain ◦(X = x|Y = y, Z = z) =
◦(X = x|Z = z); consequently

◦(X = x|W = w, Y = y, Z = z) = ◦(X = x|Y = y, Z = z) .
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w0y0 w1y0 w0y1 w1y1

x0 0 ∞ ∞ 0
x1 1 ∞ ∞ 2

Table 6. Failure of the intersection property (for the layer conditions) in
the absence of logical independence. Entries in the table are layer levels;
the four central entries denote empty events.

Concerning Contraction, we have

◦(X = x|W = w, Y = y, Z = z) = ◦(X = x|Y = y, Z = z)
= ◦(X = x|Z = z) .

Finally, for Intersection (i.e., (W ⊥⊥X |(Y, Z)) & (Y ⊥⊥X |(W,Z)) ⇒
((W,Y )⊥⊥X |Z)) we use the fact that, due to the hypothesis of logical
independence, we have

◦(X = x|W = w,Z = z) = ◦(X = x|W = w, Y = y, Z = z)
= ◦(X = x|Y = y, Z = z)

for all (w, y). Then

◦(X = x|Z = z) = min
w
◦(X = x,W = w|Z = z)

= min
w

(◦(X = x|W = w,Z = z) + ◦(W = w|Z = z))

= min
w

(◦(X = x|Y = y, Z = z) + ◦(W = w|Z = z))

= ◦(X = x|Y = y, Z = z) + min
w
◦(W = w|Z = z)

= ◦(X = x|Y = y, Z = z)
= ◦(X = x|W = w, Y = y, Z = z)

(because minw ◦(W = w|Z = z) = 0 and then using the hypothesis). The
hypothesis of logical independence is necessary, as shown by Table 6. q.e.d.

We can now define concepts of irrelevance and independence that employ
the conditional layer condition:

Definition 4.13. Random variables Y are weakly coherently irrelevant to
random variables X given random variables Z, denoted by (Y WCIRX | Z),
iff (Y EIRX | Z) and (Y LCX | Z). Random variablesX and Y are weakly co-
herently independent given random variables Z, denoted by (Y WCINX | Z),
iff (Y EINX | Z) and (Y LCX | Z).
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Given our previous results, we easily obtain the following result.

Proposition 4.14. Weak coherent irrelevance satisfies the graphoid prop-
erties of direct and reverse redundancy, direct and reverse decomposition,
reverse weak union, and direct and reverse contraction. If W and Y are
logically independent, then weak coherent irrelevance satisfies reverse in-
tersection. All other versions of the graphoid properties and intersection
fail for weak coherent irrelevance. Weak coherent independence satisfies the
graphoid properties of symmetry, redundancy, decomposition and contrac-
tion — weak union and intersection fail for weak coherent independence.

Proof. Equalities among probability values have been proved for Proposition
4.2, and equalities among layer levels have been proved for Proposition
4.12. All failures of symmetry, decomposition, weak union, contraction
and intersection discussed in Proposition 4.2 are still valid, with the same
examples. q.e.d.

We have thus examined three concepts of independence that fail the weak
union and the intersection properties. The failure of intersection is not too
surprising, as this property requires strictly positive probabilities even with
the usual concept of stochastic independence. However, the failure of weak
union leads to serious practical consequences. To give an example, consider
the theory of Bayesian networks [43], where weak union is necessary to guar-
antee that a structured set of independence relations has a representation
based on a graph, and to guarantee that independences can be read off a
graph using the d-separation criterion. We intend to explore the relation-
ships between Bayesian networks and full conditional measures in a future
publication.

In the next section we examine concepts of irrelevance/independence
that satisfy the weak union property.

5 Full irrelevance and independence

Even a superficial analysis of Table 2 suggests that epistemic and coher-
ent independence fail to detect obvious dependences among variables: there
is a clear disparity between the two rows, as revealed by conditioning on
{W = w1}. The problem is that epistemic independence is regulated by
the “first active” layer, and it ignores the content of lower layers. Ham-
mond has proposed a concept of independence that avoids this problem by
requiring [31]:

P(A(X) ∩B(Y )|C(X) ∩D(Y )) = P(A(X)|C(X))P(B(Y )|D(Y )), (5.1)

for all events A(X), C(X) defined by X, and all events B(Y ), D(Y ) defined
by Y , such that C(X) ∩D(Y ) 6= ∅. Hammond shows that this symmetric
definition can be decomposed into two non-symmetric parts as follows.
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Definition 5.1. Random variables X are h-irrelevant to random variables
Y (denoted by (X HIR Y )) iff P(B(Y )|A(X) ∩D(Y )) = P(B(Y )|D(Y )), for
all events B(Y ), D(Y ) defined by Y , and all events A(X) defined by X,
such that A(X) ∩D(Y ) 6= ∅.

If (X HIR Y ) and (Y HIRX), then X and Y are h-independent. Expression
(5.1) is equivalent to h-independence of X and Y (for one direction, take
first A(X) = C(X) and then B(Y ) = D(Y ); for the other direction, note
that P(A(X)∩B(Y )|C(X)∩D(Y )) is equal to the product P(A(X)|B(Y )∩
C(X) ∩D(Y ))P(B(Y )|C(X) ∩D(Y ))).

We can extend Hammond’s definition to conditional independence (a
move that has not been made by Hammond himself; Halpern mentions a
conditional version of Hammond’s definition under the name of approximate
independence [30]):

Definition 5.2. Random variables X are h-irrelevant to random variables
Y conditional on random variables Z (denoted by (X HIR Y | Z)) iff

P(B(Y )|{Z = z} ∩A(X) ∩D(Y )) = P(B(Y )|{Z = z} ∩D(Y )),

for all values z, all events B(Y ), D(Y ) defined by Y , and all events A(X)
defined by X, such that {Z = z} ∩A(X) ∩D(Y ) 6= ∅.

The “symmetrized” concept is:

Definition 5.3. Random variables X and Y are h-independent conditional
on random variables Z (denoted by (X HIN Y | Z)) iff (X HIR Y | Z) and
(Y HIRX | Z).

This symmetric concept of conditional h-independence is equivalent to
(analogously to Expression (5.1)):

P(A(X) ∩B(Y )|{Z = z} ∩ C(X) ∩D(Y )) = (5.2)
P(A(X)|{Z = z} ∩ C(X))P(B(Y )|{Z = z} ∩D(Y )),

whenever {Z = z} ∩ C(X) ∩D(Y ) 6= ∅.
The definition of h-irrelevance can be substantially simplified: for ran-

dom variables X, Y , and Z, (X HIR Y | Z) iff

P(Y = y|{X = x, Z = z} ∩D(Y )) = P(Y = y|{Z = z} ∩D(Y ))

for all x, y, z and all events D(Y ) defined by Y such that {X = x, Z =
z} ∩D(Y ) 6= ∅ (directly from Lemma 2.1).

The positive feature of h-irrelevance is that it satisfies direct weak union,
and in fact h-independence satisfies weak union. Unfortunately, both con-
cepts face difficulties with contraction.
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Theorem 5.4. H-irrelevance satisfies the graphoid properties of direct and
reverse redundancy, direct and reverse decomposition, direct and reverse
weak union, and reverse contraction. If W and Y are logically independent,
then h-irrelevance satisfies reverse intersection. All other versions of the
graphoid properties and intersection fail for h-irrelevance. H-independence
satisfies the graphoid properties of symmetry, redundancy, decomposition
and weak union — contraction and intersection fail for h-independence.

Proof. Denote by A(X), B(Y ) arbitrary events defined by X and Y respec-
tively, chosen such that if they appear in conditioning, they are not logically
incompatible with other events. We abbreviate the set {W = w} by w, and
likewise use x for {X = x}, y for {Y = y}, z for {Z = z}.

Symmetry fails for h-irrelevance as shown by Table 1. Direct redun-
dancy (i.e., (X HIR Y | X)) holds because

P(Y = y|{X = x1, X = x2} ∩B(Y )) = P(Y = y|{X = x1} ∩B(Y )),

when x1 = x2 (and {X = x1, X = x2} = ∅ otherwise). Furthermore,
Reverse redundancy (i.e., (Y HIRX | X)) holds because

P(X = x1|{Y = y,X = x2} ∩A(X)) = P(X = x1|{X = x2} ∩A(X)) = 0

if x1 6= x2 and

P(X = x1|{Y = y,X = x2} ∩A(X)) = P(X = x1|{X = x2} ∩A(X)) = 1

if x1 = x2. We also see that Direct decomposition holds as

P(y|{x, z} ∩B(Y )) =
∑

w

P(w, y|{x, z} ∩B(Y ))

=
∑

w

P(w, y|{z} ∩B(Y ))

= P(y|{z} ∩B(Y )).

In the argument for Reverse decomposition (i.e., ((W,Y ) HIRX | Z) ⇒
(Y HIRX | Z)) note that summations over values of W need only include
values such that {w, y, z}∩A(X) 6= ∅. Then we see that Reverse decom-
position holdsbecause

P(x|{y, z} ∩A(X)) =
∑

w

P(w, x|{y, z} ∩A(X))

=
∑

w

P(x|{w, y, z} ∩A(X))P(w|{y, z} ∩A(X))

=
∑

w

P(x|{z} ∩A(X))P(w|{y, z} ∩A(X))



18 F. G. Cozman, T. Seidenfeld

= P(x|{z} ∩A(X))
∑

w

P(w|{y, z} ∩A(X))

= P(x|{z} ∩A(X)).

Since {w}∩B(Y ) is an event defined by (W,Y ), we consequently have that

P(y|{w, x, z} ∩B(Y )) = P(w, y|{x, z} ∩ ({w} ∩B(Y )))
= P(w, y|{z} ∩ ({w} ∩B(Y )))
= P(y|{w, z} ∩B(Y )),

and thus Direct weak union holds. Furthermore, Reverse weak union
holds because

P(x|{w, y, z} ∩A(X)) = P(x|{z} ∩A(X))

is true by hypothesis and P(x|{z}∩A(X)) = P(x|{y, z}∩A(X)) by Reverse
decomposition. To see that Reverse contraction holds, we just check
that P(x|{w, y, z} ∩ A(X)) = P(x|{y, z} ∩ A(X)) = P(x|{z} ∩ A(X)). In
order to see that Reverse intersection holds, we check that, due to the
hypothesis of logical independence,

P(x|{w, z} ∩A(X)) = P(x|{w, y, z} ∩A(X)) = P(x|{y, z} ∩A(X))

for all (w, y). Thus we can write

P(x|{z} ∩A(X)) =
∑

w

P(x,w|{z} ∩A(X))

=
∑

w

P(x|{w, z} ∩A(X))P(w|{z} ∩A(X))

=
∑

w

P(x|{y, z} ∩A(X))P(w|{z} ∩A(X))

= P(x|{y, z} ∩A(X))
∑

w

P(w|{z} ∩A(X))

= P(x|{y, z} ∩A(X))
= P(x|{w, y, z} ∩A(X)).

All other versions of graphoid properties fail for h-irrelevance, as shown by
measures in Tables 2, 3, 7, and 8.

Now consider the “symmetrized” concept of h-independence. Symmetry
is true by definition; redundancy, decomposition and contraction come from
their direct and reverse versions for h-irrelevance. Table 2 displays failure of
contraction, and Table 3 displays failure of intersection for h-independence.

q.e.d.
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Note that Table 2 is now responsible for failure of direct contraction, as
now (X HIR Y ) and (X HIRW | Y ) but not (X HIR (W,Y )).

It is natural to consider the strenghtening of h-independence with the
conditional layer condition. The first question is whether or not to strenghten
the conditional layer condition itself. We might consider the following con-
dition:

◦(X = x|{Y = y, Z = z} ∩A(X)) = ◦(X = x|{Z = z} ∩A(X)) (5.3)

for all x, y, z and every event A(X) defined by X such that and {Y = y, Z =
z} ∩ A(X) 6= ∅. As shown by the next result, this condition is implied by
the conditional layer condition.

Proposition 5.5. If Expression (4.2) holds for all x, y, z such that and
{Y = y, Z = z} 6= ∅, then Expression (5.3) holds for all x, y, z and every
event A(X) defined by X such that {Y = y, Z = z} ∩A(X) 6= ∅.

Proof. If x 6∈ A(X), then the relevant layer levels are both equal to infinity.
Suppose then that x ∈ A(X). Using the abbreviations adopted in the proof
of Theorem 5.7 for events such as {X = x}, we have:

◦(x|{y, z} ∩A(X)) = ◦({x} ∩A(X)|y, z)− ◦(A(X)|y, z)
= ◦({x} ∩A(X)|y, z)− min

x′∈A(X)
◦(x′|y, z)

= ◦({x} ∩A(X)|z)− min
x′∈A(X)

◦(x′|z)

= ◦(x|{z} ∩A(X)) .

q.e.d.

We propose the following definition.

Definition 5.6. Random variables X are fully irrelevant to random vari-
ables Y conditional on random variables Z (denoted (X FIR Y | Z)) iff

P(Y = y|{X = x, Z = z} ∩B(Y )) = P(Y = y|{Z = z} ∩B(Y )),

◦(Y = y|X = x, Z = z) = ◦(Y = y|Z = z) ,

for all x, y, z, and all events B(Y ) defined by Y such that {X = x, Z =
z} ∩B(Y ) 6= ∅.

Full independence is the symmetrized concept. Theorem 5.7 and Propo-
sition 4.14 then imply the following result.
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Theorem 5.7. Full irrelevance satisfies the graphoid properties of direct
and reverse redundancy, direct and reverse decomposition, direct and re-
verse weak union, and reverse contraction. If W and Y are logically indepen-
dent, then full irrelevance satisfies reverse intersection. All other versions
of the graphoid properties and intersection fail for full irrelevance. Full
independence satisfies the graphoid properties of symmetry, redundancy,
decomposition and weak union — contraction and intersection fail for full
independence.

We have thus examined two concepts of independence that fail the con-
traction and intersection properties. While failure of intersection is not
surprising, the failure of contraction has important consequences — for
example, contraction is needed in the theory of Bayesian networks for es-
sentially the same reasons that weak union is needed.

It must be noted that only one of direction of contraction fails. Specif-
ically, direct contraction fails, and direct contraction is a much less com-
pelling than most other graphoid properties. While reverse contraction
convincingly stands for the fact that “if we judge W irrelevant to X after
learning some irrelevant information Y , then W must have been irrelevant
[to X] before we learned Y ” [43]; a similar reading of direct contraction
reveals a much less intuitive property. On this account, it seems that h-
irrelevance is more appropriate than epistemic irrelevance, and that full
irrelevance is more appropriate than weak coherent irrelevance — and like-
wise for the corresponding independence concepts.

6 Conclusion

In this paper we have examined properties of full conditional measures, fo-
cusing on concepts of irrelevance and independence. We started by review-
ing the concepts of epistemic and strong coherent irrelevance/independence.
We then introduced the layer condition and the related concept of weak
coherent irrelevance/independence (Definitions 4.9 and 4.13), and derived
their graphoid properties (Propositions 4.12 and 4.14). We then moved to
concepts of irrelevance/independence that satisfy the weak union property.
We have:

• presented an analysis of Hammond’s concepts of irrelevance and in-
dependence with respect to graphoid properties (Theorem 5.4) — in
fact, we note that Hammond and others have not attempted to study
conditional irrelevance and independence (our Definitions 5.2 and 5.3);

• introduced the definition of full irrelevance and independence, and
presented the analysis of their graphoid properties (Definition 5.6 and
Theorem 5.7).
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w0y0 w1y0 w0y1 w1y1

x0 bγβc1 bγ(1− β)c1 αβ α(1− β)
x1 b(1− γ)βc1 b(1− γ)(1− β)c1 (1− α)β (1− α)(1− β)

w0y0 w1y0 w0y1 w1y1

x0 bγβc1 bγ(1− β)c1 b(1− γ)βc1 b(1− γ)(1− β)c1
x1 αβ α(1− β) (1− α)β (1− α)(1− β)

Table 7. Failure of versions of decomposition, weak union, contraction, and
intersection for epistemic irrelevance (α, β, γ ∈ (0, 1), with α 6= β 6= γ 6= α).
The full conditional measure in the top table satisfies (X EIR (W,Y )) but
it fails (Y EIRX) (version of decomposition) and it fails (Y EIRX |W ) (ver-
sion of weak union); it satisfies (X EIR Y ) and (W EINX | Y ) but it fails
((W,Y ) EIRX) (two versions of contraction); it also satisfies (X EIR Y |W )
(two versions of intersection, and by switching W and Y , another version
of intersection). The full conditional measure in the bottom table sati-
fies ((W,Y ) EIRX) but it fails (X EIR Y ) (version of decomposition) and
it fails (X EIR Y |W ) (version of weak union); it satisfies (Y EIRX) and
(W EINX | Y ), but it fails (X EIR (W,Y )) (two versions of contraction).

The results in this paper show that there are subtle challenges in com-
bining full conditional measures with statistical models that depend on
graphoid properties. We intend to report in detail on the consequences
of our results for the theory of Bayesian networks in a future publication.
We note that future work should develop a theory of Bayesian networks
that effectively deals with full conditional measures, either by adopting new
factorizations, new concepts of independence, or new separation conditions
(perhaps even for the concepts that fail symmetry [53]). Future work should
also investigate whether other concepts of independence can be defined so
that they satisfy all graphoid properties even in the presence of null events.

In closing, we should appraise the convenience of the layer condition
and its use in defining weak coherent and full irrelevance/independence.
The conditional Coletti-Scozzafava condition is apparently motivated by a
desire to connect epistemic irrelevance with logical independence. Indeed,
the Coletti-Scozzafava condition on (B,A) promptly blocks all cases of log-
ical independence in Table 5, except the fifth one, and a symmetrization
of the condition blocks all cases. However, the condition is perhaps too
strong when directly extended to conditional probabilities, as the condi-
tional Coletti-Scozzafava blocks all logical dependences between the fixed
conditioning events and the other relevant variables. We have thus pre-
ferred to consider a relaxed condition where logical independence is not
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w0y0 w1y0 w0y1 w1y1

x0 bγαc1 bα(1− γ)c1 b(1− α)γc1 b(1− γ)(1− α)c1
x1 βα α(1− β) (1− α)β (1− β)(1− α)

w0y0 w1y0 w0y1 w1y1

x0 αβ bαγc1 b(1− α)γc1 (1− α)β
x1 α(1− β) bα(1− γ)c1 b(1− α)(1− γ)c1 (1− α)(1− β)

Table 8. Failures of versions of contraction (α, β, γ ∈ (0, 1), with α 6=
β 6= γ). The full conditional measure in the top table satisfies (Y EINX)
and (W EIRX | Y ), but it fails (X EIR (W,Y )) (two versions of contraction).
The full conditional measure in the bottom table satisfies (X EIN Y ) and
(X EIRW | Y ), but it fails ((W,Y ) EIRX) (two versions of contraction).

always automatically blocked (specifically, in the fifth, sixth and seventh
cases in Table 5), and the resulting layer condition does seem to have pleas-
ant properties; for example, it generates a graphoid. Still, one might ask
why should the layer condition be adopted at all given that we are not
stressing too much the issue of logical dependence. There are two reasons
to adopt the layer condition.

First, the layer condition does prevent pathological cases (as depicted in
Table 4) that are not related to logical dependence. The characteristic of
such examples is that the “relative nullity” of events is not captured just by
conditional probability values. We believe that a most promising path in
producing a concept of independence for full conditional measures that does
satisfy the graphoid properties is to somehow preserve the “distance” in lay-
ers for various events as we deal with probabilities. Possibly the machinery
of lexicographic probabilities will be required in order to retain information
on layer numbers [7, 31]. The layer condition is a step in that direction.

The second reason to adopt the layer condition, now in the particular
case of full independence, is that this condition seems to be necessary in
order to produce representations of “product” measures that contain some
resemblance of factorization. We intend to report on this issue in a future
publication.

Finally, there is yet another difference between the layer condition and
the Coletti-Scozzafava condition. In the latter the layer numbers are com-
puted with respect to a restricted set of events, whereas in the former we
have removed this requirement. Such a difference is again attributed to
our desire to keep layer numbers “permanently” attached to events, so that
mere marginalization or conditioning does not change these numbers.
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Appendix A Counterexamples to graphoid properties

Tables 2, 3, 7, 8 present violations of decomposition, weak union, con-
traction and intersection for epistemic irrelevance/independence, coherent
irrelevance/independence, h-irrelevance/h-independence and full irrele-
vance/independence. Table 9 summarizes these counterexamples.

Note that some counterexamples for h-/full irrelevance depend on the
fact that X is h-/fully irrelevant to (W,Y ) in the top table of Table 7. To
verify that this is true, it is necessary to verify the equality

P(W,Y |x,A(W,Y )) = P(W,Y |A(W,Y ))

for x = {x0, x1} and for every nonempty subset A(W,Y ) of {w0y0, w1y0,
w0y1, w1y1} (there are 15 such subsets).

Direct properties of irrelevance and independence Epistemic/ H-/Full
Coherent

(X⊥⊥(W, Y ) |Z)⇒ (X⊥⊥W |(Y, Z)) 2 -
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z))⇒ (X⊥⊥(W, Y ) |Z) - 2
(X⊥⊥W |(Y, Z)) & (X⊥⊥Y |(W, Z))⇒ (X⊥⊥(W, Y ) |Z) 3 3

Epistemic/
Non-direct/non-reverse properties of irrelevance Coherent/

H-/Full

(X⊥⊥(W, Y ) |Z)⇒ (Y ⊥⊥X |Z) 7 (top)
((W, Y )⊥⊥X |Z)⇒ (X⊥⊥Y |Z) 7 (bottom)
(X⊥⊥(W, Y ) |Z)⇒ (Y ⊥⊥X |(W, Z)) 7 (top)
((W, Y )⊥⊥X |Z)⇒ (X⊥⊥Y |(W, Z)) 7 (bottom)
(Y ⊥⊥X |Z) & (X⊥⊥W |(Y, Z))⇒ (X⊥⊥(W, Y ) |Z) 7 (bottom)
(X⊥⊥Y |Z) & (W ⊥⊥X |(Y, Z))⇒ (X⊥⊥(W, Y ) |Z) 8 (top)
(Y ⊥⊥X |Z) & (W ⊥⊥X |(Y, Z))⇒ (X⊥⊥(W, Y ) |Z) 7 (bottom)
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z))⇒ ((W, Y )⊥⊥X |Z) 7 (top)
(Y ⊥⊥X |Z) & (X⊥⊥W |(Y, Z))⇒ ((W, Y )⊥⊥X |Z) 8 (bottom)
(X⊥⊥Y |Z) & (W ⊥⊥X |(Y, Z))⇒ ((W, Y )⊥⊥X |Z) 7 (top)
(W ⊥⊥X |(Y, Z)) & (X⊥⊥Y |(W, Z))⇒ (X⊥⊥(W, Y ) |Z) 3
(X⊥⊥W |(Y, Z)) & (Y ⊥⊥X |(W, Z))⇒ (X⊥⊥(W, Y ) |Z) 3
(W ⊥⊥X |(Y, Z)) & (Y ⊥⊥X |(W, Z))⇒ (X⊥⊥(W, Y ) |Z) 3
(X⊥⊥W |(Y, Z)) & (X⊥⊥Y |(W, Z))⇒ ((W, Y )⊥⊥X |Z) 7 (top)
(W ⊥⊥X |(Y, Z)) & (X⊥⊥Y |(W, Z))⇒ ((W, Y )⊥⊥X |Z) 7 (top)
(X⊥⊥W |(Y, Z)) & (Y ⊥⊥X |(W, Z))⇒ ((W, Y )⊥⊥X |Z) 7 (top)

Table 9. Summary of counterexamples. The properties are writ-
ten using ⊥⊥; this symbol must be replaced by the concept of interest
(epistemic/coherent/h-/full irrelevance/independence). All entries indicate
the number of a table containing a counterexample. The top table lists
failures of properties for independence and failures of direct properties for
irrelevance; the bottom table lists failures of properties of irrelevance that
are neither “direct” nor “reverse” versions of graphoid properties. Note
that reverse intersection may fail for all concepts in the absence of logical
independence.
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probabilità subordinate coerenti. Technical Report 8/91, Quaderni
di Dipartimento di Matematica Applicata alle Scienze Economiche,
Statistiche e Attuariali “Bruno de Finetti”, 1991.

[17] Adnan Darwiche and Moises Goldszmidt. On the relation be-
tween kappa calculus and probabilistic reasoning. In Ramon López
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