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Abstract

This paper presents concentration inequalities and
laws of large numbers under weak assumptions of ir-
relevance, expressed through lower and upper expec-
tations. The results are variants and extensions of De
Cooman and Miranda’s recent inequalities and laws of
large numbers. The proofs indicate connections be-
tween concepts of irrelevance for lower/upper expec-
tations and the standard theory of martingales.

1 Introduction

This paper investigates concentration inequalities and
laws of large numbers under weak assumptions of “ir-
relevance” that are expressed using lower and upper

expectations. The starting point is the assumption
that, given bounded variables X;,...,X,,, we have:
for each i € [2,n], variables Xi,..., X; 1

(1)

are epistemically irrelevant to X;.

Epistemic irrelevance of variables Xq,...,X;_1 to X;
obtains when [26, Def. 9.2.1]
E[f(XiNA(Xl;i—l)] = E[f(Xz)} (2)

for any bounded function f of X; and any nonempty
event A(Xy.;—1) defined by variables X;.; 1, where the
functional F is an upper expectation (Section 2). Here
and in the remainder of the paper we simplify notation
by using Xl:i for Xl, e ,Xi.

A judgement of epistemic irrelevance can be inter-
preted as a relaxed judgement of stochastic indepen-
dence, perhaps motivated by a robustness analysis or
by disagreements amongst a set of decision makers.
Alternatively, one might consider epistemic irrelevance
as the appropriate concept of independence when ex-
pectations are not known precisely.

De Cooman and Miranda have recently proven a num-
ber of inequalities and laws of large numbers that also
deal with judgements of irrelevance expressed through

lower /upper expectations [5]. De Cooman and Mi-
randa’s weak law of large numbers implies that, given
Assumption (1), for any € > 0,
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where B; is such that |X;| < B;, and
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Moreover, De Cooman and Miranda’s results and As-
sumption (1) imply a two-part strong law of large num-
bers: for any € > 0, there is N € N such that for any

N e N4,

_ "X
P(ane[N,N+N’};21“>u+e> <,
n

_ ¢
P(EInG[N,N—{—N’}:Z:Z_leue) <e.
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This law of large numbers corresponds to a finitary ver-
sion of the usual strong law of large numbers [9]; the
focus on a finitary law is justified by the fact that De
Cooman and Miranda do not assume countable addi-
tivity. If countable additivity holds, the finitary strong
law of large numbers implies convergence of empirical
means with probability one [5, Sec. 5.3].

To obtain their results, De Cooman and Miranda as-
sume, following Walley’s theory of lower previsions,
that all variables are bounded, and that conglomerabil-
ity (and consequently disintegrability) holds. These
assumptions are discussed in more detail later.

The present paper derives laws of large numbers by ex-
ploiting concentration and martingale inequalities that
are adapted to the setting of lower /upper expectations.
These results use either Assumption (1) or the weaker
assumption that, for each ¢ € [2,n] and any nonempty
event A(Xy.1),

E[Xi|A(X1:-1)] = E[X)]
B and - (3)
EIXi|A(X1:1)] = E[X].



Several results for bounded variables presented in this
paper are basically implied by De Cooman and Mi-
randa’s work. Regarding bounded variables our con-
tribution lies in offering tighter inequalities and alter-
native proof techniques that are more closely related
to established methods in standard probability theory
(in particular, close to Hoeffding’s and Azuma’s in-
equalities). In Section 4 we offer more significant con-
tributions as we lift the assumption of boundedness for
variables, and use martingale theory to prove laws of
large numbers under elementwise disintegrability.

2 Expectations, disintegrability, and
zero probabilities

In this section we present notation and terminology.
Throughout the paper we assume that an expectation
functional F maps bounded variables into real num-
bers, and satisfies:

(1) if « < X < B3, then a < E[X] < 5

(2) EIX+Y]=E[X]|+ E[Y];

where X,Y are bounded variables and «, 3 are real
numbers (inequalities are understood pointwise).

From such an expectation functional, a finitely additive
probability measure P is induced by P(A) = E[A] for
any event A; note that A denotes both the event and
its indicator function.®

Given a set of expectation functionals, the lower and
upper expectations of variable X are respectively
E[X] =inf E[X], E[X] = sup B[X].

Lower and upper probabilities are defined similarly
using indicator functions. Given an event A, a
conditional expectation functional is constrained by
E[X|A] P(A) = E[X A]. If we have a set of expecta-
tion functionals, then a set of conditional expectation
functionals given an event A is produced by element-
wise conditioning on event A (that is, each expectation
functional is conditioned on A).

2.1 Disintegrability and factorization

We will employ an assumption of disintegrability in our
proofs; namely,

B[] < B[EW|7] (4)

for any W > 0, Z > 0 of interest, where W and Z may
stand for sets of (non-negative) variables. Note that
disintegrability can fail for a single finitely additive

LA probability measure defined on a field completely charac-
terizes an expectation functional on bounded functions that are
measurable with respect to the field and vice-versa [26, Theorem
3.2.2].

probability measure over an infinite space [6, 10]; that
is, there is a finitely additive probability measure P
such that

Ep[W] > EplEp[W|Z]].

One way to obtain disintegrability is to restrict atten-
tion to simple variables; that is, variables that take on
finitely many distinct values. In particular, indicator
functions are simple variables; hence simple variables
suffice to express convergence of relative frequencies,
and our results apply then.

Another way to obtain disintegrability for every prob-
ability measure P is to adopt countable additivity [1].
That is, assume that if

A1 DAy D ...

is a countable sequence of events, then

M;A; =0 implies  lim P(4,) = 0. (5)
This assumption says that if N;4; = §, then

lim,, ..o P(A,) = 0 for every possible probability mea-
sure.

A third way to obtain disintegrability is simply to im-
pose it. One may consider disintegrability a “rational-
ity” requirement.

e The theories of coherent behavior by Heath and
Sudderty [14] and by Lane and Sudderth [19] fol-
low this path by axiomatizing the strategic mea-
sures of Dubins and Savage [11], and thus pre-
scribing probability measures that disintegrate
appropriately along some predefined partitions.
This would be sufficient for our purposes, but
there are limitations in the approach as summa-
rized by Kadane et al [16]. The disintegrability
of strategic measures has actually been used to
prove various laws of large numbers in a finitely
additive setting [17].

e Another scheme that imposes disintegrability is
Walley’s theory of lower previsions; in that the-
ory, Expression (4) is a consequence of axioms for
“coherent” behavior. This is the path adopted by
De Cooman and Miranda, who consequently have
Expression (4) at their disposal.

When disintegrability holds, recursive application of
Expression (4) yields: if f;(X;) >0 for i € {1,...,n},
then

E[TLnox)

ElE [ﬁ fi(Xi)|X1:nl‘| |X1:n2] ] ;



Assumption (1) then implies an inequality we use later:
for bounded and nonnegative functions,

n

H fi(Xi)] < HE[fz(Xz)} : (6)

i=1

E

2.2 Zero probabilities, full conditional
measures and weak irrelevance

It should be noted that the definition of epistemic ir-
relevance (Expression (2)) does not contain any clause
concerning zero probabilities. Indeed, Walley’s the-
ory of lower previsions follows de Finetti in adopting
full conditional measures, and in this setting Expres-
sion (2) can be imposed without concerns about zero
probabilities. Recall that a full conditional measure
P : B x (B\0) — R, where B is a Boolean algebra, is
a set-function that for every nonempty event C' satis-
fies [10, 18]:

(1) P(C|C) = 1:

(2) P(A|C) > 0 for all A;

(3) P(AU B|C) = P(A|C)+ P(B|C) for all disjoint A
and B;

(4) P(ANB|C) = P(A|BNC) P(B|C) for all A and
B such that BNC # (.

Full conditional measures are not adopted in the usual
Kolmogorovian theory, and if countable additivity is
adopted and conditioning is defined through Radon-
Nykodym derivatives, it may be impossible to sat-
isfy the axioms for full conditional measures [23, 24].
Thus there are are some differences between epistemic
irrelevance (at least as defined by Walley) and the
usual Kolmogorovian set-up, besides the obvious set-
valued /point-valued distinction.

Suppose that one wishes to deal with sets of proba-
bility measures and associated lower/upper expecta-
tions, but chooses to adopt the Kolmogorovian set-
up for each measure. That is, each measure satis-
fies countable additivity and thus disintegrability, and
conditioning is left undefined when the conditioning
event has probability zero. It might seem reasonable
to amend Expression (2) as follows:

Elf(X:)] (7)
if P(A(X1,_1)) > 0.

Elf(Xi)|A(X1:i1)] =

This condition is a natural for theories that do not
define conditioning on events of lower probability zero,
such as Giron and Rios’ theory [13]. Alas, this weaker
condition is really too weak to produce laws of large
numbers, as the following example shows.

Example 1 Suppose X1, Xs,... assume values in
{0,1,2}, and

P(X;=x)=1/2

for x € {0,1,2}. Consequently, E[X;] € [1/2,3/2].
Suppose additionally that

PX,=z|X, 1 =2,X12)=1

for x € {0,1,2}; that is, the ith variable reproduces
the value of the (i — 1)th variable. They are obviously
dependent variables. However, all events have lower
probability zero, so variables X1.; 1 would be irrelevant
to X; by Expression (7).

In this example, Expression (6) fails. For instance,
E[X1Xs] =5/2>9/4 = (3/2)(3/2) = E[X1] F[Xa].

Moreover the example illustrates a failure of any sen-
sible law of large numbers, as for any e > 0,
S

X;
P<1/2 R 3/2+e) e [0,1/2],
n

because the inequality inside the probability is only sat-
isfied when {X; = 1} obtains.

We might thus consider an alternative to Expres-
sion (7):

Elf(Xi)] (8)
if ?(A(Xl;i_ﬂ) > 0.

Elf(X)|A(X1i1)] =

The concept of irrelevance conveyed by Expression (8)
does lead to Expression (6). To see this, note that for
nonnegative X and Y, we have

E[XY] < supEp[E[XY]|Y]]
P

= supFEp [AE[XY|Y] + ACE[XY\YH ,
P

using disintegrability and defining A as the set of all
values of Y such that P(A¢) = 0. Hence P(A°) =0
for every P and using Expression (8):

E[XY]

IN

sup Fp [AY B X|Y]
= sup Ep[AYE[X]]

= supBp [AY] E[X]

= B[X]sup Ep[Y]

= EX|EY].

[As a digression, note that one might define conditional
expectations as E[X|A] = infp,payso Ep[X|A] and
E[X|A] = supp.pay=o Ep[X|A]. This form of condi-
tioning has been advocated by several authors [27, 28],
and it is quite similar to Walley’s concept of regular



extension [26, Ap. J]. For such a form of conditioning,
Expression (8) seems to be the natural definition of
irrelevance.

In short, more than one combination of definitions and
assumptions lead to the results presented in the re-
mainder of this paper. For instance, Expression (6)
obtains when Assumption (1) holds and disintegrabil-
ity holds (because all variables are simple, or because
countable additivity is assumed, or because disintegra-
bility is imposed). Alternatively, Expression (6) ob-
tains when Expression (8) holds for any i € [2,n], any
bounded function f of X;, and any event A(X;.;_1),
and additionally disintegrability holds.

Similar remarks concerning zero probabilities can be
directed at Assumption (3). We say that weak irrele-
vance obtains when either:

e For any ¢ €
A(X1:i1),

[2,n] and any nonempty event

E[Xi|A(X1:ifdl)] = E[Xi]
E[Xi|A(X1:-1)] = E[X]

[this is Assumption (3), and it requires full condi-
tional measures].

or:
e For any i € [2,n] and any event A(X1.;—1),
E[Xi|A(X1i-1)] = E[X)] if P(A(X1:-1)) >0

and

3 Bounded variables

Take variables Xq,...
define

, Xp, such that |X;| < B; and

Yo = zn:Bf > 0.
i=1

We start by deriving two concentration inequalities.

3.1 Concentration inequalities

The following inequality is a counterpart of Hoeffding
inequality [8, 15] in the context of lower/upper expec-
tations; it is slightly tighter than similar inequalities
by De Cooman and Miranda [5]. It is interesting to
note that the proof is remarkably similar to the proof
of the original Hoeffding inequality.

Theorem 1 If bounded variables X1,...,X, satisfy
Expression (6), then if v, > 0,

P( (Xi — E[Xy]) > e> < e 2/
i=1

P(i(X,» —E[X)]) < _e> < e 2/,

i=1
Proof. By Markov inequality, if X > 0, then for any

€ > 0 we have P(X > ¢) < E[X] /e. Consequently, for
s > 0, any variable X satisfies

P(X >¢) = P(e** > ™) < e *“Elexp(sX)].

Using this inequality and Expression (6):
n
P(Z(Xi - E[Xi)) > 6)
i=1
n —_
exp (Z s(X; — E[X,-]))]
i=1

<e % HE[exp (s(XZ- — E[XZ]))] .

S €_SEE

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a < X < b and E[X] < 0, then
Elexp(sX)] < exp(s?(b — a)?/8) for any s > 0. Thus
for any P, Ep[exp(s(X; — E[X;]))] < exp(s®B?/8),
and then Elexp (s(X; — E[X;]))] < exp(s*B?/8).
Consequently,

P(Z(Xz - E[XZ]) 2 E) S 67566,5-2'7”/8 S 67262/'Yn,

i=1

where the last inequality is obtained by taking
s = 4e/v,. This proves the first inequality in the
theorem; the second inequality is proved by tak-
ing P(3" ,((—X;) — E[-X;]) > €) and noting that
E[X;]=-E[-X;]. O

We now move to weak irrelevance and obtain an ana-
logue of Azuma’s inequality [2, 7]. It is again interest-
ing to note that the proof is remarkably similar to the
proof of the original Azuma inequality. De Cooman
and Miranda [5, Sec. 4.1] show that their inequalities
are valid under weak irrelevance; the next inequality
is slightly tighter than theirs.

Theorem 2 If bounded variables X1,...,X, satisfy
weak irrelevance and disintegrability (Expression (4))
holds, then if ~, > 0,

P(i(xi - E[X,]) > e) < g2,

i=1



P<§:(X,» —E[X)]) < _e> < 2/,

i=1

Proof. Using both Markov’s inequality (as in the proof
of Theorem 1) and disintegrability, for any s > 0 we
get

i=1
e *°FE Elexp(i s(X; — E[Xl])> | lelH
. n,li:1
<e *FE GXP(Z s(X; — E[Xi])> h(Xlznl)] ;
L i=1
where
hMX1.p—1) [exp(s ])) | le,l}
Due to weak irrelevance,
Ep|[Xu| X1 1] < E[Xu| X1 1] = E[X,];

consequently, for any P,
EP [Xn - E[Xn] |X1:n71] <0.

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a < X < b and F[X] < 0, then
Elexp(sX)] < exp(s?(b — a)?/8) for any s > 0. Thus
for any P we have
Eplexp (s(Xn — E[X,])) [X1m—1] < exp(s®B2/8)

and then h(X1.,—1) < exp(s2B2/8). Thus
P<zn:(Xi - E[Xy]) > e)

x ( (X E[XA))]

p<z (X E[XA)) exp(s2 B9

exp(Z s(X; — E[XJ))] .

i=1

3

7S€E

s

S€E

< e *“exp(s’B2/8)E

These inequalities can be iterated to produce:

P<§TL:(XZ- - E[Xy]) > 6) 5€exp < 2 ZB /8)

i=1

Finally, by taking s = 4¢/vy,

P(Zn:(Xi ~ElXx)]) > e) < e 2/,

The second inequality in the theorem is proved by not-
ing that weak irrelevance of Xi,..., X, implies weak
irrelevance of —X1,...,—-X,, (as E[X;] = —E[-X}]),
and then by taking P(>; ,((—X;) — E[-X;]) > €).
O

3.2 Laws of large numbers

Theorem 1 leads to simple proofs of laws of large num-
bers already stated by De Cooman and Miranda [5].
To start, take Assumption (1). Using subadditivity of
upper probability and Theorem 1,

. n n 52
P<<in > nji, +e> u(ZXi <np— e>> <% 5w,
i=1 i=1

where as before, p = (1/n) 3\, E[X;] and 7, =
(1/n)>r, E[X;]. By noting that P(A) = 1 — P(A°)
for any event A, by including the endpoints of relevant
inequalities, and by using ne instead of e:

P</‘—e<Z“X"<u+€> >
= n
¢ ne?
P<u6<zzl_ll<u+e> > 1*267252,
= n

where we define B = max; B;. By taking limits, we
obtain a weak law of large numbers:

n
¢

lim p< ,6<@
n

n—oo

<,LLn+e> =1.

An analogue of De Cooman and Miranda’s finitary
strong law of large numbers can be deduced as well
from the previous inequalities, as follows. Here and
in the remainder of the paper, n, N and N’ denote
positive integers. For all e > 0, N > 0 and N’ > 0,

<3ne[NN+N] Z“X u+e>

N+N'

/(YL X,
<> P(Zl—l Zu—i-e)
n

n=N

N+N’
22
§ ef2ne /B
n=N

N’

_ (6721\762/32) Z o—2ne’ /B’
n=0
1— eQ(N/+1)52/B2

_ (6—2N62/B2)
1—

2 2
e 2Ne /B

IN

o 2¢2/B?

gy



Consequently,

_ ¢
P(Elne [N,N +N']: 2 X 2u+e> <€,
n

provided that N is a positive integer such that
—(B?/(2¢%)) In€(1

An analogous argument leads to

N > —67252/B2).

X
P(HnE[NN—i—N} le M—e><e.

By superadditivity of upper probability, we obtain a
perhaps more intuitive statement of the strong law of
large numbers: for all € > 0, there is NV such that for
any N,

n

X
P(Vne [N, N+N’'] :un—e<@ <,un—|—€) >1—2e,

= n

thus reproducing De Cooman and Miranda’s strong
laws.

We now present a pair of weak/strong laws of large
numbers under weak irrelevance. De Cooman and Mi-
randa prove a similar pair of laws by resorting to their
previous results on forward irrelevant natural exten-
sions [5, Sec. 4.1]. The proof offered now is perhaps
more direct, using our analogue of Azuma’s inequality.

Theorem 3 If bounded variables X1,...,X,, satisfy
weak irrelevance and FExpression (4) holds, then for
any € > 0,

"X
P(u —e< 722:1
= n

_ 2 )2
,u’n+€> 21726 ne /Ba

and there is N such that for any N',

X
P(VnG[N,N—I—N'}:u —€<Z:l_“<,un+6)>1 — 2e.
H, n

Proof. Using subadditivity of upper probability and
Theorem 2, and defining again B = max; B;,

. n n 7152
P<<§ X; > nf, +e>u<§ Xi < np— e)) <27,
i=1 i=1

and we obtain the first expression in the theorem. To
produce the second inequality (strong law), note:

(EInG[NN+N] Z“X u+e>

N+N n
— . ¢
< E P(Z:Z—ll ZN+€>
n

n=N
N+N’

< § 67277,62 /B2
n=N

22
e 2Ne /B

Ry

Again,

_ "X
P<EIn€[N,N+N’]:Z’1>;H—e> <e
n

provided that IV is a positive integer such that
—(B?/(2¢*)) Ine(1

This is “half” of the second expression in the theorem;
the other “half” is proved analogously. O

N > 767262/B2).

The theorem easily implies the following concise weak
law of large numbers, by taking limits:

¢
lim P(u —e< 2in X
n

n—oo

<un—|—e) =1.

4 Laws of large numbers without
boundedness

We now consider variables without bounds in their
ranges under the assumption of weak irrelevance; the
resulting laws of large numbers are the main contri-
bution of the paper. We will assume in this section
that countable additivity holds (Expression (5)). This
assumption of countable addivity implies disintegra-
bility; that is, Ep[W] = Ep[Ep[W|Z]] for any P, W
and Z. Thus our setup is close to the standard (Kol-
mogorovian) one, where any expectation functional is
a linear monotone and monotonically convergent func-
tional that can be expressed through Lebesgue integra-
tion. We only depart from the Kolmogorovian tradi-
tion in explicitly letting a set of such functionals to be
permissible given a set of assessments.

We will use a sequence of variables {Y,,} defined as
follows:

Y, = ZXi — Ep[X;| X1:4-1] -
i=1

The key observation is that Y, is a function of all vari-
ables X7.,, such that

n—1
Ep[Ya|X1m] = <Z X — EP[Xz'|X1:z'1]> +
i=1
Ep[X,—FEp[Xpn|X1n-1] | X1:0-1]
= Yo 1+
Ep[Xp|X1m-1] — Ep[Xp|X1m—1]
= Y, 1

so, {Y,,} is a martingale with respect to P. Thus,
EP [(Yn - Yn71)2|X1:n71]

= Ep|Y2|X1n-1] = 2Ep[Yn 1Yo |X1m-1] + Y2,
= Ep|Y2|X1n-1] = 2Yu 1 Ep[Yo|X1m-1] + Y2,
= Ep[Y2|X1n-1] — 2Yn Yo +Y2

= Ep Y| X1n1] —



And by taking expectations on both sides and noting
that Y; — Y;_l = XZ — EP[XZ‘|X1:,'_1], we get

Ep[Y] = Ep[(X, — Ep[Xp|X1m-1])?] + Ep[Y,? 4]
Iterating this expression, we obtain:
n
Ep|Y?] =) Ep|(Xi — Ep[Xi|X151)] . (9)
i=1
With these preliminaries, we have:
Theorem 4 Assume countable additivity. If variables
Xi,..., Xy satisfy weak irrelevance, and E[X;] and
E[X;] are finite quantities such that B[ X;]—E[X;] < 4,

and the variance of any X; is no larger than a finite
quantity o2, then for any € > 0,

¢ o2+ 62
P(un—e<zjl;tlz<un+6)21— ,

e2n

and there is N > 0 such that for any N' > 0,
r X
P(VnE[N,N—i—N’}:u —e<2:llz<un+e)>1 — 2e.
©, n
Consequently,

¢
Ve > 0: limP<u —e<Z:’_1<un+e):1,
B, n

n—oc

P(lim sup (2?_1)(1 —un> < 0> =1,
n—s00 n
P(limnigi;o (Z:’nanl yn> > 0) =1.
Proof. For a fixed P and for all € > 0,
P(u —e< # <un+6>
= P(En:E[XZ] —en < iXZ- < zn:E[XZ] + 6n>
i=1 i=1 i—1
> P (Zn: Ep[X;|X1.i-1] —en < i:Xi
i=1 i=1

< ZEP[XHXMA] + 6Tl>
i=1
(using weak irrelevance)
"X, — EplX| Xy
:P<—e < izl p[Xil X1 _ 6)
n

=P(—-e<Y,/n<e)
=P(|Y,/n| <e).

Applying Chebyshev’s inequality and Expression (9),
Ep V7]

e2n?
S Ep[(Xi— EplX;|X1:-1])?]

€2n?

P([Yn/n| = €)

IA

Now write (X; — Ep[X;|X1.;1])? as
(X: — Ep[Xi]) + (Ep[X,] — Ep[X:|X14-1]))°,
and then:

> Ep[(Xi - Ep[Xi|X1:i-1])]

= Z Ep[(X; — Ep[Xi))?]
i=1
+2EP[(Xi - EP[Xi])(EP[Xi] —Ep [Xi\Xl:iq])]
+Ep|[(Ep|X;] — Ep[Xi|X1:-1])°]
< Zn: 0?4 62
i=1

+2(Ep[Xi] - EplX:| X1 1) EplX; — Ep[X]
— Zn: o? + 6%
Honce
Zzn;Ep [(Xi — Ep[X;|X1.4-1])%] < n(0?+6%), (10)

and combining these inequalities, we obtain:

o2 + §2
P(|Yy, >e) < ——\
(Va/nl 2 ) < T
and then
ﬂ, Xi 2 52
P<u —6<2:Z_1<,un+e)21—0;_
—n n €“n

for any P, as desired. By taking the limit as n grows
without bound, we obtain

nX
limP<ﬂ —6<2:’_12<un+6):1.
n—oo —n n

The proof of the strong law of large numbers uses
the same strategy, but replaces the appeal to Cheby-
shev’s inequality by an appeal to the Kolmogorov-
Hajek-Renyi inequality (described in the Appendix),
following the proof of the strong law of large numbers
by Whittle [29, Thm. 14.2.3].So, for a fixed P and for
all e > 0, we proceed as previously to obtain:

—n

e
P(Vne[N,N—i—N’] tp —e< leTl <un+e>

Yo
> P(Vne[N,N—i—N’} t—e< — < e>

n

= POUne[N,N+N'|: [Yu/n| < €).



As{Yn,YN11,...,YNin/} forms a martingale, we use
the Kolmogorov-Hajek-Renyi inequality to produce:

PEne[N,N+N'] :|Y,/n| <€)
Xl Bp[(Xi — Ep[Xi|X1.i1])%)

=1 €2N?
B Niv Ep[(Xi — Ep[Xi| X1:-1])%]
2;2
i=N+1 e
2, 52 NAEN' 5 o
=1- 06;—N(S B 062_:25
i=N+1
(using Expression (10))
2, 52 o 2 2
>1_C¢ +0° o —|— é
- N ) €242
i=N-+1

0'2+62 1 e 2 .
>1-— = (NJr/N 1/i dz)

_, e 1
N €2 N N

o2+ 52
e2N

=1-2

Consequently, for integer N > (02 + %) /€3, we obtain
the desired inequality
¢
P(VnE[N,N—l—N’}:u —e< 2 i <,un+€)>1—2e.
Hy n
As we assume countable additivity for every P, the
proof of the Kolmogorov-Hajek-Renyi can be extended
to an infinite intersection of (decreasing) events ex-
pressed as {Vj > 1:|X,| < ¢;}; thus

Ve>0:¥Vd§>0:3dN >0:
Z;llXi_E[Xi]
m

P(szN: >e>21—5,

and this is equivalent to:

m

m _
Ve>0: Nlim P<Vm2N : 2iz Xi — BIXi] > e) =1.
—00

As the events in these probability values form an in-
creasing sequence, we have, for all € > 0,

P(3N>O:Vm2N: 2ica Xi — BIX] >e> -1
m

Now this is equivalent to Vk > 0 : P(Ay) = 1, where
A, ={3N>0:Ym > N:(1/m)Y", X; — E[X;] >
1/k}, and because P(Ug>0=Ag) < D s P(—Ax) =0,
we have P(Vk >0: A,) =1, so

™ X, — E[X;
P(Vk>0:3N>o:vmzN;Z“ : [ J>e>:1.

m

This is exactly the desired expression

"X,
P(lim sup (2:’_12 /Ln> < 0) = 1.
n—oo n

A similar argument proves the last inequality in the
theorem, starting from:

Ve>0:Y6>0:dN >0:
P(vm>N: i Xi — BIX]

m

<—6> >1-4.

|

5 Discussion

The concentration inequalities and laws of large num-
bers proved in this paper assume rather weak con-
ditions of epistemic irrelevance. When compared to
usual laws of large numbers, both premises and con-
sequences are weaker: expectations are not assumed
precisely known, and convergence is interval-valued.

Theorems 1 and 2 and their ensuing laws of large num-
bers are implied by De Cooman and Miranda’s seminal
work [5] (and their results generalize several previous
efforts [12]). Actually, De Cooman and Miranda start
from a weaker condition of forward factorization that
implies both Assumption (1) and weak irrelevance.
The possible advantage of our proof techniques for
these two theorems is that they are rather close to
well-known methods in standard probability theory,
such as Hoeffding’s inequality (it should be noted that
De Cooman and Miranda already indicate the similar-
ity between their inequalities and Hoeffding’s).

The most significant results of the paper employ weak
irrelevance to produce concentration inequalities (The-
orem 2) and laws of large numbers (Theorems 3 and 4).
The latter theorem is possibly the most valuable con-
tribution. The strategy for most proofs is to translate
assumptions of weak irrelevance into facts regarding
martingales, and to adapt results for martingales to
this setting. This strategy keeps the proof relatively
short and close to well-known results in probability
theory. The connection between lower/upper expecta-
tions and the theory of martingales seems rather natu-
ral [4, 25], but the relationship between epistemic irrel-
evance and martingales does not appear to have been
explored in depth so far. We note that the basic con-
straint defining martingales (that is, E[Y,|X1.n—1] =
Y, 1) is preserved by convex combination of mixtures;
therefore, the study of martingales seems appropriate
when one deals with convex sets of probability mea-
sures  certainly it seems less contorted than the anal-
ysis through stochastic independence, as stochastic in-
dependence is not preserved by convex combination.



The proofs presented in this paper need assumptions of
disintegrability that can be easily satisfied if countable
additivity is adopted. It is an open question whether
similar results can be proven without disintegrability,
particularly when one deals with unbounded variables.
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A Two auxiliary inequalities

The following inequality is a simple extension of a basic
result by Hoeffding [8, 15]: If variable X satisfies a <
X <band F[X] <0, then for any s > 0,

Elexp(sX)] < exp(s(b — a)?/8). (11)

First, the inequality is clearly valid if a = b, or if a = 0,
or if b < 0. From now on, suppose b > 0 > a. By
convexity of the exponential function,

T —a b—=x
esb

< P e’ for z € [a,b)].

exp(sx) Ay

Given monotonicity of expectations and E[X] <0,

b a
E X < sa __
[exp(sX)] < b—ae b—a

e*? = exp(¢(s(b - a)))

for ¢(u) = —pu+log(l—p+pe*) with p = —a/(b—a)
(and note that p € (0,1] in the situation under
consideration). Given that ¢(0) = ¢'(0) = 0 and
¢"(u) < 1/4 for u > 0 (as the maximum of ¢"(u)
is 1/4, attained at e* = (1 — p)/p), we can use
Taylor’s theorem as follows. For some v € (0,u),
¢(u) = ¢(0) + u¢'(0) + (u?/2)¢"(v) < (u?/8) and
consequently ¢(s(b — a)) < s2(b — a)?/8. By putting
together these inequalities, we obtain Expression (11).

We now review the Kolmogorov-Hajek-Renyi inequal-
ity, almost exactly as proved by Whittle [29]; this is
presented just to indicate the role of (elementwise) dis-
integrability in the derivation. Let {X;} be a mar-
tingale with X, = 0, and let {¢;} be a sequence
0=-¢9 < e <...;the inequality is
n 2

P(Vje(ln]:|X;|<¢g)>1-) Bl(Xi ~ Xi-1)’] .
i=1

€
To prove this inequality, define

Ap ={¥j € [l,n]: |X;] < e}

Using & = X;—X,;_1, and again denoting an event and
its indicator function by the same symbol, we have

P(A,) Ep|A,)
= Ep[A, 1{|Xn| <en}l
> Ep[A,a(1- X3/e})]
(as {|X| < e} >1—X2/e?)
= Ep[Ana(1- (X7 1 +&)/e)]
(by the martingale property)
> Ep [An—2(1 - sz—1/€i—1)] —Ep [5721/5721]

(as en—1 < €, and
{IX] < (1= X2/) > (1 - X?/e)).

Tteration of the last inequality yields the result. Note
that it was necessary to apply disintegrability of P
when applying the martingale property (that is, ele-
mentwise disintegrability is used).
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