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Abstract: This paper presents a new method for matching metric maps generated by mobile
robots that act cooperatively. This process of information matching makes it possible to
perform global map generation from local maps (possibly partial and nonconsistent) provided by
individual robots. The method is based on a paraconsistent artificial neural network model that
considers as input preprocessed information from measurement data on landmark distances,
possibly generated by different sensors in different robots and considering different metrics.
The neural network then analyzes these inputs to determine what are the matching belief and
contradiction relations among the points of the distinct maps. The algorithm implemented
for the neural architecture achieved good results with satisfactory computational performance
in the reported experiments, that consider combination of information from different linear
distance metrics (Euclidean and Manhattan) and angle measurements. As a side effect, it made
it possible to determine certainty and contradiction degrees for each map point match analysis, a
feature that can be useful for decision making. Equally important is the fact that the considered
architecture allows for the combination of information from partial maps acquired in execution

time during navigation.
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1. INTRODUCTION

An important aspect to be considered for the implemen-
tation of autonomous mobile robots is the exploratory
capacity in an unknown operation environment, aiming
at learning a sufficient representation for it, as far as the
task goals are concerned. In order to build up this rep-
resentation, the robots collect and process data informed
by their onboard sensors. The final objective is to acquire,
through this exploratory processes, a global map of the
environment and the corresponding self-localization of the
robots.

Many of the proposed solutions for map generation and
localization are based on algorithms that simultaneously
build up the map and produce localization, in a boot-
strap manner (Simultaneous Localisation And Mapping —
SLAM), e.g. Dissanayake et al. (2000) and Thrun and Liu
(2003). However, independently from considering either
SLAM or separate mapping and localization techniques,
it is a matter of fact that environmental modelling based
on the combination of partial maps is expected to be
computationally more efficient, due to some degree of

parallelism, than modelling based on a single exploratory
robot. Therefore, there is an inherent advantage on using
cooperative robotic systems where algorithms for match-
ing partial individual maps are used to obtain a global
environment map, such as in the method described in Diosi
and Kleeman (2005).

This article proposes a novel method for matching indi-
vidual local maps generated by cooperative robots. The
method is based on a paraconsistent artificial neural net-
work architecture, described in Section 3. Fundamentally,
it considers as input preprocessed information from mea-
surement data on landmark distances, possibly generated
by different sensors in different robots and based on dif-
ferent metrics. The neural network then analyzes these
inputs to determine what are the matching belief and
contradiction relations among the points of the distinct
maps.

The rest of this paper is organized as follows. Section 2
introduces the basic principles of paraconsistent logic and
presents a two-valued paraconsistent logic model that is
the basic theoretical underpinning for the map matching



approach presented herein. Section 3 presents the para-
consistent artificial neural network architecture through
its components (cells) and the corresponding algorithms.

2. PARACONSISTENT LOGIC

According to Batens et al. (2000) and Bremer (2005),
Paraconsistent Logic is a non-classical logic proposed to
deal with realistic situations regarding uncertainties that
are not supported by classical approaches.

Let T be a theory based on a logic L, from a language L’
that includes the negation symbol —. Theory T is said to be
nonconsistent if there is a sentence A such that A and —A
are theorems of T, otherwise T is said to be consistent.
We say that a theory T is trivial if all the sentences of
its language are theorems, otherwise we say that T is
nontrivial. Finally, a logic L is paraconsistent if it is used
as basis for nontrivial and nonconsistent theories, i.e., a
paraconsistent logic allows for operations on inconsistent
information systems without subsuming triviality of the
theory.

2.1 Two-valued Annotated Paraconsistent Logic

A two-valued annotated paraconsistent logic is a paracon-
sistent logic with a representation — based on two com-
ponents on how much an evidence express knowledge
about a proposition P, yy. Here, p, A € [0,1], i indicates
the degree of favouring evidence for P and A is the degree
of opposing evidence for P. From those definitions, one
can obtain:

® P(1.0,0.0); & true proposition (complete favouring evi-
dence, no opposing evidence).

® P.0,1.0); a false proposition (no favouring evidence,
complete opposing evidence).

e P(1.0,1.0), anonconsistent proposition (complete favour-
ing evidence, complete opposing evidence).

® P(0.0,0.0), @ paracomplete proposition (neither favour-
ing or opposing evidences).

® P.5,0.5), a nondefined proposition (equal favouring
and opposing evidences at 0.5).

Propositions in a two-valued paraconsistent logic can be
depicted as points in the lattice shown in Figure 1. In
a two-valued paraconsistent logic, degrees of belief and
disbelief are evidences which support the decision making
process. Degrees of contradiction D.; and certainty D, are
given respectively by

Dct = u +A-1 (].)

and

De=p—A (2)
As shown on Figure 1, the values of the degree of certainty
D, is marked horizontally in the x-axis (degree of certainty
axis), whereas the degree of contradiction is marked verti-
cally (in the degree of contradiction axis). Two arbitrary
limiting values (UV,. = upper value for certainty control
and LV,. = lower value for certainty control) determine if
the resulting degree of certainty is high enough to establish
if the analyzed proposition is absolutely true or false. Sim-
ilarly, two limiting values (UV,;. = upper value for contra-
diction control and LV, = lower value for contradiction

control) determine if the resulting degree of contradiction
is high enough to establish if the analyzed proposition is
absolutely nonconsistent or nondetermined. Both degrees
are on the interval [—1,+1], and an analysis on the point
representation of any proposition in the lattice outputs the
intensity of its degrees of certainty and contradiction.
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Fig. 1. Lattice for interpreting propositions in a two-valued
annotated paraconsistent logic.

3. PARACONSISTENT ARTIFICIAL NEURAL
NETWORKS

As defined in Abe (2004) and Abe et al. (2005), a para-
consistent artificial neural network (PANN) is a network
of components based on annotated paraconsistent logic.
Such components are the paraconsistent artificial neural
cells.

8.1 The Paraconsistent Artificial Neural Cell

The paraconsistent artificial neural cell (PANC) is the
simplest structure in a PANN with a well-defined func-
tionality. The output value D/, of a PANC is the resulting
degree of belief, calculated from Equation 2 and limited
to the range [—1, +1]. However, for obtaining the resulting
degree of belief according to the two-valued paraconsistent
logic formalism (Section 2.1), the value must be in the
interval [0, 1], and thus a normalization is required:

_ De+1

D!, 5

(3)
Equation 3 is the basic structural equation (BSEq) for a
PANC.

We present here five types of PANC which are required
for the design of a paraconsistent neural network for map
matching and contradiction determination, namely: Sim-
ple Logical Connection Cell for Maximization (sIPANC-
max), Simple Logical Connection Cell for Minimization
(sIPANCmin), Decision Cell ({PANC), Analytic Connec-
tion Cell (acPANC) and Learning Cell (IPANC) .

8.2 The Simple Logical Connection Cell for Mazimization

The Paraconsistent Simple Logical Connection Cell for
Maximization (sSIPANCmax), represented in Figure 2, is
a logical comparator among the degrees of belief that are



input to it. For the particular case of two inputs (u, A),
the sSIPANCmax generates the output according to:

If D. > 1/2 then output u else output A (4)

Fig. 2. The Paraconsistent Simple Logical Connection Cell
for Maximization.

3.8 The Simple Logical Connection Cell for Minimization

The Paraconsistent Simple Logical Connection Cell for
Minimization (sSIPANCmin), represented in Figure 3, is a
logical comparator among the degrees of belief that are
input to it. For the particular case of two inputs (u, A),
the sSIPANCmin generates the output according to:

If D. <1/2 then output u else output A (5)

Dy

Fig. 3. The Paraconsistent Simple Logical Connection Cell
for Minimization.

3.4 The Decision Cell

The Paraconsistent Artificial Neural Cell for Decision, de-
picted in Figure 4, receives as inputs two belief degrees (i,
A) and outputs a result corresponding to a paraconsistent
logical 3-valued decision.
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Fig. 4. Paraconsistent Artificial Neural Cell for Decision.

Value 1 is the conclusion “True”, value 0 represents
“False”, and value 1/2 represents “Nondefined”. This cell

is also equipped with two adjusting parameters: a decision
factor F'ty and a contradiction tolerance factor F't.. For
obtaining the output, we first calculate the limit values
for falsehood Vip = =14 and truth Vip = 414 and
then calculate contradiction and certainty according to
equations 1 and 2. The output states S; e Se are then

obtained from the following comparisons:

If Vip < D, < Vly then S;1 =1/2, S =0
If D), > Viy then Sy = 1, Sy =0
If D/, <Vlip then S1 =0, S2 =0

If |Dct| > F'ter and |Dct| > |Dc| then S = 1/2, So = |Dct|

8.5 The Analytic Connection Cell

The Paraconsistent Analytic Connection Cell acPANC, de-
picted in Figure 5 has a role in making the interconnection
between cells of the neural network, involving degrees of
belief as the objectives of the analysis. Each cell examines
two values of degrees of belief which are applied at the
input.

This cell has two tolerance factor inputs: Ft. (certainty
tolerance factor)and F't.; (contradiction tolerance factor),
and produces its output according to:

If Viee < DI < Vsce then S1 = D¢, S2 =0
If |Drct| < Fter and |D7‘ct| > |Dc| then S = 1/27 So = |DC|

else S1 =1/2, S2 =0

where V.. = —”5"‘0 and Ve = —Hf;f‘cf.
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Fig. 5. The Paraconsistent Analytic Connection Cell.

The result is a single belief degree obtained only with
BSEq. This unique output value, in turn, is a new degree
of belief that will be used in other cells. The connection
cell is therefore the link that allows different PANNs to
process information in a distributed fashion.

3.6 The Learning Cell

The Paraconsistent Artificial Neural Cell for Learning
(IPANC) (see Figure 6) is a pattern learning structure
parameterized by an externally adjusted learning factor
Ft;. A TPANC is an autoassociative memory for values
in the closed interval [0, 1]. Initially, its output is set at
0.5, indicating a nondefined output. For generating this
autoassociation, the output belief is used in a feedback



Fig. 6. The Learning Cell.

manner, with a complement calculation (C in Figure 6) in
the disbelief input.

The learning process is based on Equation 6:

(u—(1—=D.L(k))* Fa+1)

Di(k+1) = 5 (6)

where D’ (k + 1) is the value of the resulting belief, y is
the input pattern applied to the cell at a given time, and
1 — D.(k) is the negation of the previous resulting belief.

3.7 Paraconsistent Artificial Neural Units

Paraconsistent Artificial Neural Units (PANUSs) are clus-
ters of PANCs purposefully linked, forming arrangements
with distinct configurations and defined functions. Such
units are then linked among themselves to form the basic
functional structure of a PANN. In the work reported
herein, we implemented four PANUs: one for decision
making, one for learning, one for extraction of maxima
and one for contradiction determination.

4. MAP MATCHING

A global map of an explored environment can be obtained
by combining local maps information acquired through a
cooperative robotic system da Silva et al. (2005). Each
individual robot explores the environment and generate
corresponding local maps using standard techniques for
map generation. Through cooperation one can obtain,
from those partial and possibly inconsistent maps, a global
map representation using an appropriate method for map
matching.

4.1 Preprocessing

Map generation for each robot is based on the algorithm
described in Arleo et al. (1999). This algorithm is re-
sponsible for acquiring map reference points and distances
between the robot and obstacles and walls in the envi-
ronment. For the experiments reported herein, distance
calculation is performed by a laser scanner mounted on
the top of the robot. From the z and y coordinates of
the reference points obtained from the laser sensing, ar-
rays with all the pairwise point-to-point distances can be
generated. For the sake of experimental validation of the
map matching technique, we consider here Euclidean and
Manhattan distances and angles between landmarks.

For the Euclidean distances, we have:

BE(j, i) = \/(m(jaw) = m(i,))* + (m(j, y) — m(i,y))? (7

For the Manhattan Distance array between the map
points,we calculate:

M(j,1) = Z [(m (3, 2) = m(i, 2))| + |(m (5, y) — m(i, y))]) (®)

Finaly, the angle defined by the map points is:
M(j, i) = atan(abs(m(j, ) — m(i, 2))), [(m(j, y) — m@, y)))  (9)

Indexes i and j are defined for all the possible point pairs
of the map.

4.2 Modelling the PANN for Point Matching

We propose a PANN for solving the map matching prob-
lem which is based on the pointwise (landmark-based)
determination of certainty and contradiction degrees be-
tween maps. Figure 7 illustrates the implemented PANN
architecture.
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Fig. 7. PANN for Pointwise Matching.

The model is based on three types of PANCs. The first
one is a dPANC with adjustable decision factor which
defines a threshold for the matching comparison among
the points of the input array. The outputs of the dPANCs
are fed to IPANCs for a learning process which produces a
convergence trend towards points with largest similarity.
The last component is the cPANC, which defines the point
with the largest degree of belief for matching the compared
point.

The inputs for the PANN are the arrays described in 4.1,
each array corresponding to a partial map generated by



a robot. Lines and columns are indexed by the points i
and j of the map, and each position in the array is the
corresponding distance or angle values from i to j.

The operation of the PANN is as follows. Initially, each line
position of a line from the array from one map is compared
against the line positions of each line from the array from
another map, via the dPANCs (which together form the
decision PANU). For each comparison of distances that are
below a threshold (decision factor), the resulting outputs
are fedforward to the learning PANU formed by IPANCs,
each of which forcing the output towards the point from
the second map with largest similarity to the point from
the first map among the analyzed points corresponding to
each line of the second array. Then, the resulting beliefs
from the IPANCs are input to the connection PANU,
composed by ¢cPANCs, which then determine which map
points from the analyzed map has largest beliefs. This
process is repeated for all the other points from the first
map.

4.8 Modelling the PANN for Contradiction Determination

The best matches from each metric used for map compar-
ison (in our case Euclidean distance, Manhattan distance
and angle) are inserted into another PANN (Figure 8),
which determines if there are contradictions among the
results. Notice that the choice of those metrics was arbi-
trary and for the sake of illustration. In general, different
map matches might correspond, for instance, to different
sensing techniques from different robots.

The first stage of the network determines the input pair
with the lowest degree of contradiction. It is composed by
acPANC and sIPANC cells. The second stage produces the
final output. From the inputs to the first stage that pro-
duced the lowest degree of contradiction, the second stage
(using SIPANC cells) determines the pair that produced
the maximum degree of belief. Thus, the final output is
the matching that produced the maximum degree of belief
among those with the lowest degree of contradiction.

5. EXPERIMENTAL RESULTS

Experiments were implemented in Matlab 7.0 (MathWorks
(2007)), with sensor information acquired by running the
Player/Gazebo simulator(Gerkey et al. (2004)) using a
model of a laser scanner on a Pioneer2DX robot which
navigates around the simulated environment and periodi-
cally running the PANN for matching the acquired points.
Although there is actually a single simulated robot, the
matching process is carried out considering partial maps
independently generated at distinct times, which is pre-
cisely what would happen if the local maps were generated
by different robots.

Figures 9 and 10 show the local maps 1 and 2, generated
at different times and robot locations. The decision factor
for the dPANC was set as 0.03.

Figures 11, 12 and 13, show the map mergings obtained
from the PANN for point matching. Then, running the
PANN for contradiction determination generated the re-
sults in Table 1, which presents all the point matchings
between Map 1 and Map 2 after the contradiction analysis.
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Fig. 10. Local map 2.

It can be noticed that the matching was produced with
high belief degrees. Figure 14 shows the final matching
produced after the contradiction analysis.
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Fig. 11. Matching results for Euclidean distances.

Finally, it is worth pointing out that the PANN model
had very good computational performance, which might
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Fig. 12. Matching results for Manhattan distances.

Map Matching based in Angle

Fig. 13. Matching results for angle measurements.

Table 1. Results for point matching with
contradiction analysis. The first and second
columns are the indexes of the matched point.
The third column shows the associated belief

degrees.
Map 1 | Map 2 D,
1 5 0.9961
2 6 0.9961
3 7 0.9648
4 8 0.8750
5 9 0.8984
6 10 0.9961
7 11 0.9961
8 12 0.9023
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Fig. 14. Map matching after the contradiction analysis.

encourage real-time map matching applications. Results
were produced on a computer with Intel Core Duo 1.6
and 1Gb RAM, with processing times of approximately
0.5 seconds.

6. CONCLUSIONS AND FUTURE WORK

We proposed a new map matching algorithm based on
paraconsistent logic and information acquired by cooper-
ative robots exploring an unknown environment.

From the individual maps generated by each robot, we
initially generate the point-to-point Euclidean distances,
Manhattan distances and angles. This corresponds to
the production of a set of information arrays which are
then fed to a paraconsistent artificial neural network

whose aim is to produce the map matching. From the
angle and distance information in each array, this network
determines the pairwise degrees of similarity among points
in the maps. As a net result, the degrees of matching belief
among the points of the maps are generated. This results
are inserted in the contradiction PANN to analysis, for
further disambiguation. We performed experiments with
data acquired from a laser scanner on a Pioneer2DX robot,
simulated in the Player/Gazebo platform, with adequate
matching consistently produced with low computational
cost.

For future work, we intend to extend the tests on the
PANN architecture for multiple robots using different sens-
ing capabilities. We also intend to develop a complexity
analysis of the algorithm in order to formally assess its
adequacy for real time map matching.
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