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Resumo— Objects are rich information sources about the environment. A 3D model of the objects, together with their semantic
labels, can be used for robot localization as well as a basis for human-robot interaction. However, traditional mapping frameworks
usually build feature-based or line-based maps, without providing objects representation. On the other side, some proposed appro-
aches for mapping objects in the environment mainly focus on adding object representations to a metric map, built using traditional
SLAM techniques, blindly relying on some computer vision object recognition system. In this work we propose a framework for
obtaining an objects-based map of the environment, together with the robot trajectory, using data acquired by an imperfect object
detection and segmentation technique. The key idea is to incorporate the detected objects into a global inference framework in
order to build labeled simplified geometric models for them. In the case that the detected object identities are unknown, a pro-
babilistic data association approach is proposed, which generates maps containing objects that have an associated probability of
actually existing in the environment. We found that when the objects in the resulting map have high existence probability, their
locations and sizes are fully compatible with the corresponding real-world objects.

1 Introduction

Maps that represent geometric and semantic informa-
tion of the objects in the environment are useful either
for human visualization or as a map for robot locali-
zation and path or task planning. When an automa-
tic system interact with human beings and communi-
cate with them by displaying entities in the world, as
may happen in Augmented Reality (AR) applications
or in interactions of service robots with their users, its
world representation should share symbols with that
of humans. Objects are very common entities sharing
the space with people, and there is evidence that peo-
ple themselves use objects to represent indoors spaces
(Vasudevan et al., 2007). Furthermore, if a robot is
able to detect the objects in the images captured by a
video camera attached to it, they are suitable features
for robot localization.

In this work, we introduce objects-based maps,
which consist of simple 3D models of certain objects
in the environment, together with semantic labels indi-
cating their class. We propose an off-line object-based
SLAM algorithm, which uses an image sequence cap-
tured by a camera placed on a mobile robot to build
these maps as well as recovering the robot’s trajectory.
This is done by integrating the output of an object de-
tection algorithm into a SLAM inference engine, ge-
nerating a map with objects belonging to a predetermi-
ned class or category. We deal with all aspects of the
problem, including geometric inference, data associa-
tion, and imperfect object recognition.

Our work is different from traditional object-
based semantic mapping approaches in robotics,
which are typically concerned with the cognitive en-
vironment modeling problem (Vasudevan et al., 2007,
Galindo et al., 2005). The geometric aspect of the ob-
jects modeling is simplified to informing positions in
a predetermined reference frame, discarding the infor-
mation about object sizes and other visual informa-
tion, which is not used in the mapping process. Our
work also differs from traditional visual SLAM ap-

proaches, which map only some interest points in the
environment (Davison et al., 2007), without attemp-
ting to provide a representation in terms of objects. In
contrast, our goal is to build light-weight 3D maps of
objects in the environment, together with a semantic
labeling indicating the object classes (e. g., clock, TV
set, table, etc.), provided by computer vision. Robot
localization can takes advantage from such a repre-
sentation, since maps based on objects are inherently
sparser than maps based on more elementary geome-
tric features like points or lines, allowing less expen-
sive data association.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the framework for
obtaining the geometric object models and the robot
trajectory from visual input data if object detection
is perfect and object identities are available. Sec-
tion 3 brings a the proposed framework for building
object-based maps in case of unknown object identi-
ties and imperfect object detection, provided that sam-
ples from the data association space are available. In
Section 4 we propose an MCMC technique to draw
samples from data association space. Experimental re-
sults are discussed in Section 5, and the conclusions of
this work are presented in Section 6.

2 Object-based SLAM with known data
association

In this section, we show how to solve the geometric
inference problem assuming the case of perfect ob-
ject detection and recognition. Consider the scenario
where a mobile robot explores an environment, perfor-
ming a trajectory X, and captures images using a video
camera attached to it. Then, the captured images are
processed by object detection algorithms, specialized
in detecting and segmenting instances of certain ob-
ject classes. If these computer vision algorithms are
also able to flawlessly recognize the objects, the data
association is considered solved since each object de-
tection is assigned to a given object in the real world.

Our objective is to perform Maximum a Posteri-



ori (MAP) inference of the robot trajectory X and the
map M using measurement data Z provided by object
detection, odometer readings of the robot movement
V = {v;}L |, and the object identities J provided by
object recognition. The MAP estimate is defined as

X* M*) = P(X.M\V.J].Z 1
(,)arggg_%(,\,,) (1

where X = {x;}] is the sequence of poses and M is
the map. The number of objects in the map, N(J),
depends on the different object identities J detected by
N(J)
=1
where each object o; 2 (1j,8j,c;) is described by an
object location /;, the geometry g;, and the class label
Cj.

The measurements Z = {zy,i = 1...T,k =
1...K;} provided by the object detection system are
assumed to comprise the apparent contour and posi-
tion of the objects detected in the image sequence cap-
tured by the robot, in addition to the detected object
class. The measurement zj is the data acquired in the
kth object detection when the robot was in pose x;.
Hence, we assume we always have zj = (i, Sik, @ix ),
where each measurement z; provides a 2D location
ujr, the respective apparent shape s;;, and the detected
class aj.

We also define the data association as J : {i X
{1,2,...K;},i =0,...,T} — N+, which is a map-
ping from image indices i and measurement indices,
ke {1,2,...K;} to object indices j € {1,2,...N(J)},
such that 0;(; ) is the object detected in the image ac-
quired at pose x; giving rise to the measurement zj.

Assuming that we know the correct data associa-
tion, we adopt a similar approach as used in traditional
SLAM, except that our map includes object geome-

object recognition. Thus, let us define M 2 {oj}

tries and classes. Since object classes C = {cj}?’:(]l)
are directly determined from the detected ones a;; in Z
and the object identities given by J, the vector of va-

riables under inference is expressed by 6 2 (X,L,G),
and the posterior (1) can be expressed by:

P(X.M|C,V,J,Z) = P(X,L.G|V,C1.Z) (2)
< P(Z|0,C,J)P(6|V,C.J)

where P(0|V,C,J) is a prior density on trajectory and
the geometric part of the map, comprising object lo-
cations L = {/ j}lj\,:u]) and their geometry G = {g; }Ijv:(Jl),
conditioned on object class labels C and the data as-
sociation J. P(Z|X,L,G,C,J) is the measurements li-
kelihood, which does not involve odometer readings
V.

The main idea we explore is that, if we roughly
know the average real-world size of the objects belon-
ging to a certain class, the apparent size of an instance
in the image leads to a coarse range estimate from the
robot to the object. Moreover, if we can also make as-
sumptions about the object location, e. g., that a coach
is more likely to be on the floor plane then on a table,
the detected object image also gives us clues about the
camera pose.

Besides the measurement model, consisting of the
projection model of objects onto the image plane, we
assume a prior model over object sizes depending on
their classes. The prior density on the robot trajectory
and the objects geometric model can be written as

P(6|V,C.J) P(X|V)P(L|C)P(GI|C)

N
= P(X|V) [Il {Pjlcj)P(gjle)) }3)

and odometry information V casts a prior on the robot
poses of the form T
P(X|V) = P(xo) | [ P(xilxi—1.vi) “)
i=1

Since no absolute localization sensor like GPS is
used, the obtained map may have any reference frame.
A common solution for that is defining the first pose
Xo as a constant with any value, sometimes clamping it
to the origin, and making all other variables estimated
with relation to it.

For our measurements likelihood, we consider
that the object position in image depends on the re-
lative displacement between the robot and object, and
also on the robot orientation. The object shape is assu-
med independent of its position in image. Finally, we
consider perfect classes detection, so that:

T K

P(Z16.CT)=] [ | [{Pwixlxi Lyi )P (siklcis Ly x> (i) }

i=0k=1

As a result, the posterior in (1) is given by 'glée):
generative model

T N(J)
P(X,M|J,Z) o< P(xo)HP(x,'\x,-,l ,V,') H{P(lj|Cj)P(gj|Cj)}
il s
T K

< TTT TP irlcis i o)) PCselxis Ly s 86100

i=0k=1

(6)
2.1 Assuming Simple Geometry: Size Only
In this work, we take g; to be simply the object 3D
dimensions, and s; the apparent size measurements.
Although the generative model of the objects shape in
images can be very complex, these geometric simplifi-
cations yield more abstract object representations, that
are sufficient for robot localization and task or path
planning. The interesting difference with point-based
monocular visual SLAM is that apparent size now yi-
elds range to objects even by a single sighting. After
several sightings both object dimensions and position
will be sharply determined by triangulation, obsole-
ting the coarse priors.

2.2 Inference using QR decomposition

As inference technique, we adopt the same framework
as vVSAM (Dellaert, 2005). The posterior in (6) is
factorized as product of Gaussian probabilities, which
naturally leads (1) to be formulated as a linearized
LS problem. Solving the linearized problem is part
of an iterative non-linear optimization strategy, like
Levenberg-Marquardt. The solution for the purely ge-
ometric SLAM problem was presented by ?, and will
be briefly shown for the sake of completeness. In this
Section, we focus only the linear part.



Using linearized Gaussian models

To assure the posterior (6) is expressed as a product of
Gaussian densities we define our model considering
that all measurements and prior knowledge are nor-
mally distributed. Thus, the prior over objects location
and size are given by

lj = Y(Cj)"’_e]ja e]j'NN(Oar(Cj)) (7N

8 = G(Cj)+e§7 eﬁ'NN(OvZ(Cj)) ®)
where e]j and ef are the errors on the priors over
objects location and size, respectively. Odometers
and object measurements are also disturbed by white
noise, so we can write:

xi = f(xio,vi)+e;, e ~N(0,0;) )
wp = h"(xi,lix) + e, e~ N(O,Ri) (10)
sig. = I (xialj(i,k)agl(i,k)) +ej ey~ N(0,Wy) (11)

where e, ej and ej, are, respectively, the odometry
error, and the errors in the object position and size in
image.

Since the functions f, & and h® are, in general,
non-linear, linearized versions of them are used to as-
sure a Gaussian posterior density. Replacing the linea-
rized version of the densities (7)-(11) in (6) yields our

Gaussian posterior:

1 1
oV 7)o { ~3lao bl |, 2

represented in a matrix form. Each block-line in the
matrix A and vector b corresponds to the coefficients
of the linearized version of one of the equations (9-11),
and P is a block-diagonal matrix with the covariances
Qi, Rjx and Wy, that weigh the summands. Maximizing
the posterior (12) corresponds to finding

6* :argmoin||A9—b||ﬁ3 (13)

which is also the posterior parameters mean, with the
posterior covariance expressed by Cg = (ATP~'A)~!.

QR factorization

The MAP inference on the posterior (12) can be trans-
formed into an LS problem, which can be efficiently
solved using QR factorization. Since (13) poses an
overdetermined linear system and due to the sparse-
ness of A, QR factorization is an efficient way to solve
it. Check (Dellaert, 2005) for details. Considering

P7A = Q { g } as the QR factorization of the LS

. 1

system matrix, and the constants = QTP 2b,
the solution for the problem is given by solving the li-
near system RO = c, leaving ||r||? as the total squared
residual. If the posterior covariance is required, it can

be recovered from R by doing:

Co=ATP'A) ' =(RTR) ' =R 'R HT (14)

3 Probabilistic data association and mapping

In typical scenarios, object identities are not available,
and thus the data association solution J must be infer-
red together with the geometric variables. Because J
is subject to inference, the variables vector must in-

clude it. Thus, it is re-defined as 0 ES (/,6y), where

o, A (X,L;,Gy) is the geometric parameters of the
map and trajectory assuming the data association solu-
tion given by J. The variables we want to infer remain
the same, namely the robot trajectory X and the object
locations L and sizes G, which now must not depend
on knowing the specific data association solution.

If all variables vectors 6; had the same dimensio-
nality and nature, i. e., every position in 6y correspon-
ded to the same physical unknown regardless of the
value of J, we would estimate the unknowns by finding
the expectation of the geometric variables with respect
to the possible data association solutions. In computer
vision, this approach is known as correspondence-less
structure-from-motion (Dellaert et al., 2000). It can
be used when the nature of the unknown vector 6y is
known a priori, i. e., 6y has a fixed size and each of its
components corresponds to a specific variable of the
problem. The advantage of the correspondence-less
structure-from-motion approach resides in taking ad-
vantage of all information that can be gathered from
the data Z to infer the variables of interest, yielding
optimal results even if the available data is not suffi-
cient to certainly determine a single good data asso-
ciation solution. The correspondence-less structure-
from-motion can be used to infer the robot trajectory
X by defining the target trajectory as the expectation

R2EKX|Z] = Y PUZZ) /XP(9,|C,J,Z)(15)
/ 0,

However, when it comes to the map parameters L
and G, the dimensionality of the variables vector be-
comes unknown, and depends on the observed data Z
and the assumed object identities given by J. For ins-
tance, consider the case where data Z contains some
detections of the object class "clock". If all detecti-
ons are associated to a single object, the variables in
Oy are related to a single clock; on the other hand, if
the "clock" detections are associated to two different
objects, there are two sets of variables in 6, related to
clocks: one set describes one clock, and the other set
describes the other clock.

To solve the problem of estimating the map para-
meters without knowing the correct number of objects
in the map, this work proposes that each object have
its parameters calculated separately, i. e., calculating
the expectation on each individual object parameters
instead of taking the expectation on the whole map at
once. For such, it is necessary to develop a criterion
to match the same physical object represented in vari-
ables vectors 8y for different values of J, assigning the
same object identity to them.

Many times, it is possible to match part of the
objects in two hypotheses generated by different data



associations. If two instances of J coincide that a
certain group of measurements corresponds to a sin-
gle object, that object is exactly the same in both
vectors. Thus, we define the object identity variable

ma {(i,k)1,...,(i,k)m} as a set of measurement in-
dices (i,k). We say that a data association J yields
an object index ID iff: V(i,k) € ID,J(i,k) = j and
V(i k) ¢ ID,J(i,k) # j, where j € J can be any object
index. The expected values of the parameters related
to a certain object ID are defined by the conditional ex-
pectations, which consider only the values of J where
the object identity ID is found

= ¥

JyieldsID o,
g = ), P(J|IDaZ)/g] m)P(6,C,J,ZX17)
JyieldsID 9,

where J(ID) = j|V(i,k) € ID,J(i,k) = j is the object
index j that corresponds to the identity IDin the data
association J.

3.1 Approximating the distribution on J

Enumerating the data association space is not is not
practical. Since the number of possible associati-
ons grows exponentially with the number of measure-
ments (Ranganathan, 2008), performing the summati-
ons in (15-17) exactly is not an option. However, if the
distribution over data associations is approximated by
a sampled version, we have P(J|Z) ~ NS( 75 Ln 0(J,Jn),

and P(J|ID,Z) = (D) [D Y, 1,(ID)3(J,Jy), with Ns(J)

being the number of J samples, Ns(ID) the number
of J samples where IDoccurs and 1;(ID) the indicator

function that indicates whether J yields . In the sam-
pled case, we have:
1 Ns(J)
X =~ X (18)
Ns(J) ="
. 1 Ns(J) N
[ = 1, (ID 19
ID NS(ID) n;l ID -In( ) ( )
1 Ns(J)
9 = ¢7-1; (ID 20
with .
% = / XP(6,}dn,Z) @1
eil
p = / L0y P(6al, I, 2) (22)
6"
gp = /gj,,(ID)P(9n|aJr1aZ) (23)
6’!

where 6, = 91” Since the density P(6, |J,,, Z) is assu-
med to be Gaussian, the expectations X,,, /-, and g,
are simply the corresponding estimated parameters in
the variables vector 6, = argmaxg, P(6,|J,,Z).

Algorithm 1 Building an objects-based map from data
association samples J,,

I. Let IDlist + {}

2. For n ranging from 1 to Ns(J):

(a) Calculate the posterior P(6,|J,,Z), with
mean 6, and covariance Cp,

(b) For j ranging from 1 to N(J,)

i. Determine ID so that J,(ID) = j

ii. Determine [}l and g, by directly ac-
cessing these values from 6,

iii. Determine CZ_, the marginal covariance
on [;, from Cg,

iv. Let IDlist < IDlist U {ID} if HC" || >
T, where T is a spuriousness threshold

3. Find X using (18), and, for each ID € IDlist, find
I;p and g;p using (19) and (20) respectively

3.2 Filtering out spurious objects

The presented approach is prone to mapping more ob-
jects than the actually existing in the scenario, which
we call spurious objects. The first kind of such objects
are those mapped using some spurious measurements
in data Z. The second kind of spurious objects occurs
when a certain ID does not correspond to an actual ob-
ject in the scenario.

Spurious measurements usually correspond to the
detection of non consistent objects, i. e., images pat-
ches that eventually become similar to one of the ob-
jects the robot is trained to detect. Since these patches
are supposed to correspond to parts of the scenario that
are not detected as objects when seen from different
points of view or in different time instants, few mea-
surements are assigned to a certain spurious object of
the first kind by a high probable correspondence func-
tion J. As a consequence, its marginal covariance is
high, in general. To implement the elimination of spu-
rious objects of the first kind into the framework to
obtain object-based maps, we change the definition of
vielding. Now, a certain J is said to yield [Donly if
the object 0,(;py € M, is not considered as spurious,
what happens if the marginal covariance of the object
location /;(;p) has 2-norm greater than a threshold.

Furthermore, because some IDs are yielded by
more samples J,, than the others, we can spot spurious
objects of the second kind by assigning a probability
of certain ID actually correspond to an object

Ns(J)
A ~

and assume as real objects all identities ID such that
P(ID|Z) > 1/2, assuming that a certain J, yields ID
only if it is not considered as spurious of the first kind.
The algorithm to build an object-based map from sam-
ples J,, is described in Algorithm 1.

P(ID|Z)



Algorithm 2 The Metropolis-Hastings algorithm for
sampling P(J|Z)

1. Start with a valid data association Jy

2. For n ranging from 0 to Ns(J), where Ns(J) is the
desired number of samples, do:

(a) Propose a new data association J* accor-
ding to an appropriate proposal distribution
q(Jy = J%)

(b) Calculate the acceptance ratio o

(c) With probability o, accept J* and set
Jur1 < J*, or Jy 41 < J, otherwise

(d) Setn < n+ 1 and return J, | as a sample

4 Sampling the data association space

In this section, we present an MCMC-based appro-
ach to sample over the data association space. There
are theoretical and practical reasons to believe that
MCMC is a promising approach to perform approxi-
mate inference in the combinatorial data association
space (Dellaert et al., 2000; Ranganathan, 2008). In
this case, the target probability we want to sample is

P(J1Z) e P(Z)P(])

« [p@e.copelcs) s
6y

where we give the same prior probability to any data
association. If we know how to calculate the like-
lihood P(Z|J), a suitable way to sample the target dis-
tribution is using MCMC techniques.

In this work, we employ the Metropolis-Hastings
(MH) algorithm (Hastings, 1970). MCMC methods
work by simulating a Markov chain over the state
space with the property of ultimately converging to the
distribution of interest. Given the current chain state
Sy, the MH algorithm works by accepting or rejecting
a proposed new state §* generated according to a pro-
posal distribution ¢(S, — S*). The proposed state is

1 P(S*)q(S*—)Sn)>
> P(Sp)q(Sn—S*) )’

so that the chain stationary distribution becomes P(S).
This theoretical guarantee requires just that all propo-
sed state transitions are reversible, i.e. g(S, — §*) >
0= ¢(S* — S,) > 0. In addition, the MH algorithm
requires P(S) to be computable just up to a proporti-
onality constant. The MH algorithm applied to sam-
pling the data association space is described in Algo-
rithm 2.

Despite theoretical guarantees, using MH in prac-
tice requires some extra care. Although the samples
drawn from the consecutive chain states will obey
P(S) just when ¢ — oo, we want this distribution to
be well represented by the fewest possible samples,
since computing and evaluating them demand compu-
tational effort. Well designed proposal distributions

accepted with probability &¢ = min (

Figura 1: Example of image used in the experiment,
and the detected objects. Measurements consist of sli-
ces surrounding the objects, which comprise the de-
tected class, the position in image, the radial length,
which is the projection of the object height, and the
angular width. The “green box™ detection at the upper-
right quadrant of the image is spurious.

can help reducing the necessary number of samples
by proposing state transitions that are more likely to
be accepted, while exploring the state space. In this
work, the proposal distributions were inspired on those
proposed by Ranganathan (2008), and we calculate
P(J|Z) according to the method used by Khan et al.
(2006).
5 Experimental Results

We tested our approach using images captured by
a robot carrying an omni-directional camera system,
consisting of a video camera and a hyperbolic mir-
ror. CMVision (Bruce et al., 2000) was used to de-
tected colored objects placed around the environment.
Although the objects we set CM Vision to detect were
successfully detected most of times, spurious measu-
rements were also taken, as shown in Figure 1.

We consider objects to be well represented by cy-
linders, having the 3D position, diameter and height
as parameters. The acquired data was used to build
the objects-based map of Figure 2. Before using our
object-based SLAM algorithm, the input data was fil-
tered by associating similar measurements in consecu-
tive images and removing those that could not be as-
sociated to any other. To generate the map, we genera-
ted 6000 data association samples, discarding the first
2500. For each sample, objects were considered spu-
rious if their marginal covariance had the maximum
singular value G4, > 30cm.

To assess the quality of the obtained map, Fi-
gure 3 shows an example of projecting the obtained
objects onto the acquired images using the obtained
trajectory. One can see that objects with low identity
probability do not actually correspond to objects in the
world. On the other hand, all objects with high proba-
bility correspond to correct objects, i. €., real objects
detected several times in the images, even though the
projections have some shift position and size.
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Figura 2: Objects-based map and robot trajectory,
built using the proposed algorithm. The opaqueness
level in objects representation indicates the identity
probability. The circled objects are correctly detected
as spurious.

Figura 3: Projection of the mapped objects onto an
image used to acquire data for the experiment. The
projections of the objects with low identity probability
are circled.

6 Conclusion

This work presents a novel map representation of the
objects in the environment, and an offline algorithm to
build it from data output by object detectors, allowing
for unknown data association and spurious measure-
ments. Results are shown for a probabilistic data as-
sociation approach, whereby real objects in the map
have high identity probability while objects generated
by spurious detections have low existence probability.

While the current paper considered a fairly sim-
ple object detection/recognition scheme based on co-
lor segmentation, nothing in our approach prevents
one from using more sophisticated object recognition
methods, which is something we would like to try in
future work. A drawback of our approach, however, is
the high number of samples necessary to obtain good
quality maps. A reliable data association technique
can help lower the number of required samples con-
siderably by pruning the data association space, and
we are hopeful that methods such as JCBB (Neira e
Tardos, 2001) can offer some improvement here.
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