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1 Introduction

The study on the thought under uncertainty is a subject from many fields, and,
in computer science, it has been useful on probabilistic program and distributed
system analysis. In the XIX century, Boole has[1] already studied the proba-
bility assignment to logical sentences, and we see his influence on de Finetti’s
theory of subject probability, in the following century. In 1965, Hailperin [2]
revisited the problem, giving it a linear programming ground. In 1986, Nils-
son [3] formalized the probabilistic satisfiability problem like we know it today:
given logical sentences, and a probability assignment to them, we want to know
if this assignment is consistent. The main analytical and numerical solution to
this problem, as well its detailed history, can be seen in [4].

The probabilistic satisfiability problem (PSAT) is NP-complete. Thus the
Cook-Levin’s theorem [5] tells us that exists a polynomial reduction from PSAT
to classical satisfiability (SAT), another NP-complete problem. Such reduction
might be interesting because of the existence of good algorithms to solve SAT,
these on continuous research. Another reason to study reduction from PSAT
to SAT is the seek for a better understanding on the relation between logic and
probability. The objective of this work is to investigate the relation between
PSAT and SAT, looking for paths that enable the desired reduction. Even
though such reduction it’s not reached in this report, it brings significant results
from the research, like a normal form for PSAT and a probabilistic entailment
relation, that have shown their utility on the probabilistically satisfiability study.

The section2 formally presents the PSAT problem, in Nilsson’s linear pro-
gramming formulation [3], and prove its NP-completeness. The section 3 in-
troduces the Atomic Normal Form for PSAT, which splits an instance into two
partitions: a classical SAT instance and an atomic probability assignment. In
section 4 a probabilistic entailment relation is suggested, and a theorem shows
its utility in linking PSAT to SAT. We continue by presenting a set of formulas
whose probabilistic entailment is easily verifiable, and we show some inherent
properties to theses formulas. Then in section 5 we present a conjecture, under
the concepts developed in the previous sections, on a possible reduction from
PSAT to SAT. Such conjecture is exhaustively refuted by a counterexample.



2 The Problem

The probabilistic satisfiability (PSAT) is a decision problem, where we ask
about the consistency of a probability assignment over logical formulas. Let
S ={s1,...,8;} be a set with k logical sentences, defined on a set of n boolean
variables, X = {z1,...,2,}, with the usual operators from the classical propo-
sitional logic. Given a set a probabilities, P = {p;|0 < p; < 1, 1 < i < k},
we say that a PSAT instance, defined by the the set S and by p(s;) = p;, with
1 < i <k, is satisfiable if, and only if, this probability assignment is consistent.

A truth assignment (or valuation) v is initially defined as a function that as-
sociates truth values to boolean variables, formally v : X — {0,1}. Then we can
extend its domain to the set of formulas S, as usual in classical logic 1, v : § —
{0,1}. Let V = {v1,...,v2n} be the set of possible truth assignments over X,
and let 7 be a probability distribution over V. The probability of a formula s ac-
cording to T is giving by
pr(s) = > {m(vj)|vj(s) = 1}. We say that the probabilities p;, assigned to
formulas from S, are consistent iff there is a distribution 7 over V' that makes
pr(si) =pi, 1 <i < k.

Now PSAT can be mathematically expressed like a linear programming prob-
lem, as introduced in [3]. Let A be the PSAT instance made by assigning the
probabilities in P to the k formulas in S, A = {p(s;) = p;|1 < i < k}. We define

the matrix Ajxon = [ai;], such that a;; = v;(s;), and the matrix Pjx1= [pi;],
such that p;; = p;. The instance A is satisfiable iff there is a vector 7 that hold
the following restrictions:

Ar =
T (2)

ZW = (3)

If there is a feasible solution 7, then we say that =« satisfies A, else we say
that A is unsatisfiable. The restrictions (2) and (3) force 7 to be a probability
distribution. The restriction (3) can be omitted if we add a entire row of 1’s to
the matrix A, ag+1,; =1,1 < j <27, and if we add a element pj11 =1 to the
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vector 5, what will be done from here until the end of this report.

The Carathéodory’s Lemma [6] says that, if the linear programming problem
(1-3) has feasible solution, then there is a solution with only k + 1 elements of =
different from zero. As pointed in [7], this lemma places PSAT in NP, because
we can take a matrix Ay, 541 and a vector w411 as NP-certificate. Besides
that, any instance from classical satisfiability (SAT), made from a set S with k
sentences, can be reduced to a PSAT instance, in polynomial time, by making
p(si) =pi =1,1 <i < k. It follows that PSAT is NP-hard, hence NP-complete.

3 The Atomic Normal Form

Let S = {s1,..., s} be aset of sentences from classical propositional logic, over
the set X = {z1,...,2,} of boolean variables. We say that a PSAT instance,

Let o and B be formulas from classical propositional logic, we have: v(a A 3) = 1 iff
v(e) = 1and v(8) = 1; v(aV @) = 1iff v(a) = 1 or v(B) = 15 v(—a) = 1 iff v(a) = 0;
v(a — B) =1iff v(a) =0 or v(B) = 1; and v(a < B) = 1 iff v(e) = v(B8).



A ={p(s;) =pi|l <i<I1},0<p; <1, isin the Atomic Normal Form if it
can be partitioned in two sets, (I', ¥), where I' = {p(s;) = 1|1 < i < m} and
U = {p(y;) = pi|y; is an atom and 1 < i < k}, with 0 < p; < 1, where l = m+k.
The partition T" is the SAT part of the atomic normal form, usually represented
as a set of formulas, and the partition U is the atomic probability assignment
part. The following theorem shows how any PSAT instance can be brought to
the atomic normal form, by adding a linear number of new variables.

Theorem 3.1 (Atomic Normal Form). Let A = {p(s;) = pi|]1 < i < k} be a
PSAT instance. Then a PSAT instance (I', V) in the atomic normal form can be
built, in polynomial time on k, such that A is satisfiable iff (T, V) is satisfiable.

Proof. To build a PSAT instance (I', ¥) in the atomic normal form, from the
instance A = {p(s;) = pi,1 < i < k}, we first add k new variables, y1, ..., Y.
Then we make I' = {p(y; < s;) = 1|1 <i <k} and ¥ = {p(y;) = pi|]1 <i < k}.
Clearly, this can be done in polynomial time on k.

Suppose there is a probability distribution 7 over the truth assignments
vi{xy, .. xn} U{y1,. ..,y — {0,1} that satisfies (I', U). Because 7 satisfies
(T, ¥), we have p,(y;) = pi, 1 <i < k. By the construction of I and the laws
of probability, p,(yi) = px(si), thus p(s;) = pi, 1 < i < k. Over the truth

assignments v’ : {z1,...,2,} — {0,1}, we define a probability distribution 7
w(1) = Y r@)lo(e) = v/ (), 1< i < n)
Hence 7’ is a probability distribution over {z1,...,z,} that satisfies p,/(s;) =

pi, 1 <1i <k, and consequently 7’ satisfies A.

Now suppose there is a probability distribution 7’ over the truth assignments
v {xy,...,x,} — {0,1} that satisfies A. Because 7’ satisfies A, pr/(s;) = ps,
1 < i < k. We define a probability distribution 7 over the truth assignments
vi{xy, .., xn U{yr, ..yt — {0,1}:

(v) = (W) L ifv(z;) =v'(2;) and v(y;) = v(sj), 1 <i<nand 1 <j<k
mv) = 0 , other cases

Clearly, we have pr(s;) = pr(s:) and pr(v;) = px(si), 1 < i < k. It follows that
Px(Yi) = prr(8i) = piy 1 < i < k, and then 7 satisfies ¥. For all v, such that
w(v) # 0, we have v(y;) = v(s;), 1 < i <k, thus p-(y; < ) =1,1<i <k,
and 7 satisfies I. Finally, 7 satisfies (T, ¥). O

The atomic normal form allows us to see a PSAT instance (I, ¥) as an
interaction between a probability assignment, represented by ¥, and a SAT
instance I'. Solutions to (', ¥) can be seen as solutions to ¥ constrained by the
SAT instance T'.

Let v’ be a truth assignment over {yi,...,y;}. We say that v’ is consistent
with T, a SAT instance over the variables {y1,...,yx} U{x1,...,2,}, if there is
a truth assignment v : {y1,...,yx}U{z1,...,2,} — {0,1} that satisfies T', such
that v(y;) = v'(yi), 1 <i < k.

Lemma 3.2. Let (T, V) be a PSAT instance in the atomic normal form, where
U = {p(y;) = pi1 < i < k}, and let T be a SAT instance over the vari-
ables {z1,..., 2, U{y1,...,ux}. If (T, V) is satisfied by the probability distri-
bution 7, then every truth assignment v : {x1,...,x,} U {y1,...,yx} — {0,1},



such that w(v) > 0, extend a truth assignment v' : {y1,...,yx} — {0,1}, with
v(y;) = v (y;), 1 <1<k, such that v’ is consistent with T.

Proof. For all formula s; € T', we have p.(s;) = 1. Hence, if a truth assignment
vi{xy,..., 2} U{y1,...,y} — {0,1} has w(v) > 0, v must satisfy all formulas
s; € T, because if v didn’t satisfy any s; € I', we would have p,(s;) < 1, which

is a contradiction. Building a truth assignment v" : {y1,...,yx} — {0,1}, with
v'(y;) = v(y;), 1 <1 <k, it must be consistent with T by definition, because v
satisfies I'. O

Theorem 3.3. Let U = {p(y;) = pi|l < i < k} be a probability assignment.
A instance PSAT (T, V) in the atomic normal form is satisfiable iff there is a
matriz Ay, with k+1 rows and up to k+1 columns, that, with a vector w, obeys
to the restrictions (1) and (2), such that each column of Ay (unless the bottom
row) corresponds to a truth assignment over {yi,...,yr} consistent with T".

Proof. SupposeI' has m formulas over the variables z1, ..., x,. Because (T, ¥) is
satisfiable, there is a matrix A, (m+k+1)x (2"7*) and a probability distribution
7, over the 2"*F truth assignment, that satisfy the restrictions (1) and (2). We
build A’ deleting all columns corresponding to truth assignments v;, such that
n(v;) = 0, and we build 7’ deleting each 7; equal to zero, corresponding to
n(v;) = 0. Clearly, A" and =’ satisfy (1) and (2). For all formula s; € T, we
have p,/(s;) = 1 = p;, but we added py,+ 141 = 1 to represent the restriction (3).
Because the columns of A’ represent truth assignments v;, such that =(v;) > 0,
these truth assignments must satisfy I'. Now the rows corresponding to formulas
in T must be equal to the row (m+k+1), with only 1’s, and can be extracted
from A’, with the corresponding p;’s. We have then the matrix A”, with (k+1)
rows that, with 7', satisfies (1) and (2). Thus, by Carathéodory’s lemma [6],
there is a matrix Ay with k4 1 rows and up to k£ + 1 columns that satisfies (1)
and (2). And, by the lemma (3.2), the truth assignments corresponding to the
columns of Ag must be consistent with I

Now suppose there is a square matrix Ay, with dimension k + 1, that obeys
the constrains (1) and (2), with solution 7, and with columns representing truth
assignments over y1, ...,y consistent with I'. We build A’ adding m rows with
1’s, corresponding to formulas in I', and we add m 1’s, corresponding to theses

formulas, to B Now each column of A’ represents a truth assignment that
satisfies I'. Then we build A”, from A’, adding m columns with 1’s, and we
insert m 0's in 7, corresponding to theses columns, obtaining /. Clearly, A”
and 7’ satisfy the restrictions (1) and (2), hence (T, ¥) is satisfiable. O

4 A Probabilistic Entailment Relation

A set of formulas T entails (or logically implies) a formula o, T' E «, if every
truth assignment that satisfies each formula in I" also satisfies a or, equivalently,
if ' U {—a} is unsatisfiable. In this section, we look for a analogous entailment,
for the probabilistic logic, exploring PSAT instances in the atomic normal form.

Let U be a atomic probability assignment and let a be a formula. We say that
U probabilistic entails «, denoted by ¥ R v, iff the PSAT instance in the atomic
normal form ({—a},¥) is (probabilistically) unsatisfiable. In other words, if
({—a}, U) is unsatisfiable, then p(—a) = 1 and p(«) = 0 are not consistent with



U; and because the probabilities are non-negative, ¥ kv implies p(a) > 0, for
any probability distribution that satisfies W.

We denote by 0" the set of all formulas « such that ¥ ke a. The following
theorem shows the special role this set and the probabilistic entailment play in
PSAT study.

Theorem 4.1. Let ¥ = (I', ¥) be a PSAT instance in the atomic normal form.
3l is satisfiable iff for each o € \Ilr:, T U{a} is classically satisfiable.

Proof. Suppose there is an a € ‘IIN, but T' U {a} is classically unsatisfiable,
then I' F ~a. From o € U~ we obtain that ({—a}, ¥) is probabilistically
unsatisfiable, and thus (I", ¥) is also probabilistically unsatisfiable.

Conversely, suppose (I', ) is probabilistically unsatisfiable. Let v be the
conjunction of all formulas in I. Obviously ({v}, ¥) also is unsatisfiable. It

follows that —y € \I'F:, and T'U {—v} clearly is classically unsatisfiable. O

This motivates the study of the probabilistic entailment properties.

4.1 Probabilistic Entailment Properties

We first note an initial relation between R and F:
Lemma 4.2. If Uk« and a F 3, then U .

Proof. From ¥ k «, we know that p(a) > 0, and « F 8 yields p(a) < p(8). So
p(B) > 0, and therefore ¥ k3. O

However we note that U ra and U S don’t imply U a A 5. As coun-
terexample, we take p(a) = p(8) = 0.4 and p(a VvV B) = 0.8, from where we
obtain p(a A 3) = 0 and thus U a A 5. In this counterexample, we made
p(aV B) = p(a) + p(B), but it’s only possible when p(«) + p(3) < 1. This leads
us to the next lemma.

Because in the atomic normal form the probabilities are assigned to atoms,
and consequently to their negations, it’s useful to define literal, so we can talk
about probabilities overs literals. A literal z is an atom or its negation, and %
denotes the negation of x.

Lemma 4.3. Let U be an atomic probability assignment such that, for literals
y and z, p(y) + p(z) > 1. Then Uy A z.

Proof. As direct consequence of Kolmogorov’s probability axioms, we know that
p(y) +p(z) =ply VvV 2) +ply Az)

As p(y) + p(z) > 1, and always p(y V z) < 1, we obtain that p(y A z) > 0, and
thus U Ry A 2. O

However, as p(y1) + ...+ p(yx) > 1 doesn’t imply W Ry A... A yk, we look
for a suitable generalization for the lemma (4.3).
Let y1,...,y; be literals and let j be an integer, with 1 < j < k. We define:

Cj(yla"'ayk):\/{yh/\"'/\yij‘lgil<~--<ijSk} (4)



For example, C'(y, z,w) = yVzVw, C?(y,z,w) = (yA2)V (yAw) V(2 Vw)
and C3(y,z,w) = y A 2 Aw. Tt is useful to define C°(yy,...,yx) = 1, as the
conjunction neutral element. We call formulas in the format (4) a C-formula.

From the commutativity of the logical operators A and V, we obtain that
the literals order in (4) is irrelevant. Besides that, let’s look at the following
C-formulas properties, related to the entailment:

Lemma 4.4. Let yi,...,yr be a set of literals and let 4,5,k and k' be non-
negative integers:

(a) if 0 < j' < j then CI(y1,...,yx) F Cj'(yl,...,yk).
(b) if k' >k then CI(yu, ..., yx) E CI(yr,. .. ypr).
Proof.

(a) Let Y = {y1,...,yr} be a set of literals. Note that the truth assignment
v satisfies C7(y1,...,yx) iff there is a set Y’ C Y, such that |Y'| = j and
v(y) = 1for all y € Y’. Obviously, if v satisfies C7(y1, . .., yx), then, for each
1<j <j,thereisaset Y CY’' CY such that |Y”| = ;" and v(y) =1 for
all y € Y. So such truth assignment v must also satisfy C7’ (Y1s- - Yr)-

(b) When k’ > k, C?(y, . ..,y ) can be written in the format aVC (yy, . .., yx)-
So each truth assignment that satisfies C7 (y1, .. ., yx) also satisfies C7 (y1, . . ., ypr)-

O

Let Y = {y1,...,yn} be a set of literals. Another important C-formulas
property, to be used in section 5, is related to adding opposite literals, 2,z ¢ Y,
in C7(Y), where C7(Y) denotes C7(y1,...,yx):

Lemma 4.5. LetY be a set of literals, and let z be a literal, such that 2,z ¢ Y.
Then C/(Y) = CVTYHY U {z, z}).

Proof. Expanding the formula C/*1(Y U{z, z}) and ruling out the conjunctions
that imply z A z, we have conjunctions with j + 1 literals, where j literals are
in Y and the remaining literal is in {z, z}. In other words, C/T}(Y U {z,z}) =
2ANCHY)VZACI(Y)=Ci(Y). O

~Before we enunciate the next theorem, we need the following lemma, where
CY denotes C7(y1,...,y):

Lemma 4.6. Let i and k be integers, with 0 < i <k, p(yr+1 AC}) +p(Cithy =
p(CED) + (ks A G

Proof. Directly from Kolmogorov’s axioms, we have:
Py A CL) +p(C) = plyeea A CLV )+ plyiss ACLA G
From lemma (4.4), we know that C}™ F Ci. Then:
P(Ykr1 A CLACETY) = pyrra ACLTY)
From the C-formulas definition, we note that:

yert NGV G = G



Finally, we obtain:

p(Yri1 A CL) + p(Ci) = p(CFY) + plyrs A G

Theorem 4.7. Let {y1,...,yr} be a set of literals. Then:

p) + - 4 p(yk) = p(C Y1y uk)) + -+ D(CF 1y, u1))

Proof. The proof proceeds by induction in k, with Ci denoting C7(y1, ..., yk):
Induction basis: k =1, p(y;) = C'(y) trivially. ‘
Induction hypothesis: k = j > 1, p(y1) + ... + p(y;) = p(C}) + ... + p(C)).
Induction step: k = j + 1; starting from the induction hypothesis, we sum
p(yj+1) to both sides of equality:

pn) + .+ p(;) + (1) =p(C]) + ...+ p(CY) + ply;41)

As yj41 is equivalent to y;;1 A CY, we apply the lemma (4.6):

P(C]) +p(yj1) = p(Cj 1) + p(yj+1 A Cj)
So we obtain:
p(1) + .. + (Y1) = p(Cliq) + p(yj+1 ACI) +p(CF) + ...+ p(CT)
In an analogous way, we repeat the lemma (4.6) application j — 1 times, obtain-
ing:
p) + - 4 pWi1) = p(Cia) + - +p(Cl) +plyj1 ACY)

Noting that y; 41 A C’JJ = C’inll , we finally have:

p(yl) — . +p<yj+1) = p(C’l(yl, . ,yj+1)) =+ ... +p(C’j+1(y1, ey yj-‘rl))
O
Having presented the C-formulas, and with theorem (4.7) in hand, we can
enunciate the theorem that finally generalizes the lemma (4.3):

Theorem 4.8. Let {y1,...,yr} be a set of literals, and let ¥ be a probability
assignment to these literals. If Zle p(y;) > 73— 1, then CI(y1,...,yx) € ",
Proof. In one hand, from theorem (4.7), we have:

k

k
Zp(yi) = Zp(Ci(yl,...,yk)) >ji—1

i=1
Asp(a) < 1for all formula ar, 37" p(C¥(y1, ..., yx)) < j—1, thus Zf:j p(Cty1, ... yr)) >
0.

In other hand, from lemma (4.4), it follows that C*(yy,...,yx) F ... E
C?(y1,---,yk), because j < k, and hence:

P(CT (Y, yn)) = - = p(CF (s )
(k=5 +1)p(Co(y1, .., m)) = S0 p(Cllyn, . k) > 0
p(CJ(ylv s 7yk)) >0

We conclude that ¥k C¥(yy,. .., yx), and therefore Ci(yy,...,ys) € ¥~. O



5 A Conjecture Refutation on Probabilistic Sat-
isfiability

Let (T, ¥) be a PSAT instance. In one hand, from theorem (4.1), if {a} UT is
classically unsatisfiable, for a C-formula o € \I/Fd, then (T, ¥) is probabilistically
unsatisfiable. In other hand, if each formula a € " were implied by a formula
C7(y1,...,yx), such that Zle p(y;) > j — 1, the probabilistic unsatisfiability
of (T, ¥) would yield the classical unsatisfiability of {C7(y,...,yx)} UT, for
one C-formula in that condition. Having this in mind, we conjecture that, for
all unsatisfiable PSAT instance (I, ¥), there is a formula C7(yy,...,y;), with
Zle p(y;) > j—1, such that {C7(y1,...,y,) UL is unsatisfiable. The following
lemma refutes such conjecture.

Lemma 5.1. There is an unsatisfiable PSAT instance (I, V) such that, for

each formula C7(yy,...,yx), with Zle p(yi) > 7 —1, {Ci(y1,--.,yx)} UT is
classically satisfiable.

Proof. Our proof will be built by presenting an example: an unsatisfiable PSAT
instance A = (I, ¥) where, for each formula C7(y,...,yy), with Zlep(yi) >
J—1,{C(y1,...,yr)} UT is classically satisfiable.

Let’s consider the PSAT instance A = (T, ¥), where I' is a set with 1 formula,
from classical propositional logic, over 4 boolean variables {z1,...,24}. To
simplify the writting, if a and § are formulas, then a8 denotes a A 3, and &
denotes —a:

' = {z1@ox324 V T1T2T3T4 V T129T3Ty V T1Tox3T4 V T1T2x324}
And V is the following probability assignment to the boolean variables:
U = {p(x1) = 0,47, p(z2) =0,40, p(x3)=0,46, p(x4)=0,05}
It follows that, from Kolmogorov’s axioms:
p(Z1) = 0,53, p(Z2) =0,60, p(Z3)=0,54 e p(Z4)=0,95

Let vy : {z1,...,24} — {0,1}, 1 < k < 5, be the only truth assignments
to satisfy I', such that vy satisfies z1x9x31y4, vo satisfies x1T2T3Ty, v3 satisfies
T1XoT3T4, vy Satisfies T1Tox3%4, and vy satisfies x1Zox324.

To note the unsatisfiability of A = (T', ¥), we present it in its linear pro-
gramming format, where the matrix Asys has as columns the truth assignments
that satisfy I', a;; = v;(x;), with 1 <i <4 and 1 < j <5, adding a bottom row
of 1’s corresponding to the restriction (3):

N

I
e
_— o O O
— o O~ O
_ O = O O
— == O

The vector 55“: [pij] is such that p;1 = p(z;), 1 < i <4, and ps1 = 11is
corresponding to the restriction (3). If there is a probability distribution 7 over



the truth assignments v1,...,vs that satisfies the PSAT instance A = (T, U),
then the following linear programming problem must have a feasible solution:

Ar = p (5)

T > 0 (6)

Solving the possible and determined linear system (5), we obtain 7w (vs) = —0, 23,
which contradicts the restriction (6). Thus A = (T", ¥) is unsatisfiable.

Now we have to show exhaustively that, for each formula C7(yy,...,y.) with

Zle p(yi) > j—1,{CI(yy,...,yr)} UT is satisfiable. Remembering the lemma
(44.a), being Y a set of literals, if 0 < j < j
, then C9(Y) E C9'(Y). For each set of literals Y = {y1,...,yx}, we define
maxr(Y) =[5 p(y:)] and denote CIme=() (V) by Cima=(Y). Soif 0 < j <
Jmaz(Y), then Cimez(Y) E CI(Y), and if jae(Y) < j, then 37 p(y;) <
j — 1. Thus for each set of literals Y, it’s enough to verify the satisfiability of
{CImaz(Y)}UT.

With 4 variables, we have 8 different literals, that yield 2% = 256 possible
sets of literals to be checked. We easily note that the empty set doesn’t need
to be verified, because Y, 4p(y) = 0 = jmaz(0), and C°(Y) = TRUE is
satisfied by any truth assignment. Furthermore, if 2,z ¢ Y, then jpq.(Y U
{z.,z}) = [p(2) + p(2) + Zyeyp(y)] = Jmaz(Y) + 1. So, by lemma (4.5),
CImaz (Y U{z,z}) = CIma=(Y), thus we don’t need to check sets with 2 opposite
literals. The 4 tables below show the 80 remaining possible sets of literals over
{z1,..., 24}, organized by the set length. Each row presents a set Y of literals,
the sum of these literals probabilities, Zer p(y), the jnq. defined by this set
and the truth assignment that satisfies {C7m=(Y)} UT'. Each truth assignment
is represented by the conjunction it is the only one to satisfy.

Table 1: ngts with 4 literals

set of literals Y | 3° v p(v) | jimaaz | vilvi F {CPme=(Y)}UT
{Z1, To, T3, T4} 2.62 3 T1T2T3Ta
{fl,.fig,.fg,le} 1.72 2 T1T2T3T4
{Li'l,iig,.’l}g,.iq} 2.54 3 T1T2X3T4
{(771,.732,.7}3,([74} 1.64 2 fl.fgflig.le
{il,w2,£3,£4} 2.42 3 T1T2T3T4
{fl,xg,f3,$4} 1.52 2 f1$2f3f4
{il,mg,xg,f4} 2.34 3 T1x2X374
{i‘l,l’g,mg,l‘4} 1.44 2 T1T2T 34
{$1,i‘2,.’i’37.’f4} 2.56 3 T1T2T3T4
{l‘l,fg,.’fg,.i&l} 1.66 2 T1T2T3T4
{l’l,jz,.’l'}g,.’i'4} 2.48 3 T1T2T3T4
{21, T2, 23,24} 1.58 2 T1T2T3Ty
{$1,$2,i‘3,f4} 2.36 3 T1T2T3T4
{1, 22, T3, 24} 1.46 2 T1T2T3T4
X1,Lo, T3, T4 . T1T2X3T4
{ , T2,T3, } 2.28 3
L1, T2, L3,T4 . L1T2T3T4
1.38 2




Table 2: Sgts with 3 literals

set of literals Y | >° _y p(y) | Jmaz | vilvi F{C7me=(Y)}UT
{jl,fz,f;g} 1.67 2 T1T2T3T4
{fl,fz,ftgg} 1.59 2 i1i2x3334
{f1,$2,f3} 1.47 2 T1T2T3T4
{j1,$2,$3} 1.39 2 T1X2T3%4
{Q’?l,i'g,f3} 1.61 2 T1T2T3T4
{Il,i'Q,ZL‘:;} 1.53 2 T1T2XL3%4
{a’il,aiz,fg} 1.41 2 T1T2T3T4
{21, 29,25} 1.33 2 T1T2T3Ta
{fl,i‘z,f4} 2.08 3 T1T2X3T4
{fl,fz,x4} 1.18 2 T1T2X3T4
{fl,mg,f4} 1.88 2 fll‘gfg.f4
{Z1,20,24} 0.98 1 T1T2T3Ty
{$1,f2,f4} 2.02 3 $1f2f3f4
{21,T, 24} 1.12 2 T1T2T3T4
{.Tl,.TQ,f4} 1.82 2 T1T2T 34
{21, 29,24} 0.92 1 T1T2T3T4
{.’fil,f'g,iﬁl} 2.02 3 T1T9T3%4
{:f:l,:i'g,m4} 1.12 2 T1X2T3T4
{.7?1,.773,{?4} 1.94 2 T1Z9T3%4
{f1,$3,x4} 1.04 2 T1T2L3T4
{Il,:f'g,ff4} 1.96 2 T1T2T3T4
{Q’?l,i'g,x4} 1.06 2 T1T2X3T4
{21, 23,4} 1.88 2 T1T2T3T4
{I1,$3,I4} 0.98 1 L1X2X3X4
{fz,f‘g,f4} 2.09 3 1‘1.%2@31_74
{fg,f;g,x4} 1.19 2 T1T2T3T4
{.T?Q,.’I?g,f;;} 2.01 3 T1Z2T3%4
{.fg,.??g,l‘4} 1.11 2 T1T2T3X4
{?[?Q,i'g,ff4} 1.89 2 T1T2T3%4
{$2,f’3,$4} 0.99 1 T1T2T3T4
{2o,23,%4} 1.81 2 T1T2T3T4
{IQ,Ig,l‘4} 0.91 1 T1T2T 34
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Table 3: Sets with 2 literals

set of literals Y Zer p(Y) | Jmaz | vilvi E {CIma=(Y)}UT
{fl,fg} 1.13 2 f1f2$3f4
{[fl, .7)2} 0.93 1 L1X2X3T4
{1’1,52} 1.07 2 1‘1.%2@31_74
{21, 22} 0.87 1 T1T2T3T4
{fl,.’fg} 1.07 2 T1T9T3%4
{j1,$3} 0.99 1 L1X2X3T4
{1‘1,.7773} 1.01 2 T1T9T3T4
{Il,l'g} 0.93 1 L1X2X3T4
{Z1,24} 1.48 2 T1T2T3Ta
{fl, .714} 0.58 1 T1T2X3T4
{.’El, .i’4} 1.42 2 T1T2T3%4
{wl, 374} 0.52 1 L1X2X3X4
{fz, f4} 1.55 2 T1T9T3T4
{.fg, $4} 0.65 1 T1T2XL3L4
{IQ, 574} 1.35 2 T1T9T3%4
{.’172, T4} 0.45 1 T1T2T3X4
{CZ'Q, 573} 1.14 2 T1T2T3%4
{fg,ﬂ?g} 1.06 2 f1f2$3f4
{1‘2, i’g} 0.94 1 L1X2X3T4
{$2, .173} 0.86 1 T1T2T 34
{Z3,Z4} 1.49 2 T1ZT2T3Ta
{Z3,24} 0.59 1 T1XoX3Ty
{13, .i'4} 1.41 2 T1T2X3T4
{23,224} 0.51 1 T1T2T3Ty

Table 4: S.ets with 1 literal

set of literals Y | > v p(y) | Jmas | vilvi F {CIma=(Y)}UT
{1‘1} 0.47 1 L1X2T3T4
{.’7?1} 0.53 1 fll‘gfg.f4
{1‘2} 0.40 1 T1X2T3T4
{fg} 0.60 1 $1f2f3f4
{1‘3} 0.46 1 T1X2T3T4
{f‘g} 0.54 1 1‘1.%2@31_74
{4} 0.05 1 T1T2T3T4
{f4} 0.95 1 T1T9T3%4

And so we finish the proof, with an unsatisfiable PSAT instance, (I, ¥),
where for each formula ci(Y), such that
> yey p(y) > j— 1, we have shown a truth assignment that satisfies {CI(Y)}u
I. O
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6 Conclusion

In this report, we investigated the relation between probabilistic satisfiability
and classical satisfiability. For this, we presented the Atomic Normal Form,
which splits PSAT into an atomic probability assignment and a SAT instance.
Then we could define a Probabilistic Entailment relation () and study its
properties. With the theorem (4.1), we remarked the role of probabilistic en-
tailment in linking PSAT to SAT. We defined C-formulas, which with theorem
(4.8) have shown ubiquity in the probabilistic satisfiability study. Finally, we
conjectured the completeness of only looking at C-formulas probabilistically en-
tailed to decide the satisfiability of a PSAT instance, and we refuted it with a
counterexample.

The exponential number of C-formulas to investigate doesn’t allow its ex-
haustive use in a possible polynomial reduction from PSAT to SAT, which were
our initial objective. However, the founded results seem to be useful on PSAT
study, bringing it back to logic. The Atomic Normal Form makes an important
step in separating the problem logical part (SAT) from the probability assign-
ment. Such normal form might be useful to standardize PSAT instances, in
order to compare numeric outputs from algorithms that solve the problem. The
introduced probabilistic entailment relation enables the presentation of a "wit-
ness" formula for the unsatisfiability of a PSAT instance. Such formula can be
used either in proving probabilistic unsatisfiability, using classical unsatisfiabil-
ity, or in algorithms that solve PSAT.

As the efficiency of algorithms that solve PSAT is considerably lower than
those from algorithms for another NP-complete problems (like SAT), we believe
there is a lot of work to be done. A possible approach would be the polynomial
reduction to SAT, which seems to be closer with the atomic normal form and
the probabilistic entailment relation. It would also be interesting to use the
concepts we presented here together with linear algebra techniques to explore
PSAT, as it can be seen as a linear programming problem.
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