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Abstract

The proliferation of mobile computing devices and wireless networks has set the
stage for the development of smart environments rich in computing and communication
capabilities, yet gracefully integrated with human users. This paradigm has fostered
a growing interest in localisation-based systems and services for portable devices, es-
pecially in indoor environments. However, designing indoor localisation systems with
increasing estimation capabilities and decreasing cost installation is a challenge. An in-
teresting approach to reach such requirements consists in using the wireless local area
network (WLan) infrastructure that is already installed in many places. Most reported
WLan localisation approaches use a map of received signal strength and signal presence
frequency collected from multiple channels at different physical localisations in the envi-
ronment, which can be very noisy. This work proposes a new localisation system, WBLS
(Wireless Based Localisation System), that considers the unreliability of information on
signal presence frequency in the estimation process, in an attempt to eliminate its as-
sociated noise. Experiments considering mobile agents carrying devices and moving at
human walk speeds show that the most important feature of WBLS is a robustness to
access points shutdowns that may happen without any warning in an environment where
there is little control over the infrastructure.

1 Introduction

In the last years, the increase in the use of high performance portable devices such as laptop
computers and personal digital assistants (PDAs) has been remarkable. Such devices are now

∗Corresponding author: phone +55 11 3091 5397, fax +55 11 3091 5294

1



part of our daily lives, a new condition that brings new technological possibilities and chal-
lenges, such as the development of context-dependent applications which consider situational
aspects of users and devices, their actions and past states.

Context is in fact a critical aspect in many ubiquitous computing applications. Such ap-
plications may infer the activities and goals pursued by the user, and when executed in a
mobile device, a potentially important information for the inference processes is the locali-
sation of the device in the environment. Context-oriented applications that use information
about device localisation have been presented in the literature. [23] and [1] report on school
and museum portable device guides which can provide users with information about near
objects, suggestions of places to visit depending on the region the user currently is, and even
trajectory plans for reaching new parts of the environment. Other interesting examples are
the projects for smart houses [7]. In such projects, all the residential devices operate coordi-
nately, possibly via a central management system that analyses the behaviour and actions of
house users, automatically turning lamps on and off, setting air conditioning, operating access
restriction policies and providing residents with information that can help them in using ap-
pliances with maximum efficiency and comfort. Device localisation information can be used
in those cases to provide data about user habits and context information for the applications
when they communicate with the central management system. Context-oriented applications
thus demand reliable localisation processes, but it must be noticed that many applications
for routing, search, assistance and resource allocalisation – even when not context-based –
may be benefited by or even require localisation capabilities.

As far as localisation systems are concerned, the most popular approaches are those based
on GPS (Global Positioning System). GPS is a georeferenced localisation system that offers an
estimation error of no more than 5 meters in open areas, and with a technological improvement
based on a reference state (DGPS – Differential GPS) it can produce estimation errors of no
more than a few centimetres [24]. However, it is well known that both GPS and DGPS,
for being based on triangulation of signals sent by satellites, are prone to failure in indoor
or heavily occupied tall building spaces. This is an important pitfall, as many ubiquitous
computing applications such as those presented in the last paragraph are actually for indoor
use.

Cell phone companies use localisation systems based on the signals received in the antennas
from the cell phones. Such systems in fact can be used to locate the devices, but – as
for the case of GPS systems – indoor localisation can be critically affected, mainly due to
reflections and other physical interactions with obstacles and objects in the environment [19].
Additionally, there is the common problem of too few antennas at a sufficiently close range
from the device, a situation that is caused by signal power control policies for avoiding signal
interference among cell phones located in the same cell [4].

Some high precision indoor localisation systems have been developed. Among these, we
can mention systems based on ultrasound [12] and infrared [15] signal detection, both with
estimation errors of a few centimetres. Unfortunately, a ubiquitous localisation system based
on such technologies would require an extremely large number of corresponding sensors, a
requirement that is still too expensive.

Despite the large number of papers on Wi-Fi localisation, only a few ones do consider
performance analysis for moving devices. Such situation – certainly very common in various
applications [1, 23] – induce particular characteristics that imply much harder conditions for
localisation systems. In fact, comparative results of localisation systems for stationary and
moving devices have shown considerably worse performance in the latter [3, 17], making it
clear that mobility situations are critical and do require a deeper analysis.

In this paper, we are interested in inferring the localisation of agents moving in indoor
environments, over an existing WLan infrastructure over which the localisation system has
very restricted control. Furthermore, we assume that the WLan is based on the IEEE
802.11b standard, commonly called Wi-Fi. Current localisation solutions based on existing
indoor Wi-Fi networks generally use the Received Signal Strength Indication (RSSI) received
from Wi-Fi access points (APs) to localise a user carrying a portable device. Both Wi-Fi APs
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and mobile Wi-Fi clients are becoming more ubiquitous. Many buildings such as shopping
malls, schools and museums, usually have a good number of APs, so that we can connect to
the Wi-Fi network and use this existing infrastructure to infer the agent localisation. The
advantage of this approach is then to reduce, or even eliminate, the need for installing or
altering existing devices for producing localisation estimates. However, a critical problem for
a localisation system in such environments is the fact that operation must be carried out on
extremely noisy signal conditions. Wi-Fi signals in indoor, non-structured environments are
prone to interference and reflections from multiple objects and obstacles, and even from other
mobile devices and agents. Characteristically, large variations and unpredictability in RSSIs
are expected, and in fact, experimental evidence largely reported in the literature show that
some APs can produce signals intermittently. As many localisation systems use the signal
presence frequency as important information for localisation estimation, this is certainly an
important source of error.

The localisation system we propose in this paper is called WBLS (Wireless Based Location

System). It is based on a probabilistic modelling using Hidden Markov Models, but it does
not consider signal presence frequency for localisation estimation. Moreover, it should be
stressed that a localisation system operating on non-structured indoor environments must be
robust to unexpected structural changes such as transmission failure, AP shutting-off and
so forth. For not considering signal presence frequency for producing estimates, WBLS is
naturally resilient to such problems.

The paper is organized as follows. Section 2 describes the Wi-Fi localisation problem
and highlights the main challenges associated to mobile device localisation based on signal
detection. Section 3 then presents a Markov localisation system, which will serve as a basis
for the localisation system WBLS (Wireless Based Location System) proposed in Section 4.
WBLS is shown to be derived from an analysis of system noise characteristics, together with
some performance-motivated modifications on the model presented in Section 3. Section 5
presents the experimental results for WBLS. Finally, Section 6 presents the conclusions of the
paper and points to some future works that are worth pursuing.

2 Localisation in Wi-Fi networks

Wi-Fi localisation is based on radio signal detection and analysis of attributes such signals
hold: radio signal strength, difference in time-of-arrival, and angle of arrival. It is acknowl-
edged that the more precise the information from these attributes is received, the more
accurately localisation is estimated.

For indoor environments, ideal conditions for measuring such attributes almost never hold.
In fact, such environments induce radio wave propagation through multiple paths, almost
always as NLoS (Non Line of Sight) propagation, therefore usually not including direct pair
wise antenna transmission and reception [20, 13]. NLoS reflections, refractions, diffractions,
and absorptions produce both cross-interference and weakening of signal power, making it
very difficult to reliably interpret reading of signal information from the devices.

Moreover, other agents and objects (including interfering radio signal transmitting devices
such as microwave ovens [25]), and non-stationary conditions (mobility of agents and trans-
mission devices, variations in temperature and humidity) usually found in non-structured
environments contribute to make Wi-Fi localisation even more difficult.

An important aspect to be taken into account when designing Wi-Fi localisation systems
is that usually there is already an infra-structure for Wi-Fi localisation in the environment.
But at the same time that this brings opportunities for implementation cost reduction, also
sets forth the problem of having to produce accurate localisation estimates using devices over
which there is no control whatsoever. As the devices are operated by different and independent
agents, phenomena such as unexpected moves, turning off and even permanent disconnection
are common and may affect localisation processes. In addition, users can usually install new
APs quite easily (increasing the probability of co-channel interference, unless there is some
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common policy supervised by a central manager), and therefore even the assumedly fixed
structure of the network is not necessarily stable. Naturally, the lack of control can also involve
the physical structure of the environment: installation of new walls, removal or positioning
of objects can radically affect the radio propagation characteristics in the environment.

The maximum transmission range of APs is another relevant characteristic of Wi-Fi sys-
tems. Usually, the output power of standard APs (one inch distance from the device) is
around 20 dBm, which implies −10 dBm at one meter distance. The signal can be detected if
its power is not less than −100 dBm (this may depend on the device, but it is usually a good
rule of thumb, as described in [18]). Thus, the signal varies 90 dBm from a one meter distance
from the emitter antenna to the furthest point where it can still be detected by a receiver
antenna. One of the basic models for characterizing the relationship between signal power
(in dBm) and emitter-receiver distance in indoor environments suggests a linear relationship
between those parameters [11]. Data collected in tests conducted in our environment esti-
mated a distance power loss coefficient of 2.4 dBm/m, in reasonable agreement with results
by [8] (2.0 dBm/m). As a result, one can argue that the range for an AP must be between
40m and 60m. As the relationship between power and distance is extremely dependent on
the environment configuration, one can expect that the distance power loss coefficient can
suffer huge variation among different environments. As a matter of fact, for obstacle-free
environments the range of an AP can be as large as 10km [10]. In practice, however, Wi-Fi
networks with ranges larger than 100m are not common.

Since most successful Wi-Fi localisation systems are based on RSSI, it is important to
highlight some of its characteristics. Many environmental influences can cause the received
signal intensity to vary over time, and such time-varying effects can have severe implications
on the localisation accuracy. In order to illustrate some of this effects, we collected a series
of measurements of the radio signal transmitted from an AP and measured by a laptop in a
fixed position but in four different directions (see figure 1-a) and also at a fixed localisation in
a building over a period of approximately two hours (see figure 1-b). As we can see in figure
1-a, variations of up to 10 dBm occur in the signal intensities averaged over each direction,
affecting circa 3 to 5 meters the agent localisation estimates. In figure 1-b there are signal
variations of up to 15 dBm, which can cause variations of up to 7 meters in the localisation
estimates. Not only many changes occur in the environment which affect the observed signal
intensity, but also agent moves in the environment further complicates the task of maintaining
an accurate position estimate.

Figure 1: Examples of signal intensity variations for an AP signal measured from a laptop
in a building: (a) RSSI values averaged over four different directions at a fixed position, and
(b) RSSI values over a 2-hour period in a fixed localisation.

Most Wi-Fi localisation systems are based on discrete environmental models that use
patterns of RSSI variation as reference for the localisation system. Such systems, as reported
in the literature, are compounded by two phases: training and run-time [3, 8, 9, 14, 16, 22, 26].
During the training phase, a database is built measuring several values of RSSI and associated
signal presence frequencies received from different APs in each reference point (RP) in the
environment. This database is called the RSSI map of the environment. In the run-time phase,
the RSSI map is then used as a model to infer the localisation based on the comparison of

4



the RSSI value observed with the model value. The way this is done varies in different works,
but the most successful localisation systems use probabilistic methods in the localisation
inference.

3 A basic system for Wi-Fi localisation

The localisation system we propose in this paper is based on a probabilistic modelling using
Hidden Markov Models (HMM). The localisation problem consists in determining the agent
state (or localisation) given one or more observations, and its solution is also based on a
training phase and a run-time phase.

3.1 Training phase

In the training phase, we define a discrete grid composed by a set of area cells that form a
partition of the locomotion surface of the agent in the environment, with each cell having
a point associated with it, called measurement point (MP). The number of cells must be
large enough to cover all regions of interest in the environment, and the area of each cell
should respect a size trade-off to satisfy both the desired and possible localisation estimation
accuracies. The discrete grid can be either uniformly distributed (defining a set of regularly
spaced MPs), or could follow topological aspects, associating differently sized cells to rooms
of interest.

Let A = {pa|a = 1, 2, ....,A} be the set of APs, where A represents the total number of
APs in the environment. Observations collected at MPs are vectors Ot = [oa,t|a = 1, 2, ...,A],
where oa,t is the RSSI value received from pa ∈ A in time t. When an AP signal intensity is
bellow the minimal receiver sensitivity Rmin, then oa,t receives a value meaning that AP pa

could not be detected (here, we use oa,t = Rmin − 1).
Measurements can be done in three different ways: (i) collecting RSSI values over some

time period in a fixed localisation (normally, for all MPs, a scan is done at each position for
each orientation)[3, 16]; (ii) collecting RSSI values over some time period in a fixed position
but varying slowly the height and the orientation of the receiver [14]; and (iii) walking around
slowly for some time in each cell, in order to cover the entire cell [9]. The first method has
the disadvantage of having a RSSI map four times bigger than the second method, and the
third is the one that probably best represents the signal characteristics in the entire cell. The
time period spent in the measurements can be either a pre-defined fixed value [9, 14] or an
adaptive time period according to some procedure or heuristic [16].

The data sampled is then stored in a RSSI map. The effort needed to build the RSSI map
depends on the number of active channels present in the environment and on the number of
MPs (cells) considered. This means that a lot of effort is often requested by the training phase
when the environment is made up by many APs and small localisation errors are required.

Formally, a RSSI map M is composed by a set of I records, M = {Ri|i = 1, 2, ..., I},
where I is the number of MPs. Each record is given by pairs Ri = (ei, Ci), where ei is the
identification of the i-th MP – usually given by the MP localisation coordinates (xi, yi) in the
environment metric map – and Ci is an n-dimensional vector, Ci = [Rssii,a|a = 1, 2, ...,A],
where Rssii,a contains the RSSI values sampled at the position MP i for AP a. Rssii,a should
represent a distribution of signal strengths for each AP a, and we can use either histograms or
Gaussian-fit curves to store these distributions. In the first, for each AP a and each record i
in the RSSI map, Rssii,a = [bi,a,n|n = 1, 2, ...,N ], where bi,a,n represents the frequency count
of value n for AP a at MP i, and N is the discrete values number considered in the histogram.
The use of histograms has the advantage of representing any signal strength distribution but
it demands more storage space. On the other hand, fitting the data to a Gaussian only
requires storing two numbers for each distribution: its mean and standard deviation [9, 26],
so that Rssii,a = (µi,a, σi,a, fi,a), where µi,a is the mean and σi,a is the standard deviation,
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both calculated only when the signal of AP a is present in the site, and fi,a represents the
frequency with which AP a was not detected in cell i.

3.2 Run-time phase

The basic system we describe is based on the work described in [9]. We model a moving agent
trying to track its localisation as a Hidden Markov Model (HMM).

Formally, an HMM is:

− a set of states E = {ei = (xi, yi)|i = 1, 2..., I}, where each state ei is given by the
coordinates (xi, yi) of the corresponding MP i that represents the environment cell;

− a set of observations Ot = [oa,t|a = 1, 2, ...,A], where oa,t is the signal strength captured
from AP a in time t, discretized in an interval ranging from Rmin− 1 (when the AP is
not detected) to Rmax (the highest sensitivity value of the detector);

− the probability of observing oa (with signal strength rssi captured from AP a) while
at state q = ei, i.e.,

P (Ot|qt = ei) =

A
∏

a=1

P (oa = oa,t|q = ei), (1)

where qt is a random variable for the localisation state at time t;

− the probability of transiting from state ej in t to ei in t + 1, given by

Ptrans(ej , ei) = P (qt+1 = ei|qt = ej) (2)

where
I

∑

i=1

Ptrans(ej , ei) = 1; (3)

− an initial probability distribution over states P (q0), where P (q0) is an uniform distri-
bution, when no previous estimation of the agent initial localisation (state) is known; or
P (q0 = ek) = 1 and P (q0 = ei) = 0, i 6= k and i = 1, 2, ..., k− 1, k +1, ..., I, when there
is a perfect knowledge about the agent initial localisation; or any distribution between
these two limits.

When the Gaussian-fit method is used to store Rssii,a in the training phase, we can
compute the observation probability as follows:

P (oa = rssi|q = ei) = ηa,i[Ga,i(rssi) + λ], (4)

where

Ga,i(rssi) =

∫ rssi+0.5

rssi−0.5

exp[−(x − µa,i)
2/2σ2

a,i]

σa,i

√
2π

dx. (5)

and Ga,i represents a discretization of the Gaussian curve with mean µa,i and standard
deviation σa,i, ηa,i is a normaliser that ensures

Rmax
∑

rssi=Rmin−1

P (oa = rssi|q = ei) = 1, (6)

and λ is a value that ensures P (oa = rssi|q = ei) > 0. The probability of not detecting
signal from AP a, i.e., P (oa=Rmin−1|q = ei), can be computed from fa,i.

The transition probability Ptrans(ej , ei) can be computed as a function proportional to the
inverse of the (direct) Euclidean distance between every pair (ej , ei), i 6= j, and by defining a
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fixed value for the reflexive transition (i = j). An alternative is to compute the minimal path
from ej to ei (distance in the environment) and use this measurement to define the value of
Ptrans(ej , ei). A topological map can reflect the physical restrictions on the environment, and
it is very useful in this respect since it can give support to set Ptrans(ej , ei) = 0 if there is no
path from ej to ei in the environment.

Given the HMM model, we now present the algorithm forward procedure [21] used to
update the state estimate between each set of observations, considering constraints on how
the agent can move from state to state, agent walking speed and topological constraints.
Suppose that at time t the state estimate is P (qt = ej |Ot)

1. Between time t and t + 1 the
agent moves to an unknown state ei. At time t + 1 observations o1, ..., ok are received. Then,
the transition module computes

I
∑

j=1

P (qt = ej |Ot)Ptrans(ej , ei), (7)

which represents the probability sum of transiting from each state ej in t to the state ei in
t + 1, and the observation module computes P (Ot+1|qt+1 = ei) based on information stored
in the RSSI map and in the observation vector Ot (see Eq.1, 4, 5 and 6). Figure 2 illustrates
the localisation algorithm.

Results of both modules are multiplied and normalized so that

P (qt+1 = ei|Ot+1) = η P (Ot+1|qt+1 = ei)

I
∑

j=1

P (qt = ej |Ot)Ptrans(ej , ei), (8)

and for each HMM state we then have P(qt+1|Ot+1).
Finally, for generating a localisation information for the user, an estimation module can

receive as input the calculated distribution and then generate a localisation estimation, which
can be either the state with the largest probability or (more commonly) the expected value
of state [5].

Figure 2: The complete localisation algorithm.

1In t = 0, P (qt = ej |Ot) = P (q0)
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3.3 Specification of the basic Wi-Fi localisation system

Once we defined the localisation system, we must specify a) how the measurements for building
up the RSSI map will be carried out; b) how to represent the RSSI distribution; c) how to
calculate the transition probabilities; and d) how to define the initial probability distribution.

Measurements of RSSI were carried out in each cell, varying both height and orientation of
the measurement device. For representing the RSSI distribution, two comparative studies can
be found in the literature [9, 22], with controversial reports on which representation produces
better results. We chose a Gaussian-based representation both for the basic model and for
the proposed one presented in the next section, in a similar fashion to [9], which served as a
basis for our proposal.

Regarding the calculation of the transition probabilities, an approach based on topological
maps and expected behaviour of the mobile agents was adopted. For the sake of illustration,
consider that the environment is composed by square cells with 1.5m side length, and that
observations were taken every 0.2s 2 In the best case, a person would have to walk at a
minimum 6m/s to traverse two contiguous cells (3m distance) between two consecutive obser-
vations. It is reasonable to assume that a human agent carrying a portable device would be
running at speeds that are much lower than this. Thus, for the transition probability model
we defined a zero probability for the transitions between non-neighbouring vertices (each pair
of neighbouring vertices corresponds to a topological cell neighbourhood), and a nonzero and
single probability value for every transition from each node to all its neighbours3.

We must also define values for the reflexive transition probabilities, i.e., probabilities of
standing in the same cell in consecutive observations. This was defined empirically through
observations of the customary behaviour of a large number of agents walking in the environ-
ment. It was realized that, on average, each agent remained 15 iterations in the same cell
before moving to a new one, indicating a 0.95 probability of a reflexive transition. We could
have used the agent customary behaviour related in each specific cell in the environment, so
that more representative reflexive transition probabilities could be produced, but for the sake
of simplicity we decided to use an average value for all cells.

Finally, we assumed an uniform distribution for the initial state, representing the uncer-
tainty about the initial localisation of the device.

To summarize, the main considerations and specifications both for the basic model and
for the one proposed in the next section are: a) it is based on a discrete model for cells with a
maximum dimension of 1.5m; b) it adopts a probabilistic approach for estimating localisation;
c) it builds up a RSSI map during a training phase, with variations of the capture in the cells
(height and orientation of the agent) and storage of information as Gaussian distributions and
frequency of signal absence; d) it considers a mobile device that is conducted by a walking
agent (human), and uses a topological map of the environment and physical limitations of
this agent to define state transition probabilities; e) it defines (as a function of experiments
whose results depend on the grid cell size and agent customary behaviour in the environment)
a reflexive transition probability as 0.95; f) it considers an uniform probability distribution
for the initial state.

3.4 Analysis of the basic Wi-Fi localisation system

Our aim in the analysis of the basic Wi-Fi localisation system was to grasp a better under-
standing of some problems faced by Wi-Fi localisation systems in general, mainly due to the
noisy nature of the detected signals. We considered three main aspects, related respectively
to the estimation, transition and observation modules.

2Empirical results show that a 0.2s sampling rate is actually a conservative rule-of-thumb for the proposed
algorithms and hardware used in the experimental results reported herein.

3Naturally, the topological maps and the transition probability model must be modified for the case in
which the mobile agents move at higher speeds (e.g., cars).
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Regarding the estimation module, there are indications that a measure of the expected
value of the device localisation (i.e., a sum of the possible discrete cell localisations weighted
by the respective estimated probabilities) produces better results than simply choosing the
cell localisation that holds the largest associated probability of occurrence [26]. However, our
experimental results show that it is not always the case that highest probability peaks are
concentrated in small regions (see Figure 3-a), and therefore simply obtaining the expected
localisation by a weighted sum over the whole cell space can produce strange results, such
as unlikely localisations resulting from a weighted average of two distant and almost equally
probable localisations. We thus adopted the following heuristics, which aims at combining
the reportedly adequate expected value approach and a mechanism for avoiding unlikely
localisations: calculating the expected value using only a cell neighbourhood around the
localisation with highest probability.

The transition module can be improved by using knowledge acquired from experience,
reflecting in the transition probabilities not only topological and device dynamical restrictions,
but also more specific patterns such as preferred trajectories performed by the agents [6, 2].

As the signals received from the APs are very noisy, the observation module calculates
conditional probabilities of observations given states that can vary significantly in different
time steps, resulting in situations such as the one depicted in Figure 3, which shows the
distribution P (Ot|qt = ei) on the state space for two consecutive time steps. It can be
noticed that the most likely observation in (a) has a very low probability in (b), and in fact,
the distance between the states that produce the maximum values of P (Ot|qt = ei) in (a)
and (b) is nearly 10m.

Figure 3: Distribution of observation probabilities in two consecutive time steps. Vertical
axis represents P (O|q) and the horizontal axes define environment coordinates.

The large variations on the conditional probabilities induced by noise led us to analyse
more closely the relationship between signal power and frequency of detected signal presence.
Initially, we considered the hypothesis that low power signals are difficult to detect. Exper-
iments showed that, for signals with power in the range [-96 dBm, -90 dBm], the observed
frequency of detected signal presence was less than 15%, corroborating this hypothesis4. This
was actually expected, but surprisingly, the dual condition for high power signals was not
as obvious. Repeating the experiments for observations with signal strength higher than 60
dBm led to 35% of situations where the frequency of detected signal presence was below 80%,
and 17% of situations with a frequency below 50%. Table 1 summarizes the results regarding
the frequency of signal presence of an AP in six points located in a room, with measurements
taken at intervals of less than 10 minutes. Notice that the RSSI values do not vary much
(min 63 dBm, max 70 dBm) for points that are spatially close, yet the presence frequency
does have a large variation (min 55%, max 90%).

Such results indicate that information on frequency of signal presence is very noisy and
probably unreliable, suggesting a possibly harmful effect from the use of this information for

4The device sensitivity was -96 dBm
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Table 1: Signal presence frequency and average RSSI in a single room.
MPs coordinates Capture information
X (m) Y (m) Freq. (%) RSSI mean (dBm)

12,3 15,3 71 67
10,0 15,3 55 65
12,3 18,3 90 67
10,0 18,3 82 63
12,3 22,8 67 70
10,0 22,8 89 70

the purpose of localisation estimation. The next section presents a proposal that takes this
analysis into account.

4 The proposed system: WBLS

WBLS is a localisation system that considers the unreliability of information on frequency of
signal presence in the measurements for the construction of a RSSI map. It basically defines
a new form of calculation of the conditional observation probabilities. We detail WBLS in
the following subsections.

4.1 WBLS changes in the basic localisation system

Fundamentally, WBLS considers only the probabilities corresponding to the present signals.
Thus, for each AP the probability must be conditioned also on the presence of the signal.
In what follows, we present the corresponding modifications for the model that considers
gaussian distributions for RSSI, but the concept is also valid for histogram-based (or any
other) representation scheme.

In WBLS, the conditional probability of oa = rssi is calculated as follows:

P (oa = rssi|q = ei,Sa) = ηa,i[Ga,i(rssi) + λ] (9)

where rssi is an observed RSSI value, Ga,i is the discretization of the gaussian distribution of
AP a in state i according to the RSSI map, ηa,i is a normalization factor and λ is a regular-
ization factor to prevent observations with near zero probabilities. Notice that this equation
is nearly identical to equation 4, the only difference being the presence of the condition Sa,
which means the presence of the AP signal, i.e., oa ≥ Rmin. There is however an additional
change regarding the normalization factor, which is calculated considering the restriction:

Rmax
∑

rssi=Rmin

P (oa = rssi|q = ei,Sa) = 1. (10)

Here, the RSSI interval [Rmin,Rmax] differs from the one for the basic system (Equation
6), which also considers Rmin − 1 (representing the absence of signal). In this way, RSSI
calculation is based solely on the observations actually made by the device that is being
localised.

4.2 A formal analysis of WBLS

Consider equation 1. We can represent the probabilities that compose the product for deter-
mining the conditional probability of an observation [14] as:

P (oa = oa,t|q = ei) =

{

P (oa = oa,t|q = ei,Sa)P (Sa|q = ei) if oa,t ≥ Rmin
P (Sa|q = ei) otherwise

(11)
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where P (Sa|q = ei) is the probability that the signal from AP a is present at state ei and
P (Sa|q = ei) is the probability that the signal from AP a is not present at state ei.

The probability of being in state ei given observation Ot (Equation 8) can be written as:

P (qt = ei|Ot) = ηP (Ot|qt = ei)T (ei), (12)

where

T (ei) =

I
∑

j=1

P (qt−1 = ej |Ot−1)Ptrans(ej , ei). (13)

Equation 12 can be written as

P (qt = ei|Ot) = η

A
∏

a=1

P (oa = oa,t|q = ei) T (ei), (14)

where P (oa = oa,t|q = ei) is determined as in equation 11.
WBLS then calculates P (qt = ei|Ot) in the following way:

P (qt = ei|Ot) = η′

A
∏

a=1

{

P (oa = oa,t|q = ei,Sa) if oa,t ≥ Rmin
1 otherwise

}

T (ei), (15)

where η′ = ηF (ei, Ot) and

F (ei, Ot) =

A
∏

a=1

{

P (Sa|q = ei) if oa ≥ Rmin
P (Sa|q = ei) otherwise

}

. (16)

The reasoning above can be carried out for any state model, and therefore:

F (ei, Ot) = F (ej , Ot) ∀i, j. (17)

Equation 17 must be valid for any observation. Consider two possible observations O′ and
O′′, such that all APs signals present in the first are present in the second, and all APs signal
absent in the first are absent in the second, with the exception of the AP signal indexed by
1, present in observation O′ but absent in O′′. We determine F ′(ei) as:

F ′(ei, O) =
A
∏

a=2

{

P (Sa|q = ei) if oa ≥ Rmin
P (Sa|q = ei) otherwise

}

, (18)

in such a way that F ′(ei, O
′) = F ′(ei, O

′′)∀i. It is then possible to write Equation 17 for each
of the possibilities as:

P (S1|q = ei)F
′(ei, O

′) = P (S1|q = ej)F
′(ej , O

′), (19)

P (S1|q = ei)F
′(ei, O

′′) = P (S1|q = ej)F
′(ej , O

′′). (20)

Replacing P (S1|q = ei) by 1 − P (S1|q = ei) in Equation 20, it follows that

[1 − P (S1|q = ei)]F
′(ei, O

′′) = [1 − P (S1|q = ej)]F
′(ej , O

′′). (21)

Dividing the terms in Equation 21 by the terms in Equation 19, we get

[1 − P (S1|q = ei)]

P (S1|q = ei)
=

[1 − P (S1|q = ej)]

P (S1|q = ej)
, (22)

which implies that
P (S1|q = ei) = P (S1|q = ej). (23)
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The analysis above can be carried out to any AP in the environment. It means that —
according to the WBLS model — the probability of presence of signal from an AP is the same
for every state of the environment.

An advantageous aspect brought by this condition is that the model represents situations
where the signal is affected in every direction, e.g. when there is signal interference close to
the AP, and adapts itself to a signal presence frequency that can change along time. On the
other hand, the model does not explicitly considers the coverage area of an AP, unlikely the
basic system.

In other words, WBLS reduces Wi-Fi noise by eliminating information regarding signal
presence. This brings forward an interesting issue that has been largely ignored in the liter-
ature: Wi-Fi localisation is almost always seem as based on the use of an already installed
infrastructure, but this advantage carries together the problem of a lack of control over the
same infrastructure. Harmful effects — from the point of view of localisation — can be pro-
duced as consequence of uncontrollable events such as maintenance, device failures, energy
blackouts and so forth. WBLS, for considering only signals that are present in the observa-
tions, is much more robust to this kind of situation. In the next section, we produce empirical
evidence that supports this claim.

5 Experiments

We conducted a series of experiments and compared the results achieved from the basic
localisation system and from WBLS in the same physical environment with the same data.

5.1 Testing environment

We tested our system in a building at Escola Politécnica (University of São Paulo, Brazil),
in a 45m × 25m area. The plant map is shown in figure 4, where we can see the 181 MPs
used in the RSSI mapping, spaced around 2m from each other. Signals from 18 APs were
detected, 4 of which (represented as diamonds) located in the mapped area. It was possible
to detect an average of 10.9 APs in each MP. The graph corresponding to the topological map
of the environment has MPs represented as a set of vertices vi, with average vertex degree
δ(vi) =2.87 and 260 edges, which represent navigable paths in the mapped area.

Figure 4: Map of the tested plant: MPs are represented as points and APs as diamonds.

Experiments were performed on a Toshiba Satellite 6500 notebook running Linux 2.4.25
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kernel and WLan PCMCIA cards with the Atheros RX5004G chipset. 150 measurements in
each of the 181 MPs were collected. A person doing the training spent approximately 30s in
each cell (represented by an MP), and walked around slowly in order to cover the entire cell.
Data collection took two four-hour periods in two days overall.

5.2 Capturing observation sequences in the walking paths

The procedure we used to capture observation sequences in our building is based on the
methodology described in [17] and [14]. We first manually drew a set of 5 feasible walking
routes through the building floor, as shown in figure 5. Each route was traversed in both
directions (clockwise and anticlockwise), resulting in 10 paths. Once all the lines had been
drawn, each line end point was marked in the environment map. The agent is placed on
the path beginning (a line end point) and notifies the observation capture program when the
moviment starts. The program then records both localisation and signal strengths for each
time step. Localisation is estimated by considering both the agent click given on each line
end point and a constant velocity along each line segment of the walking path. Each path
was traversed seven times, resulting in 70 stored observation sequences.

Figure 5: Walking routes for the experiments on localisation with moving devices.

5.3 Performance analysis

We conducted four experiments in order to analyse the performance of WBLS, and used in
all of them the RSSI map acquired in the training phase, without any modification. We
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inspected all observed signals in the training phase and identified both the less and the most
frequently observed AP.

In the first experiment, the signal of the less frequently observed AP was eliminated from
each observation of the 70 observation sequences stored during he walking paths, in order to
simulate its removal from the WLan, and then we ran WBLS and the basic system using this
new observation sequence to localise the agent during the walking. In the second experiment
we removed the signal from the most frequently observed AP. Finally, in the last experiment
we removed both APs: the most and the less frequently observed ones.

In each experiment, we tested a series of 100 different AP combinations on both systems
— WBLS and the basic system. For each series we varied the number of APs used in the
observation sequence, ranging from 7 to 16 observed APs (not including the AP removed in
the step described before). As we used the RSSI maps acquired in the training phase, APs
that were not included in the observation sequence actually simulate failures. Localisation
estimate error was calculated as the average of the estimated error over all observed APs for
each one of the 100 combinations. Results are shown in figure 6a-c, where we see that WBLS
presents better results than the basic system in all but the first experiment, where similar
performances were achieved. This means that failures in less frequently observed APs do not
affect the system performance, as expected.

Finally, we conducted a fourth experiment where no AP failure occurred, i.e., the same APs
modelled in the RSSI map are observed in the localisation process executed during walking
paths. Results are shown in figure 6d. Performances are similar; however, for reduced AP
numbers, the basic system shows a slightly superior performance.

Figure 6: Performance comparison (number of APs × average localization error (in meters)
between WBLS and the basic system when APs are removed during the localisation process:
(a) removal of the less frequently observed AP; (b) removal of the most frequently observed
AP; (c) removal of both the less and the most frequently observed AP in the training phase;
(d) performance comparison between WBLS and the basic system when all APs are observed.

Results based on the Student T test assess that there is a statistically significant difference
of performance between WBLS and the basic system in the second, third and fourth experi-
ments. Table 2 shows the t-values for the four experiments, where a t-value> 1.96 indicates
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a confidence level for the performance difference larger than 0.95. For the fourth experiment,
results show that there are small differences between both systems only for less than 12 APs.

It is worth noticing that differences between WBLS performance and basic system perfor-
mance decrease with the increase of the number of observed APs. This means that the more
information is available, the less sensitive is the localisation system to AP removals. More-
over, standard deviations for the basic system performance are larger than those depicted by
WBLS, indicating that WBLS might be more stable against channel deactivation than the
basic localisation system.

Table 2: T test for the four experiments.
Number of APs

7 8 9 10 11 12 13 14 15 16

T Exp. 1 1.51 2.12 2.14 1.54 0.81 0.24 1.16 1.22 0.71 0.06

T Exp. 2 4.96 5.18 5.29 5.91 6.85 9.87 14.51 18.94 26.69 35.31

T Exp. 3 6.84 6.98 7.31 9.07 10.23 11.94 14.42 18.65 28.25 35.52

T Exp. 4 3.62 3.05 2.43 2.78 2.27 2.25 1.54 0.72 0.68 1.93

6 Conclusions

Computing context from WLan infrastructure is attractive because many buildings already
have Wi-Fi access points, and more and more mobile devices have been equipped with Wi-
Fi hardware. As a consequence, a wide spectrum of new context-based applications based
on pervasive computing concepts could be designed to address the needs of a variety of
residential, commercial and industrial service users. Many of these applications depend on
reliable information about the mobile device localisation in the building in order to successfully
accomplish their goals.

This paper presented a new proposal of a localisation system – WBLS – for mobile devices.
WBLS exploits the fact that Wi-Fi signal strength varies with localisation, and uses an HMM
on a graph of localisation nodes whose transition probabilities are a function of the building
floor plan, probabilistic signal strength pattern, and expected speeds of a pedestrian agent
holding a portable device. WBLS eliminates signal presence frequency information due to its
associated noise, allowing for an increase in the accuracy of the localisation estimation, despite
the information about the signal presence that is discarded. Experiments in real environment
show that WBLS presents a high degree of robustness regarding failures of access points, a
common condition in WLan infrastructures. Moreover, in ideal conditions WBLS was shown
to have performance that is similar to the best proposals related in the literature.

Our future work will concentrate on reducing calibration efforts while improving the lo-
calization accuracy to make systems of this type more attractive. We are also interested in
investigating ways to better reflect the agent customary moving habits and the building uses in
the probabilistic model, so that the localization system can not only improve its performance
with experience, but also automatically adapt to new situations.
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