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Abstract

Belief Revision deals with the problem of adding new information to
a knowledge base in a consistent way. Ontology Debugging, on the other
hand, aims to find the axioms in a terminological knowledge base which
caused the base to become inconsistent. In this paper, we propose a belief
revision approach in order to find and repair inconsistencies in ontologies
represented in some description logic. As the usual belief revision op-
erators cannot be directly applied to description logics, we propose new
operators that can be used with more general logics and show that, in
particular, they can be applied to the logics underlying OWL-DL and
Lite.

1 Introduction

With the advent of the Semantic Web [BLHLO1], much attention has been de-
voted to the issue of representing terminological knowledge. Several languages
for representing ontologies have been proposed and since 2004, the World Wide
Web Consortium (W3C)! recommends OWL, in its three versions OWL-Full,
OWL-DL and OWL-Lite [MvHO04], as the standard language to represent on-
tologies on the web. Since OWL-Lite and OWL-DL are based on the description
logics SHZF (D) and SHOIN (D) [HPS04] respectively, different reasoners for
these languages were proposed that provide inference services to users. Standard
services include verifying whether an ontology is consistent, whether a concept is
a specialization of another one (classification) and finding the concepts of which
an individual is an instance. These services are intended for static ontologies,
i.e., they need to be combined with other techniques if we want to use them to
deal with knowledge in the web, which is constantly evolving.

One approach to deal with the dynamics of a knowledge base is Belief Re-
vision [G&r88, Han99b]. The idea of Belief Revision is to define operations to
deal with the accommodation of new information. These operations are usu-
ally studied from two sides: rationality postulates establish the properties such
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operations should satisfy, while mathematical constructions define how the op-
erations can be built. If we can prove that a construction and a set of rationality
postulates are equivalent (a representation theorem), then we can concentrate
on one side or on the other.

Since ontologies are not static, the standard reasoning services are not enough
for the users. Dynamic ontologies change in time and may become inconsistent.
As an example (adapted from [NMO1]), let us consider an ontology that de-
scribes the domain of wines. Suppose that we have defined a concept Wine and
three subconcepts Red Wine, White Wine and Rose Wine. For many years,
all Zinfandel wines were red. Therefore, when we add a class to represent the
Zinfandel wines we add it as a subclass of the Red Wine class. However, at
a certain point wine makers begin to press the grapes and to take away the
color-producing aspects of the grapes immediately, producing “White Zinfan-
del” whose color is actually rose. If we add an instance of White Zinfandel,
with its property of having color rose to the class of Zinfandel, we would get an
inconsistency, since all Zinfandels were said to be red. For this reason debugging
services have been proposed [SC03, KPSHO05]. Debugging services help the user
to find which axioms are responsible for the inconsistency in the ontology.

The goal of this paper is to show how these debugging services can be linked
to the belief revision field. That way, on the one hand, one can see debugging
services through belief revision eyes. On the other hand, debugging services
provide the means to implement belief revision techniques in description logics.

Section 2 introduces description logics, defines the syntax and the semantics
of SHOZN (D) and SHZIF (D) which are the logics that we are most interested
in. Moreover, this section will show some properties that these description
logics satisfy and some issues about negation of sentences in description logics.
Section 3 discusses some rationality postulates for two belief revision operations:
contraction and revision. In this section we argue about the importance of each
of the postulates. Section 4 presents some constructions for these operations. In
these section it is argued that the contraction operations presented in [HW02]
can be applied on description logics, while the usual constructions for revision
can not. Hence we present new constructions for revision that can be applied
on description logics. Section 5 explains how to use algorithms for debugging
ontologies to construct operations for belief revision. In the appendix we prove
representation theorems linking sets of rationality postulates showed in section
3 and the constructions presented in section 4.

2 Description Logics

In this section we briefly introduce description logics. For more detail we refer
to [BCM™03]. Description logics (DL) are a family of logics used to represent
terminological knowledge. DLs have some advantages in comparison with earlier
approaches like semantic networks, frame systems and first order logic. Differ-
ently from semantic networks and frame systems, DLs have formal semantics,
and can be easily translated into a subset of first-order logics. Differently from



first-order logic, inference in DLs is usually decidable.

The W3C standard language for representing ontologies on the web, OWL
[DSB*04], comes in three flavors: OWL-Lite, OWL-DL and OWL-Full. The
latter is undecidable, as it allows, for example, the unrestricted use of tran-
sitive roles, which was proven in [HST99] to be undecidable. OWL-Lite was
shown to be equivalent to the DL SHZF (D) while OWL-DL is equivalent to
SHOIN (D) [HPS03]. For this reason these two DLs are of special interest for
our work and will be used to exemplify the semantics of a description logics.

A Knowledge Base in description logics is a combination of two distinct sets:
a TBox for terminological knowledge and an ABox for assertional knowledge.
Starting from a set of atomic concepts and roles, new concepts and roles can
be formed using the constructors in the language. The set of constructors and
axiom types allowed in a particular description logic is what distinguishes a
particular DL from the others.

The logic ALC , for example, for concepts C' and D and role R, allows for
union (C' U D), intersection (C' M D), complement (—C') and value restrictions
(VR.C and 3R.C). Besides the constructors, ALC allows concept subsumption
(C € D), concept equivalence (C' = D), concept assertions (C(z)) and role
assertions (R(z,y)) as axioms. As an example, we can construct the concept
of non-flying things as —Fly, the concept of the things which have wings as
JhasPart.Wing and we can write that penguins do not fly as Penguins C
—Fly, that Birds are the animals which have wings as Birds = Animal N
JhasPart.Wing, and that Tweety is a bird as Bird(tweety).

The logic SHZF (D) allows all the constructors of ALC plus role hierarchy
(R C S), transitive roles, inverse roles, data-types and functional roles. For
example in SHZF (D) we can write that the role hasPart is the inverse of the
role isPartO f. The logic SHOZN (D) allows all constructors of SHZF(D) plus
nominals ({01, 02,...}) and cardinality restriction on roles (<, R and >, R).
Using cardinality restriction we can define something that has exactly two legs
as <, hasLegln >5 hasLeg. For a complete definition of concepts and sentences
in SHOZIN (D) and SHZIF (D) see [HPS03].

An interpretation is defined as a domain set A and an interpretation function
Z. The interpretation function maps each atomic concept A to a subset AT of
A, each role R to a binary relation on A and each instance o’ to an element
of A. This function then is extended to the complex concepts. We say that an
interpretation satisfies an axiom if the axiom is valid in this interpretation.

We say that a sentence a is a semantic consequence of a set of sentences
K if and only if every interpretation that satisfies K satisfies a and we write
K E «. For example, if our TBox contains the sentences Bird T Fly and
Penguim C Bird then the sentence Penguim C Fly can be inferred, because
it is valid in every valid interpretation of the TBox. The consequence operator
will be defined as Cn(K) = {0 : K = 3}.

In the rest of the paper we will only consider that the logic has a language L
and a consequence operator Cn. Every result will explicitly tell which properties
the consequence operator must satisfy. Some of the properties a consequence
operator can satisfy are summed up below:



Monotonicity: B’ C B = Cn(B’) C Cn(B)

Idempotency: Cn(Cn(B)) = Cn(B)

Inclusion: B C Cn(B)

Compactness: If a € Cn(B) then there is B’ C B finite such that a € Cn(B’)

Tarskian: Cn is tarskian iff it satisfies monotonicity, idempotency and inclu-
sion.

2.1 Negation and Inconsistency

One characteristic of DLs that will be important in this work is that not ev-
ery DL is closed under negation of sentences. For example in SHZF (D) and
SHOIN (D) we have defined concept subsumption C, but we have not defined
the negation of a concept subsumption [£. In fact this is an open problem in
description logics.

In [FHP'06] the authors proposed a general definition of negation of sen-
tences in DL. This definition can be applied for any DL, but negation may be
hard to compute and the negation of a sentence does not need to be unique.

As we are trying to define a very general framework, it is important to
define precisely what will be called inconsistency. One possible definition of
inconsistent base is a base that implies everything, a trivial base. For DLs this
means that a base is inconsistent if and only if it implies {T £ 1}. For example,
suppose that we have the following belief base:

Bird C Fly
Bird(tweety)
—Fly(tweety)

There is no interpretation that satisfies this base. In this case, any sentence
can be inferred from the base as the contradiction trivializes it.

However, there are other definitions for inconsistency. For DLs it is argued
that if a base implies A C ) for any concept A explicitly mentioned in the TBox
than the base is inconsistent. For example:

Bird T Fly
Penguim C  Bird
Penguim C —Fly

This base is not trivial. The strange thing about this base is that Penguim
can be inferred to be empty. Normally this means that a modelling error was
committed and this is sometimes considered an inconsistency.



In this paper we will only assume that there is a set 2 of unwanted sentences.
The only restriction for Q is that Cn(@) N Q = (. An inconsistent belief base
B is one that implies any of these sentences (Cn(B) N Q # () and a sentence
a is called inconsistent iff Cn({a}) N Q # . For example, we could define
Q= {T C L} and use the first definition, we can define @ = {A T L : A is an
explicitly defined concept } and use the second definition or we can define € as
any other unwanted set of sentences.

3 Belief Revision

Belief Revision [Gar88, GR95, Han99b] deals with the problem of accommo-
dating new information in knowledge bases. In this work we use belief revision
to study ontology dynamics. Most of the literature on belief revision has as
a basis the AGM paradigm, that inherited its name from the initials of the
authors of the seminal paper [AGMS85]. Traditionally, three main operations
are defined: contraction (—), expansion (+) and revision (x). These operations
involve a knowledge base and an input sentence. Contraction is used when the
agent wants to remove some information, expansion when it wants to add new
information and revision when it wants to add information consistently into the
knowledge base.

The AGM paradigm assumes that the belief of an agent are represented by
a logically closed set of sentences, a belief set. From the three operations, only
expansion can be uniquely defined: K + o = Cn(K U {a}). Revision and con-
traction are defined through rationality postulates, that state the properties any
operation of revision or contraction should satisfy. In [AGMS85], a construction
for contraction and revision operations was proposed (partial-meet operations)
and representation theorems were proven stating that any partial-meet contrac-
tion/revision satisfies the postulates for contraction/revision and any operation
that satisfies the postulates can be constructed using partial-meet.

AGM theory is not restricted to classical propositional logic, but the conse-
quence operator Cn is assumed to be tarskian, compact, satisfy the deduction
theorem and supraclassicality. Following [FPA05a], we will refer to these proper-
ties as the AGM-assumptions. The AGM-assumptions exclude many interesting
logics, such as many description logics.

Recently, it was shown that the AGM paradigm can not be applied to a broad
class of description logics [FPA04, FPAO5b]. It was shown that, in particular,
there is no contraction (revision) in SHZF (D) or SHOIN (D) satisfying the
AGM postulates. Although there are works [FPA06, RW06] proposing alterna-
tive sets of postulates that could be applied to these logics, these works, like
the AGM paradigm, deal with belief sets. Belief sets are usually infinite and
not very practical from the computational point of view. This led some authors
[Neb90, Han91] to consider revision in belief bases, i.e., knowledge bases which
are not necessarily closed.

In the belief base approach the expansion is defined as B + a = B U {a},
the operations of revision and contraction are also defined in terms of rational-



ity postulates and constructions, linked by representation theorems. We can
concentrate our analysis in this section on the rationality postulates, without
worrying about the details of the constructions. The representation theorems
assure that these properties completely describe the operations.

It is important to notice that the belief base and the belief set approaches
are very different. The belief set approach does not distinguish between explicit
and inferred knowledge. On the one hand, that is much closer to the knowledge
level [New82] ideal. On the other hand, in the belief set approach an agent
must consider many irrelevant sentences every time it performs a revision or a
contraction. For example, if an agent explicitly believes that Penguim(tweety),
it must also belief that (Penguim U Blue)(tweety). In the belief set approach
the reason for believing these two sentences are indistinguishable, so if the first
one is removed from the belief set the agent still have to choose whether to retain
the second sentence or not. In the belief base approach, the second sentence
is treated merely as a consequence of the belief base, so if the first sentence
is removed from the belief base the second automatically disappears from the
consequences.

In this work we will follow the belief base approach, because we are inter-
ested in the link between belief base theory and implementation. Moreover, we
will show that the operations for belief bases can be easily implemented using al-
gorithms already studied in the ontology debugging literature [SC03, KPSHO05].

In the next sections we will show some rationality postulates and comment
on their adequacy. Then we will show some constructions and the respective
representation theorems. In what follows, K will always stand for a belief set
and B for a belief base.

3.1 Postulates for contraction

An agent performs a contraction if it wants to remove some information « from
its belief base B. It is usually assumed in the literature that the output of a
contraction operation should be a subset of the original belief base that does not
imply the input sentence. This assumption can be captured by two rationality
postulates: success and inclusion.

(success) If a ¢ Cn(0) then a ¢ Cn(B — «)

Satisfying success means that after the contraction is performed, the agent
should not believe the input, i.e., the contracted belief base should not imply
the input sentence. The only exception is when « is a tautology, since it will be
implied by any set of formulas.

(inclusion) B—a C B

Satisfying inclusion means that no new sentence should be added when per-
forming a contraction.

A contraction operation that removes all sentences from the belief base sat-
isfies inclusion and success. However, we usually want to remove a changing



the original belief base as little as possible. This is known as the “Principle of
Minimal Change”.
In the AGM paradigm the postulate that plays this role is recovery:

(recovery) K —a+a=K

Recovery states that the result of contracting a belief set by a and then
expanding the resulting set by a should have as output the original belief set.
The idea is that enough sentences should be retained in the contraction so that
the original belief set can be recovered.

However, it has been argued in the literature that recovery is not a good
postulate for belief bases [Fuh91, Flo06].

Other postulates for minimality were proposed by Hansson [Han99b]. These
postulates, core-retainment and relevance, state intuitively that a sentence can
only be removed from a belief base if it is relevant, in some sense, to infer the
input.

(core-retainment) If 3 € B and 3 ¢ B — a, then there is B’ such B’ C B
and B’ ¥ a, but B'U {8} I a.

(relevance) If 5 € B and 3 ¢ B — «, then there is B’ such B—a C B’ C B
and B’ ¥ a, but B'U {8} I a.

Despite the similarity of these postulates, core-retainment is more general.
Every contraction satisfying relevance satisfies core-retainment, but the converse
is not true. For example, take the following belief base:

Bird C Fly
JhasPart.Wing C Fly
Penguim C JhasPart.Wing
Penguim C Bird
Penguim(tweety)

Suppose now that we want to contract this base by Fly(tweety) and that
Penguim(tweety) and Penguim T Bird were both removed. This contraction
satisfies core-retainment, but it does not satisfy relevance.

The last aspect of contraction that we are going to mention is syntactic inde-
pendence. The AGM paradigm states that contraction should treat equivalent
sentence equally, through the extensionality postulate:

(extentionality) If Cn(a) = Cn(f8) then K —a=K — 3

However, for belief bases this postulate allows some non-intuitive operations.
Consider the following belief base B:

Bird(tweety)
Bird C Fly



A contraction operation that makes B — Fly(tweety) = { Bird(tweety)} and
B — (Bird U Penguim)(tweety) = {Bird C Fly} satisfies extensionality. How-
ever, although Bird(tweety) and (BirdU Penguim)(tweety) are not equivalent,
any subset of the belief base implies the first sentence if and only if it implies
the second. Hence, it would not be reasonable that these two contractions had
different results. The following postulate encompasses these cases:

(uniformity) If for all subsets B’ of B it holds that o € Cn(B’) iff 8 €
Cn(B’) then B—a =B - §.

‘We have seen in this section that a contraction should: remove the input from
the consequences of the resulting base (success), add nothing new (inclusion),
change as little as possible in this process (minimality) and treat equivalent
sentences equally (uniformity).

In the next section we will show some postulates a revision operation should
satisfy.

3.2 Postulates for revision

Revision is applied when an agent wants to add some sentence consistently to his
knowledge base, i.e., we expect as output a consistent knowledge base containing
the information that was added. Our first requirements for a revision operation
are consistency and success:

(comnsistency) Cn(Bxa)NQ =10

(success) a € B«

Consistency means that no sentence in €2 should be implied by the resulting
belief base. Success states that « should be in the resulting base.

That brings us a problem: What if the input implies some sentence in {27
Then either success or consistency are satisfied, but not both. So if we want
success to be satisfied then we need a weaker version of consistency, and vice-
versa.

(weak-consistency) If Cn(a) NQ = () then Cn(Bxa)NQ =1

(weak-success) If Cn(a) NQ =0 then a € Bxa

A revision can satisfy success together with weak-consistency or weak-success
together with consistency. The second choice seems more intuitive, but the first
one is closer to the AGM paradigm.

There are several works in the literature [Gal92, Mak97, Han97]that deal
with operations similar to revision but that do not impose success. This type
of operation is called non-prioritized revision [Han99a], since it does not assign
priority to the input. One such operation is semi-revision, proposed by Hansson
in [Han97].

An agent should perform a semi-revision when it is not sure about the new
information and wants to postpone the decision of whether the sentence should
be accepted or not. Semi-revision in DLs was studied in [HWKPO06].



In order to guaranty the consistency of a belief base the agent sometimes
needs to remove some sentences from the belief base. We should not add more
than would be added in a simple expansion by the input. This restriction is
captured by the inclusion postulate:

(inclusion) Bxa C B+«

As in contraction, we want to change our belief base as little as possible.
Postulates for minimality for revision are very similar to the ones presented
for contraction. The same arguments about minimality postulates given for
contraction can be given for revision.

(core-retainment) If 5 € B and 3 ¢ B #* a, then there is B’ such B’ C
BU{a} and Cn(B)NQ =0, but Cn(B"U{B}) N Q # 0.

(relevance) If 8 € B and 3 ¢ B * «, then there is B’ such Bx o C B’ C
BU{a} and Cn(B")NQ =0, but Cn(B'U{B}) NQ #£0.

In this work we are going to use two other rationality postulates. The
first one is a rationality postulate that states that every time a belief base is
revised by any of its own elements then the resulting base should be the same.
This postulate is normally associated with semi-revision and is called internal
exchange

(internal exchange) If «, 5 € B then Bxa = Bx 3

The last one states that if a belief base is expanded by a sentence a and then
revised by « the result should be the same as just revising the original base by
o:

(pre-expansion) B+ axa = Bxa

In the next section, we will present constructions for contraction and revision
and the representation theorems connecting the constructions to the rationality
postulates.

4 Constructions

In this section we will present some constructions for contraction and revision
of belief bases. The constructions for contraction were already discussed in
the literature [Han99b] and it was shown in [HWO02] that they can be applied
to any monotonic and compact logic. Many Description Logics, in particular
SHIF(D) and SHOIN (D) are monotonic and compact. Constructions for
base revision, on the other hand, usually assume that the logic is closed under
negation of sentences. But many DLs are not, thus, the usual constructions
cannot be applied. In this section we will present constructions for revision
that do not depend on negation. These constructions are more general than the
traditional ones and can also be applied to any monotonic and compact logic.
For each construction proposed, a representation theorem links it with a set of
postulates.



4.1 Contraction

In this section, we will present two different constructions for contraction of
belief bases. The first one, partial meet contraction, is the belief base counterpart
of the traditional AGM construction presented in [AMS82]. The second one,
kernel contraction, was proposed in [Han94] and is a generalization of AGM
safe contraction [AMS85].

Although these constructions seem very different, they share many proper-
ties. The representation theorem for these constructions show that the only
difference between them, with respect to the rationality postulates, is the pos-
tulate for minimality. Partial meet contraction satisfies relevance while kernel
contraction satisfies only core-retainment. Hence, kernel contraction is more
general than partial meet.

4.1.1 Partial Meet Contraction

Partial meet contraction of a belief base B by a sentence « consists in selecting
some maximal subsets of B that do not imply « and taking their intersection.

The set of maximal subsets of B that do not imply « is called remainder set
of B and a and denoted by B_La:

Definition 1 (Remainder Set) Bla = {B’ C B such that « ¢ Cn(B’) and
if B C B"” then a € Cn(B")}

The function that chooses at least one element of the remainder set is called
selection function:

Definition 2 (Selection Function) A function v is a selection function if it
satisfies:

e 0 #~vy(BLa)C Blaif BLa#0
e ~v(BLla)={B} otherwise

Partial meet contraction is then formally defined as the intersection of the
subsets of B chosen by the selection function:

Definition 3 (Partial Meet Contraction) B —, a =) v(BLla)

The representation theorem for partial meet contraction shows that this
construction is equivalent to a set of rationality postulates:

Representation Theorem 1 (Partial Meet Contraction) [Han92a] An op-
eration — satisfies success, inclusion, relevance and uniformity iff it is a partial
meet contraction for some 7.

In [HWO02], it was shown that this representation theorem holds for any
compact and monotonic logic.
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Notice that the function v is not fully determined. Each ~ will return a
different resulting belief base. The representation theorem proves that, in one
hand, no matter which «y is chosen the resulting base will satisfy the set of pos-
tulates. On the other hand, any contraction that satisfies this set of postulates
can be constructed as a partial meet contraction as long as the right  is chosen.

4.1.2 Kernel Contraction

Another way to construct a contraction operator is removing some elements of
each minimal subset of B that implies a. This kind of construction is called
kernel contraction. The set of minimal subsets of B that imply « is called kernel
of B and o and denoted by B 1L a:

Definition 4 (Kernel) B 1L o = {B’ C B such that o € Cn(B’) and if B C
B’ then a ¢ Cn(B")}

The function that chooses at least one element of each element of the kernel
is called incision function:

Definition 5 (Incision Function) A o is an incision function if it satisfies:
e o(Bla)CJB La)
o [f0AX eBllathen XNo(B lLa)#0

Kernel contraction is defined as the original belief base with the elements
chosen by the incision function removed:

Definition 6 (Kernel Contraction) B —, a = B\ o(B 1. «)

Like partial meet contraction, kernel contraction depends on the choice of a
function. Kernel contraction is equivalent to a set of rationality postulates for
contraction:

Representation Theorem 2 (Kernel Contraction) [Han9/] The operator
— is a kernel contraction if and only if it satisfies the following postulates for
contraction: success, inclusion, core-retainment and uniformity.

The representation theorem for kernel contraction also holds for any com-
pact and monotonic logic, as shown in [HWO02]. In [HWO02], there are also
representation results for revision operators based on these two constructions
for contraction. However, these constructions assume that the logic is closed by
negation of sentences and the representation theorems depend on properties of
negation. In the next section, we will present constructions for revision opera-
tors that do not depend on the existence of negation and show representation
theorems that hold in any compact and monotonic logic.

11



4.2 Revision without negation

Following [Han99b] constructions for revision can be defined using the con-
structions for contraction already presented. An external revision is defined as
B+ a— —a and an internal revision is defined as B — —~a+a. In [HWO02], repre-
sentation theorems for internal/external partial meet and kernel revision were
proven. However, these theorems depend on each sentence o having a negation
—o that satisfies a property called a-local non-contravention.? We have already
mentioned in section 2 that the definition of negation of a sentence in some De-
scription Logics is still an open issue. In this section, we will present alternative
constructions for revision that, like the constructions for contraction, can be
used for any logic that is compact and monotonic.

We will also present constructions for semi-revision. As mentioned before,
semi-revision is an operation of non-prioritized revision, i.e., a revision operation
where the input does not always have the highest priority. All the constructions
in this section follow a certain pattern: we first expand the belief base B by the
input «, and then use a generalized version of partial meet or kernel contraction
to contract by €2. The choice between partial meet or kernel construction leads
to two types of revision. Fach of these types come in three flavors depending
on the constrains imposed to the selection or incision function: semi-revision,
revision with weak-success and revision with strong success. Hence, we will
define six constructions here.

We will only work here with external revision [Han92b] for a simple reason.
Although originally both internal and external revision were defined in terms of
contraction by the negation of the input, in external revision this dependence
on negation can be avoided by imposing conditions on the selection or incision
functions, as will be seen. Internal revision is the belief base version of the
traditional AGM revision. The main difference between internal and external
belief base revision is in the way they deal with equivalent sentences. Internal
revision satisfies uniformity, while external revision only satisfies a very weak
version of this postulate. Our constructions for revision without negation do
not even satisfy this weak form of uniformity. This is due to the idea of protect-
ing the input, our choice mechanisms (selection or incision functions) strongly
depend on the input sentence.

We have presented in the last section partial meet and kernel contractions
involving a belief base and a sentence. The proposed generalization for inconsis-
tency allows it to be a set of sentences. For this reason we need to generalize the
constructions of partial meet and kernel contraction to accept sets of sentences
as inputs. This generalization is straightforward.

The generalized remainder set of B and A, where both B and A are sets of
sentences, is the set of maximal subsets of B that does not imply any element
of A. Notice that the previous definition is a particular case of this one when
A is a singleton.

Definition 7 (Generalized Remainder Set) BLA = {B’ C B such that

2 A logic satisfies a-local non-contravention iff, if ~a € Cn(B U {a}) then —a € Cn(B)

12



ANCn(B') =0 and if B' C B"” then ANCn(B") # 0}

The generalized kernel is the set of minimal subsets of B that implies at
least one element of A. The previous definition of kernel is a particular case of
this one too.

Definition 8 (Generalized Kernel) B 1l A = {B’ C B such that ANCn(B’) #
0 and if B” C B" then ANCn(B") =0}

Generalized versions of partial meet and kernel contractions can be obtained
by substituting the original definition of remainder and kernel sets by their
generalized version.

In the rest of this section, we will show the six constructions and the corre-
sponding representation theorems. All the theorems hold for any compact and
monotonic logic.

4.2.1 Semi-revision

Semi-revision was proposed in [Han97] as an operation that may or not accept
the input sentence, depending on the choices made. The idea is to expand
the belief base by the input and then contract by €. If the input caused the
expanded belief base to become inconsistent, the contraction by {2 may remove
the input in order to restore consistency.

Here, since we want to consider inconsistency as a set, semi-revision is con-
structed by expanding the original belief base by the input o and then contract-
ing by € using the generalized version of kernel or partial meet contraction.

Definition 9 (Semi-revision) [Han97] B?a = (B + a) — 2

Semi-revision satisfies inclusion, consistency, internal exchange. If the con-
traction is a kernel contraction then it satisfies core-retainment and if it is a
partial meet contraction it satisfies relevance. All the proofs for the representa-
tion theorems can be found in appendix A.

Representation Theorem 3 (Kernel Semi-revision (KSR)) The operation
7 is a kernel semi-revision iff it satisfies: inclusion, consistency, core-retainment,
pre-expansion and internal exchange.

Representation Theorem 4 (Partial Meet Semi-revision (PMSR)) The
operation 7 is a partial meet semi-revision iff it satisfies: inclusion, consistency,
relevance, pre-expansion and internal exchange.

The other constructions for revision that we will present were inspired in
semi-revision. They all follow this pattern: first expand by « and then contract
by © with partial meet or kernel contraction. But we add extra constraints to
the selection or incision functions in order to assign higher priority to the input
sentence.
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4.2.2 Revision with weak success

A partial meet revision with weak success (PMWS) is based on a selection
function that protects consistent inputs:

Definition 10 (Selection Function that Protects Consistent Inputs) A
selection function that protects consistent inputs is defined as:

o 0 #~(BLQ,a) C BLQ
o IfCn(a)NQ =0 then a € v(BLQ, )

This means that whenever the input is consistent, it will be part of all the
selected remainders.

Representation Theorem 5 (Partial meet revision with weak-success)
The operator * is a partial meet revision without negation with weak success if
and only if it satisfies the following postulates for revision: weak-success, con-
sistency, inclusion, relevance and pre-expansion.

A kernel revision without negation with weak-success (KWS) uses an incision
function that protects consistent inputs:

Definition 11 (Incision Function that Protects Consistent Inputs) An
incision function that protects consistent inputs is defined as a function o that
satisfies:

e o(a, B 1L Q)CJ(BIQ)
e Ifl#£X € B1LQ, then XNo(a,B 1L.Q) #
o IfQNCn({a}) =0, then a ¢ o(a, B 1L Q)

This means that whenever the input sentence is consistent, it will be retained
in the revised belief base.

Representation Theorem 6 (Kernel revision with weak-success) The op-
erator 7 is a kernel revision without negation with weak success if and only if it
satisfies the following postulates for revision: weak-success, consistency, inclu-
sion, core-retainment and pre-expansion.

Revision with weak success satisfies the success postulate only for consistent
inputs. Success is sacrifices in order to obtain consistency.
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4.2.3 Revision with full success

A partial meet revision without negation with success (PMS) is defined using a
selection function that protects the input:

Definition 12 (Selection Function that Protects the Input) A selection
function that protects the input is defined as

e ) #~v(BLQ,a) CBLQ and a € (BLQ, ) if Cn({a})NQ =10
e ¥(BLQ,a) = {B} otherwise

Representation Theorem 7 (Partial meet revision with success) The op-
erator x is a partial meet revision with weak success if and only if it satisfies the
following postulates for revision: success, weak-consistency, inclusion, relevance
and pre-expansion.

A kernel revision with success (KS) is constructed using a incision function
that protects the input:

Definition 13 (Incision Function that Protects the Input) An incision func-
tion that protects the input is defined as a function o that satisfies:

e o(a,BUO)CJ(BILQ)

e IfONCn({a}) =0 and 0 #X € B 1. Q, then X No(a,B 1L.Q) # 0
e a¢o(a,B1Q)

The last condition assures that the input will never be removed.

Representation Theorem 8 (Kernel Revision with Success) The opera-
tor * is a kernel revision without negation if and only if it satisfies the following
postulates for revision: success, weak-consistency, inclusion, core-retainment,
Pre-exrpansion.

These two operations are in line with the AGM paradigm, in that they
sacrifice consistency in order to have unconditional success.

4.2.4 Discussion

We have defined two constructions for semi-revision (kernel and partial meet)
and four constructions for revision (kernel revision that protects the input, ker-
nel revision that protects consistent inputs, partial meet revision that protects
the input and partial meet revision that protects consistent inputs).

Each construction is equivalent to a set of postulates as proved by the rep-
resentation theorems in appendix A. The constructions that use kernel contrac-
tion satisfy core-retainment, while the ones that use partial meet contraction
satisfy relevance. The constructions that use selection (incision) function that
protects the input satisfy success and weak-consistency, while the ones that use
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Name KSR PMSR KS KWS PMS | PMWS
Inclusion yes yes yes yes yes yes
Consistency | strong strong weak strong weak | strong
Success no no strong weak strong | weak
Syntactic internal internal no no no no
Independ. exchange | exchange

Pre- yes yes yes yes yes yes
Expansion

Minimality | core-ret. | relev. core-ret. | core-ret. | relev. | relev.

selection (incision) function that protects consistent inputs satisfy weak-success
and consistency. Every operation satisfy inclusion.

In fact, the representation theorems showed in appendix A are stronger than
that. They prove that each of these constructions is fully characterized by a
specific set of rationality postulates. Table 4.2.4 sums up the content of these
theorems

5 Implementation

In the introduction we have claimed that the link between debugging services
for DLs and formal properties provided by the belief revision approach has not
been deeply studied yet. In this section we are going to show how to link these
two areas.

One classical service provided by DL reasoners is consistency checking. In the
last few years it has been noticed that telling that an ontology is inconsistent is
not enough for the user [SC03]. Manually finding what caused the inconsistency
and how it can be repaired can be very hard. The purpose of the debugging
services developed recently [SC03, KPSH05, KPS05] is to guide the user in
this process. In this section, we are going to show some algorithms for aziom
pinpointing. Axiom pinpointing [SC03] consists in finding all the justifications of
a sentence a with respect to a knowledge base B, which are the minimal subsets
of B that imply «. In other words, axiom pinpointing consists in finding the
kernel of a knowledge base B with respect to a.

We do not intend to present details of the implementation, we just want to
show how this practical problem of ontology debugging can be linked to the
theoretical approach of belief revision.

In [SCO03] the authors presented algorithms for axiom pinpointing based on
the idea of finding what they call “Minimal Unsatisfiability Preserving Sub-
TBox” (MUPS) in the logic ALC . This work was then extended to SHZF (D) and
SHOIN (D) in [KPSHO05, Kal06] and more recently generalized to several logics
in [BPOT7].

Kernels (or MUPS) can be computed using “black-box” techniques, that call
a reasoner as a subroutine that tells if a sentence is implied by the knowledge
base, or using “glass-box” techniques, that modify existing inference mecha-
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BLACKBOX(B, o)

1 B«

2 for peB

3 do B'— B'U{pg}
4 if « € Cn(B’)
5 then break
6 for ee B’

7 do if a € Cn(B’\ {¢})

8 then B’ — B’ \ {¢}
9 return B’

Figure 1: Black Box algorithm

nisms. In [Kal06], two main techniques were proposed in order to find kernels,
a black-box one and a hybrid solution that uses a glass-box step combined to
the black-box approach.

The author presents a black-box algorithm for axiom pinpointing called
“Expand-Shrink” which is presented in figure 5. This algorithm can be split
in two parts: first expanding an initially empty knowledge base B’ with axioms
of the original base B and then pruning it. Notice that the pruning part is
what guaranties the correctness of the algorithm. The pruning could be applied
directly to the original knowledge base, although the size of the original base
may turn this unfeasible.

DL reasoners based on tableaux decide whether an axiom is entailed by a
knowledge base by trying to construct a model for the knowledge base together
with the negation of the axiom. The idea of a glass box algorithm [KPS05] is
to keep track of the axioms used to prove this entailment. This process is called
tracing.

As argued before, the pruning part of the black-box algorithm could be
applied directly to the original knowledge base if its size was not too prohibitive.
The idea of hybrid techniques is to use the glass-box algorithm to shrink the
knowledge base. This way it can be used as a first step in the black box algorithm
in order to make it more efficient.

The hybrid approach can be used to find one element of the kernel. Once one
element of the kernel is computed, the others can be found using the algorithm
showed in figure 5. This is a recursive algorithm that, given one element of the
kernel, returns the whole kernel.

Now, if we want find the generalization of the kernel that accepts two sets of
sentences as input, we need to find the kernel of the belief base B with respect
to each element of A and then remove each element that is not minimal. Only
elements that are properly contained in another one have to be removed. The
correctness of this algorithm is proved in appendix B.

To find the remainder set in order to use the partial meet contraction we
could follow [MLBPO6] that presents an algorithm to find maximal consistent
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KERNEL(B, o)

1 if a ¢ Cn(B)
2 then return
3 min < blackbox(B, o)
4 Bla—BlUlaU{min}

5 for g€ min

6 do

7 B 1 a+« Bl aUkernel(B\ {6}, )
8 return

Figure 2: Algorithm to find the kernel of B w.r.t. «

subset of a TBox or we can extract it from the kernel using the Reiter’s algo-
rithm [Rei87] as showed in [Was00]. The algorithm consists in finding minimal
incisions of the kernel. Each of this minimal incisions corresponds to one element
of the remainder set and vice-versa.

6 Related Work

Recently, much attention has been devoted to the study of the dynamics of ter-
minological knowledge. This interest is due to the development of languages to
represent terminological knowledge in the web which is a dynamic environment.
This issue has been studied from the theoretical point of view, showing that
AGM operations can not be applied to many description logics [FPA05a] and
from a practical point of view with the development of debugging services for
DL reasoners [SC03, Kal06].

The dynamic of ontologies has been studied under the name ontology evolu-
tion. A good overview of it is found in [HS04]. We believe that the major contri-
bution in trying to apply belief revision to ontologies is the separation between
postulates and construction. The postulates provide a complete description of
the construction. Therefore the operations of revision or contraction can be
studied in an abstract level.

There are not many works in the literature that explored ontology evolution
following the belief revision approach. In [FPAO5a] the authors showed that
AGM contraction cannot be applied to some important description logics like
SHIF (D) and SHOZIN (D) . The main difference from our work is that they
restrict themselves to classical AGM operations while we deal with belief bases.
The problem they encountered with the recovery postulate is not present in
operations on belief bases. We showed that Hansson’s contractions apply to
belief bases in SHZF (D) and SHOIN (D) , but that there was a problem
concerning revision.

[HWKPO6] studied the operation of semi-revision for belief bases in SHZF (D)
and SHOZN (D) as we mentioned earlier in this paper. Our main contribution
to with respect to this work was to present sets of postulates for revision of
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belief bases that include success (or weak success) and still can be applied to
SHIF(D) and SHOIN (D) .

In [KLO7], there is a proposal of applying belief revision to ontologies us-
ing a construction based on epistemic entrenchment. The authors suggest an
implementation, but there is no proof of formal properties of the operations.

7 Conclusion

Although AGM operations cannot be applied to many DLs that does not mean
that we should discard using belief revision theory to study ontology dynamics.
Belief revision theory has an important characteristic: it does not only describe
constructions, but tries to provide rationality postulates that fully characterize
the operations of knowledge dynamics. Instead of using the traditional AGM
postulates, we explored belief base postulates. We showed some rationality pos-
tulates for contraction and revision. Then we showed how to construct these
operations. Construction for contraction presented in [HWO02] can be applied to
any compact and monotonic logics, thus, differently from the AGM paradigm
they can be applied to most DLs including SHZF (D) and SHOZN (D) . How-
ever, the traditional constructions for revision cannot be applied, because they
depend on the definition of negation of sentences. So we proposed new con-
structions for revision that can be applied to any monotonic and compact logic.

We propose two constructions for semi-revision, partial-meet and kernel, and
four constructions for revision: partial-meet with weak-success, partial-meet
with strong-success, kernel with weak-success and kernel with strong-success.
Since inconsistencies in DLs can be defined in many ways and we wanted our
work to be as general as possible we have generalized the definition of incon-
sistency. We proved a representation theorem for each of these constructions
using this generalized version of inconsistency. The representation theorems
show which set of rationality postulates is equivalent to each construction. On-
tology debugging algorithms provide means to implement these constructions.

That way we have linked the areas of ontology debugging and belief revision.
This is important since belief revision can provide theoretical background to
ontology debugging while algorithms for debugging can be used to implement
belief revision constructions.

Future work includes implementing and testing each of the operations de-
scribed here. Another interesting issue for future work is weakening the inclusion
postulate for contraction.

At a first look this postulate seems very natural. So natural that this postu-
late together with success are sometimes considered the minimum requirement
for a contraction. However that is not always what is expected. For example
assume that we have the following belief base:

Bird C Fly
Bird(tweety)

19



Suppose that we want to contract the sentence Fly(tweety). If the contrac-
tion satisfies success and inclusion we have three choices: remove Bird C Fly,
remove Bird(tweety) or remove both. However, sometimes these options are
too strong. Maybe we just want to consider tweety as an exception. There are
cases in which we do not want to remove a sentence, but just change it. For
example we could change the sentence Bird C Fly to Bird C Fly U {tweety},
and treat tweety as an exception. This is forbidden by the inclusion postulate
because the sentence Bird T Fly U {tweety} has to be added to the result-
ing belief base. A weaker version of the inclusion postulate that only requires
that B — a C Cn(B) could be considered.

Acknowledgements: The first author is supported by FAPESP and the sec-
ond is partially supported by CNPq. This work is part of the project “Logical
Consequence and Combinations of Logics” funded by FAPESP, grant number
2004/14107-2.

Appendix

A Representation Theorems

In order to prove the representation theorems we are going to use the following
lemmas:

Lemma 1 [AM81] BLA =0 if and only if Cn(@0)NA#0

Lemma 2 (Upper Bound Property) [AM81]If X C B and Cn(X)NA =10
then there is X' such that X C X' € BLA

Lemma 3 (Inconsistent Expansion) [Han99b] If K * a satisfies relevance
and success then it satisfies inconsistent expansion:

if QN Cn({a}) #0 then K xa = K + «.

Representation Theorem 3 [Kernel Semi-revision](adapted from [Han97])

The operation ?, is a kernel semi-revision with incision function o iff it
satisfies: inclusion, consistency, core-retainment, pre-expansion and internal ex-
change.

Proof:

(Construction = Postulates) Inclusion, pre-expansion and internal exchange
follow directly from the construction. To prove core-retainment assume
8 € B\ B?a then 8 € o(B U {a} 1), this means that there is X €
(BU{a}) 1L Q such that 6 € X. Consider B’ = X \ {3} then B’ C B,
Cn(B')NQ =0 and Cn(B"U{B}) NQ # (. To show that consistency is
satisfied assume by contradiction that it is not. Then Cn(B?a) N Q # ()
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from compacity it follows that there is Z C B?a which is finite and such
that Cn(Z) N Q # (. We can then infer by monotonicity that there is
Z' C Z such that Z' € BU{a} LLQ. It follows from the consistency of
the logic that Cn() N Q = @ then we must have that Z’ # () and by the
construction there must be € € o(B U {a}) N Z’, but if that is true then
€ ¢ B?a and € € Z' C B?a which is a contradiction.

(Postulates = Construction) Let ? be an operator satisfying the postulates
above and let o be such that:

o(B 1L Q) =B\ {6 € B?«a for some a € B}

We have to show (1) that o is an incision function for the given domain
and (2) that B?a = B?,a.

1. First we need to prove that o(B 1L Q) € |JB 1L Q. Let é € o(B 1L Q).

It holds that § ¢ B?a for any a € B. Then it follows from core-
retainment that there is some B’ C B such that Cn(B’)NQ = () and
Cn(B'U{d}) N Q # 0. Tt follows that there is B” C B’ such that
B"U{é} e B 1.
Now we have to prove that if ) # X € B 1L Q then XNo (B 1. Q) # 0.
Suppose by contradiction that this is not the case. Then X € {3|3 €
B?« for some a € B}. By internal exchange we have that X C
B?a for some particular . Since Cn(X) N # @ by monotonicity
Cn(B?a) N Q) # () and that contradicts the consistency.

2. o(BU{a} 1L.Q) = (BU{a}) \ {0]6 € BU{a}?e for some o € B}
= (BU{a})\ (BU{a})?a by internal exchange = (BU{a})\ B’«a
by pre-expansion. Hence, B?,a = B U {a} \ o(BU {a} 1L.Q) =
BU{a}\ ((BU{a})\ B?a) by definition = B?«a by inclusion
Hence BU {a} \ o(BU{a} 1. Q) = B?a by inclusion.

Representation Theorem 4 [Partial Meet Semi-revision](adapted from [Han97])
The operation ? is a partial meet semi-revision iff it satisfies: inclusion, consis-
tency, relevance, pre-expansion and internal exchange.

Proof:

(Construction = Postulates) Inclusion, pre-ezpansion and internal exchange
follow directly from construction. To prove relevance notice that the logic
is consistent Cn(0)) N = @ and by lemma 1 v(B U {a}LQ) # 0. By con-
struction we have that if 8 € B\ B?« then there is B’ € v(B U {a}1Q)
such that 3 ¢ B’ and by the definition we have that Cn(B") N Q = 0,
QN Cn(B" U{B}) and Ny(B U {a}L1Q) € B" C BU{a}. In order
to show that consistency is satisfied notice that since the logic is con-
sistent by lemma 1 we have that B U {a}LQ # () then by definition (} #
v(BU{a}LQ) C BU{a}LQ. Let X € BU{a}LQ then QNCn(X) = () and
N~v(BU{a}LQ) C X and by monotonicity QN Cn(v(BU{a}LQ)=0.
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(Postulates = Construction) Let ? satisfies the postulates above and let

be:

v={X € BLQ|B?a C X for some « € B}

We have to show that 1) v is a selection function and 2) B?,a = B?a

1. We just need to show that v(BLQ) # 0. It follows from consistency

and upper bound property (lemma 2) that there is X € B1 such
that B?a C X and then X € v(BL1Q)

B?lya=v(BU{a}lQ) ={X € BU{a}lQ|(BU{a})?8 C X
for some § € B} = by internal exchange (\{X € BU {a}LQ|(BU
{a})?a C X} = by pre-expansion ({{X € BU{a}LlQ|B?a C X}.
Hence B?a C B?,a.

Now let 8 ¢ B?a. If ¢ BU{a} then 8 ¢ B?,«. Suppose that § €
BU{a}. By pre-expansion § ¢ (B+a)?a. Since € B4+a\(B+a)?a
by relevance and pre-expansion we have that there is B’ such that
B?a C B’ C BU{a}, QNCn(B’') = ) and QNCn(B'U{B} # 0 then
by upper bound property (lema 2) there is X such that B’ C X €
(B 4+ a)LQ. Since B?a C X we have that X € y((B + a)LQ) and
since 8 ¢ X, 8 ¢ (B+a)?,a by pre-ezpansion we have B?,a C B?«

Representation Theorem 5 [Partial meet revision with weak-success] The
operator * is a partial meet revision without negation with weak success if and
only if it satisfies the following postulates for revision: weak-success, consistency,
inclusion, relevance and pre-expansion.

Proof:

(Construction = Postulates) Inclusion, pre-expansion and consistency fol-
low from the construction. To prove success assume that Cn({a})NQ =0
then K« a = (K U {a}LlQ,«a). We need to show that there is X €
K U {a}L1Q such that o € X. The existence of such X follows from
Cn({a}) and the lemma 2. In order to show that relevance is satisfied,
assume 0 ¢ (v(K U{a}LQ,a) then there is K’ € v(K U {a}L1Q, a with
B ¢ K'. By definition QN Cn(K’) = 0, QN Cn(K' U{B}) # 0 and
NV(KU{a}lQ) CK' C K +a.

(Postulates = Construction) Let * be an operator satisfying the postulates
above and let:

YK U{a}lQ,a)={X e KU{a}lQ: KxaC X}

We need to prove that 1) v is a selection function and 2) K %, a = K x«

1. To prove that « is a selection function we need to show that (K U

{a} 19, a) # 0. We have that QN Cn(K *«) = () by consistency and
K xa C K + a by inclusion, then by lemma 2 there is K xa C K’ €
(K U{a})LQ
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2. To prove that K*xa = [v(KU{a}LlQ,«) notice that § # K+xa C X
for all X € KU {a}L1Q and then K *a C v(K U {a}LlQ,a)
N7 K U{a}1Q,a) C K *a follows from relevance and o € [ v(K U
{a}LQ,a) if QN Cn({a}) = emptyset follows from success

Representation Theorem 6 [Kernel revision with weak-success]

The operator ? is a kernel revision without negation with weak success if and
only if it satisfies the following postulates for revision: weak-success, consistency,
inclusion, core-retainment, and pre-expansion.

Proof:

(Construction = Postulates) Let ?, be an operator of kernel revision with-
out negation with weak success based on an incision function that almost
protects the input, o. It follows directly from the construction that in-
clusion and pre-expansion are satisfied. From the definition of an incision
function that protects the consistent inputs, it follows that ?, satisfies weak
success and consistency. Finally, for core-retainment, let 8 € B\ B?,a.
Then by construction 5 € o(a, (BU{a}) 1L Q). This means that for some
set X € (BU{a}) 1L Q, 8 € X. Let B = X\ {#}. We have B’ C BU{a}
since X is minimal then Cn(B’) N Q = 0, but Cn(B’ U {3}) N Q # .

(Postulates = Construction) Let ? be an operator satisfying the postulates
above and let ¢ be such that for every formula «:

o(a,B 1.9) =B\ (B?a)

We have to show (1) that ¢ is an incision function that almost protects
the input for the given domain and (2) that B?a = B?,a.

1. We have to show that the three conditions of Definition 11 are satis-
fied. For the first condition, let 8 € o(a, B 1L ). Then it holds that
B € B\ (B?a) and it follows from core-retainment that there is some
B’ C B+a such that QNCn(B’) = § and QNCn(B'U{3}) # 0. It fol-
lows that there is some subset B” of B’ such that B”U{3} € B 1L Q
and hence, g € (B 1.Q).
For the second condition, let ) # X € B 1. Suppose that X N
o(a, B 1L Q) = (. Then X C B?a. Since QN Cn(X) # 0, it follows
from monotony that QNCn(B?a) # (), contrary to consistency. This
contradiction is sufficient to prove that X No(a, B 1L Q) # (.

For the third condition, suppose Q N Cn({a}) = emptyset. By weak
success, « € B?«a, and hence, a ¢ o(«, B 1L Q).

2. By definition, o(a, (BU{a}) 1L.Q) = (BU{a})\ ((BU{a})?a) =
(BU{a})\ B?a (pre-expansion). Hence, B?,a = (BU{a})\o((BU
{a}) 1L Q) = (BU{a}) \ (BU{a})\ B?a) = B?a (inclusion). O

23



Representation Theorem 7 [Partial meet revision with success]

The operator * is a partial meet revision with weak success if and only
if it satisfies the following postulates for revision: success, weak-consistency,
inclusion, relevance and pre-expansion.

Proof:

(Construction = Postulates) Inclusion, pre-expansion and weak-consistency
follows directly from the construction. To prove success and relevance we
analyze two cases: If Cn({a}) N Q = () then success and relevance is
satisfied by the same reason presented in the demonstration of represen-
tation theorem 5. If Cn({a} N Q # 0 then success is satisfied because
«a € Bxa = B+a, relevance is satisfied because there isno § € B\ B+«a.

(Postulates = Construction) Let x be an operator satisfying the postulates
above and let:

YK U{a}lQa)={X e KU{a}LQ: KxaC X} ifQNCn({a}) =0
v(KU{a}lQ,a)={KU{a}} ifQNCn({a}) #0

We need to prove that 1) v is a selection function and 2) K %, a = K * «

1. If QN Cn({a}) = 0 we have v(K + U{a}LQ,a) # 0 notice that
QN Cn(K *a) =0 by consistency and K * « C K + a by inclusion,
then by upper bound property there is K xa C K’ € (K U {a})L.

2. To prove that K*a = [v(KU{a}LlQ,a) notice that ) # K+xa C X
for all X € (K U{a})LQ and then K xa C (v(K U{a}LlQ,«)
If v is consistent then Nv(K U {a}L1Q,a) C K x « follows from
relevance and o € (v(K U {a}LQ, a) follows from success.
If QN Cn({a}) # O then since K * a satisfies success, inclusion and
relevance it satisfies inconsistent expansion and then K xa = K + a.

Representation Theorem 8 [Kernel Revision with Success] The operator
% is a kernel revision without negation if and only if it satisfies the following
postulates for revision: success, weak-consistency, inclusion, core-retainment,
pre-expansion.

Proof:

(Construction = Postulates) Let *, be an operator of kernel revision with-
out negation based on an incision function ¢ that protects the input. It
follows directly from the construction that inclusion and pre-expansion
are satisfied. From the definition of an incision function that protects
the input it follows that =, satisfies success and weak consistency. Fi-
nally, for core-retainment, let 3 € B\ B *, a. Then by construction g €
o(a, (BU{a}) 1 Q). This means that for some set X € (BU {a}) 1L Q,
B e X. Let B =X\ {#}. We have B’ C BU{a}, Q@NCn(B") = and
QN Cn(B U{B}) # 0.

24



(Postulates = Construction) Let * be an operator satisfying the postulates
above and let o be such that for every formula a:

o(a, BUQ)=B\ (Bxa)

We have to show (1) that o is an incision function that protects the input
for the given domain and (2) that B * a = B #, a.

1. We have to show that the three conditions of Definition 13 are satis-
fied. For the first condition, let 8 € o(a, B 1L Q). Then it holds that
B € B\ (Bx*a) and it follows from core-retainment that there is some
B’ C B+asuch that QNCn(B’) = § and QNCn(B'U{3}) # (. Tt fol-
lows that there is some subset B” of B’ such that B”U{3} € B 1. Q
and hence, g € (B 1L Q).
For the second condition, let @NCn({a}) =0 and ) # X € B 1L Q.
Suppose that X No(a, B 1L Q) = 0. Then X C B * a. Since QN
Cn(X) # 0, it follows from monotony that QN Cn(B * a) # 0,
contrary to weak consistency. This contradiction is sufficient to prove
that X No(a, B 1L Q) # 0.
For the third condition, it suffices to note that by success, o € B *x a,
and hence, a ¢ o(a, B 1L Q).

2. By definition, o(a, (BU{a}) 1L Q) = (BU{a}) \ (BU{a}) xa) =
(BU{a})\ Bxa (pre-ezpansion). Hence, B*,a = (BU{a})\o((BU
{a}) 1L Q) = (BU{a})\ (BU{a})\ Bxa) = B xa« (inclusion). O

B Other Theorems

In section 5 we have mentioned that if we get the minimal kernels of B w.r.t.
each element of A then we have B 1L A. We are going to prove that. First we
have to define an operator that given a finite set of sets returns just the minimal
ones:

Definition 14 Let A be a finite set of sets. min(A) = {x € A|Vz € A(zCx =

z=ux)}
Theorem 1 B 1L A =min(|J{B LLaja € A})

Proof: If X € B U A then Cn(X)NA # (. Let « € Cn(X) N A then
for all Y € X we have @ ¢ Cn(Y), thus, X € Bl a. Since X € B 1L A,
2Y C X such that Y € B 1L A, thus, X € min(J{B lLala € A}. Hence,
B U ACmin(U{B lLala e A}

If X € min(U{B Laja € A} then X € B 1l o for some a € A. Hence,
Cn(X)N A # 0. To prove that for all Y C X we have Cn(Y) N A = 0,
assume by contradiction that 8 € Cn(Y) N A. Then we have that there is
Y’ C Y such that 8 € Y/, and for all Y/ C Y’ 8 ¢ Cn(Y’). However, that
means that Y’ € [J{B 1L aja € A}. However, Y/ CY C X contradicts X ¢
min(|{B 1L aja € A}. Hence, min(|J{B lLaja e A} C B 1 A
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