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Abstract

The KE inference system is a tableau method developed by Marco Mondadori which was presented as an
improvement, in the computational efficiency sense, over Analytic Tableaux. In the literature, there is no
description of a theorem prover based on the KE method for the 'y paraconsistent logic. Paraconsistent
logics have several applications, such as in robot control and medicine. These applications could benefit
from the existence of such a prover. We present a sound and complete KE system for C'1, an informal
specification of a strategy for the C1 prover as well as problem families that can be used to evaluate provers
for C'1. The C7 KE system and the strategy described in this paper will be used to implement a KE based
prover for C1, which will be useful for those who study and apply paraconsistent logics.
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1 Introduction

Inconsistency is a phenomena that appears naturally in our world. Consider the
following situation: two persons have different (contradictory) opinions about a spe-
cific statement A: the first one considers A true, meanwhile the second one believes
that —A is true. This contradiction, however, should not prevent that common
conclusions which do not involve A — directly or indirectly — can be deduced.
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This situation is not adequately managed by classical logic, since it is not
equipped to deal with inconsistency. The reason is the well known “Ez contradic-
tione sequitur quod libet” principle: if a theory I' is inconsistent, that is, if formulas
A and —A are theorems, then every formula B of the language is also a theorem in
T'; or, shortly, I' becomes trivial.

Paraconsistent Logics were initially proposed by Da Costa [8] as logical systems
that deal with contradictions in a discriminating way, avoiding the previous principle
and managing inconsistent but non-trivial theories.

Presently automatic proof methods are widely used in several computer applica-
tions, such as in robot control [23], in medicine [14,16], and many others [10]. Most
of the employed methods work on logical formalisms based on classical logic. In this
paper we present the specification of an strategy for automatic theorem prover based
on a KE system, an improvement of the well known tableaux deduction method,
for a particular paraconsistent logic called C4.

The rest of this paper is organized as follows: Section 2 introduces the axioma-
tization and valuation of the paraconsistent logic C7; in Sections 3 and 4 we present
the KE system for C and its inference rules, and the KEMS strategy, respectively;
Section 5 presents a set of problems constructed to evaluate the prover; in Section
6 we present a motivating example, showing that our proposal is adequate to deal
with practical problems; in Section 7 we compare our work with similar ones; finally
in Section 8 we draw some conclusions and propose future research.

We emphasize the main contributions of this paper: (a) a sound and complete
KE system for C (Section 3); (b) an informal specification of a KEMS [20] strategy
for the C7 prover (Section 4); and (c) problem families that can be used to evaluate
provers for C (Section 5).

1.1 Preliminaries

Let P be a countable set of propositional letters. We concentrate on the propo-
sitional language £ formed by the usual boolean connectives — (implication), A
(conjunction), V (disjunction) and — (negation). We call ¥ this set of connectives:
Y ={-,AV,—} (2 is called a signature in [6]). A;_; and \/!_, are, respectively,
iterated conjuntion and iterated disjunction.

Throughout the paper, we use uppercase Latin or lowercase Greek letters to
denote arbitrary formulas, and uppercase Greek letters to denote sets of formulas.

We also work here with signed formulas. A signed formula is an expression
S A where S is called the sign and A is a propositional formula. The symbols T
and F, respectively representing the ‘true’ and ‘false’ truth-values, can be used as
signs. The conjugate of a signed formula TA (FA) is FA (T A). The subformulas
of a signed formula & A are all the formulas of the form T B or F B where B is a
subformula of A.

The size of a signed formula S A is defined as the size of A. The size s(A) of a
formula A is defined as usual:

e s(A) =1if A is a propositional atom;
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¢ s(0A) =1+ s(A), where A is a formula and @ is a unary connective;

e s(A® B) =1+ s(A) + s(B), where @ is a binary connective, and A and B are
formulas.

A propositional valuation v is a function v : P — {0,1}. We extend the definition
of valuations to signed formulas in the following way: v(T A) = v(A) and v(FA) =
1—wv(A).

2 (1, a paraconsistent logic

(4 is a paraconsistent logic [8], “a logic of the early paraconsistent vintage” [6]. Tt
is part of the hierarchy of logics C),, 1 < n < w [10]. Cy is of historical importance
because it was one of the first paraconsistent logics to be presented.

Paraconsistent logics are logics in which theories can be inconsistent but non-
trivial [10]. In classical logic, A A =A + B for any formulas A and B. This is not
true in paraconsistent logics.

In 4, a consistency operator (o) is introduced. The intended meaning of oA
is “A is consistent” [6]. According to [6], “da Costa’s intuition was that the ‘con-
sistency’ (which he dubbed ‘good behavior’) of a given formula would not only be
a sufficient requisite to guarantee its explosive character, but that it could also be
represented as an ordinary formula of the underlying language.”

In C}, da Costa represented the consistency of a formula A by the formula
—(A A —A). That is, the consistency connective “o” is not a primitive connective,
but an abbreviation:

oA def —|(A A\ —|A).

2.1 C41’s Ariomatization

Some axiomatizations for C1 were presented in the literature [6,9,15]. The presen-
tation below is based on [6] and [9].
Axiom schemas:

(Ax1) a = (f— a)

(Ax2) (@ —3) = (@ = (B—17)) = (@ —17))
(Ax3) a — (B — (@A p))

(Ax4) (aAp) — «

(Ax5) (aNp)—f

(Ax6) a — (aV 3)

(AXT) B — (aVp)

(Ax8) (=) = ((B—17) — ((aVB)—1))
(Ax10) oV«

(Ax11l) ——a — «

(bcl) oa — (a — (ma — 3))
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(cal) (caAof) — o(aAp)
(ca2) (ca Aofl) — o(aV )
(cad) (cawAoff) — o(a — f3)

Inference rule:

(MP) o, — 3

The difference from classical propositional logic (CPL) axiomatization is that
to obtain an axiomatization for CPL we must remove the schemas that deal with
the consistency connective ((bcl), (cal), (ca2) and (ca3)) and add the following
axiom schema (called ‘explosion law’ in [6]):

(exp) @ — (mar— f3)

2.2 (C4’s Valuation

(1 received a bivaluation semantics in [9] (see also [6]). A set of clauses character-
izing Cy-valuations (adapted from the one in [6]) is the following:

¢ v(a1 Aag) =1if and only if v(ay) = 1 and v(ag) = 1;
¢ v(ay Vag) =1if and only if v(ay) =1 or v(ag) = 1;

e v(ap — ag) =1 if and only if v(a1) =0 or v(ag) = 1;

(
(
¢ v(—a) = 0 implies v(a) = 1;
¢ y(——a) = 1 implies v(a) = 1;
(

e v(oar) = 1 implies v(a) = 0 or v(—a) = 0.
e v(o(a @ ) = 0 implies v(oar) =0 or v(of) =0, for @ € {A,V,—};

Definition 2.1 Let I" be {A1, Aa,..., Ay} for n > 0. I' - B is a valid sequent in
Cq if and only if, v(B) = 1 whenever v(A4;) =1 foralli (1 <i<n). “T'F Bisa
valid sequent in C1” can be abbreviated to I' ¢, B

3 The KE System for (]

The KE inference system is a tableau method [13] developed by Marco Mon-
dadori and discussed in detail in several works authored or co-authored by Marcello
D’Agostino [2,11,12]. The KE system was presented as an improvement, in the
computational efficiency sense, over Analytic Tableaux [22]. A KE System is a
tableau system in which there is only one branching rule. As branching can lead
to repetition of efforts (i.e. the same work being done in two or more branches),
branching rules lead to less efficient proof systems (and implementations) [12].

We present here a sound and complete KE System we have devised for C;. The
rules in our system are presented in Figure 1. Note that in C7, the set of connectives
is ¥ = {—,A,V,—} but, to make the rules simpler, we have used the connectives
in 3° = ¥ U {0}, i.e. including the consistency connective, which is actually an
abbreviation.
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FA— B
TA (F—))
FB

TAAB
TA (TA)
TR

FAV B
FA (FV)
FB

F-A
TA

(F-)

ToA
T-A
FA

(To-)

TA— B
TA (T—1)
TB

FAADB
TA (FA1)

FB

TAV B
FA (TV1)

TB

T——A
TA

(T==)

Fo(A®B)
ToA (Fo@1)

FoB

N (PB)
TA FA

Fig. 1. C1 KE rules.

TA— B

FB (T—2)

FA

FAAB
TRB (FA2)

FA

TAV B
FB (TVa)

TA

Fo(A®B)
ToB

(FO@Q)
FoA

In [19,21] (and also in [18]) the first and third authors of this paper have pre-
sented KE Systems for two other paraconsistent logics: mbC and mCi (more

about these two logics can be found in [6]).
rules in common with the KE Systems for these two logics.

logics, consistency (o) is not a defined connective.

As in classical KE rules [12], rules with “1” (for instance, “FA;”) or “2” as
subscript are interchangeable. Only one of each pair is actually essential. By using
the PB rule (Figure 1), the other can be derived.

Note also that Fo @1 and Fo @9 are actually three rules each, because @ can
be any connective in {A,V,—}. In a 2-premiss rule, the main premiss is the first
premiss. The second premiss is called minor premiss. The main premiss in Fo @

The KE System for C; has several

However, in these
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F—|(P/\(—|P/\OP))
T PA (=P AoP)
TP
TP AoP
T =P
T oP
FP
X

Fig. 2. A proof of =(P A (=P A oP)) using the C7 KE system.

(or in Fo @2) can be “F o (AAB)”, “F o (AV B)” or “F o (A — B)”. And, as ‘0’
is a defined connective, “F o (A @ B)” is actually “F—((A @ B) A (A @ B)”. For
instance, Fo Ay is:

F-((AANB)AN=(AAB))
T —|(A VAN —|A) (FO /\1)
F—(BA-DB)

It is easy to see that these rules (Fo @1 and Fo @2) are not analytic. In Fo Aq,
F-(B A —DB) is not a subformula of any premiss.
Therefore, in our system we have:

* 12 essential linear rules (5 of these rules are 1-premiss rules and 7 rules are 2-
premiss rules);

¢ 6 derived linear 2-premiss rules;
¢ 1 (0-premiss) branching rule.
Of these rules, 6 of them (Fo @1 and Fo @9) are rather complex, far more complex

than any CPL KE rule.

Example 3.1 The formula (P A (=P A oP)) can be proved in C; KE system as
depicted in Figure 2. The same formula was proved in [6] using the C; tableau
system presented there (Figure 3). It is easy to see that the C7; KE proof has less
formula nodes and less branches than the (7 tableau [6] proof.

8.1 Soundness and Completeness

Our intention here is to prove that the C1 KE system is sound and complete. The
proof is very similar to the mCi KE system’s soundness and completeness proof
presented in Section B.2.4 of [18]. We begin with some definitions.

Definition 3.2 [12] A branch of a KE tableau is closed when T A and F A appear
in the branch.

Definition 3.3 [12] A KE tableau is closed if all its branches are closed.
Definition 3.4 I' b ke B if there is a closed KE tableau for I' - B.
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F =(P A (=P AoP))
T PA (=P AoP)

TP
T -~PAoP
T -P
ToP
TP—P FP—P
/\ TP
TP—-P FP—-P FP
FP TP X
X F P

X

Fig. 3. A proof of =(P A (=P A oP)) [6].

Definition 3.5 The C; KE system is sound if, for any I' and B, I' ¢, ke B implies
I'te, B.

Definition 3.6 The (' KE system is complete if, for any I' and B, I' k¢, B implies
F l_ClKE B

Definition 3.7 A set of (4 signed formulas DS is downward saturated:

(i) whenever a signed formula is in DS, its conjugate is not in DS

(ii) when all premises of any C7 KE rule (except PB) are in DS, its conclusions
are also in DS

(iii) when the major premiss of a 2-premiss C; KE rule is in DS, either its auxiliary
premiss or its conjugate is in DS.

A Hintikka’s Lemma holds for C7 downward saturated sets:

Lemma 3.8 (Hintikka’s Lemma for C1) Every Cy downward saturated set is sat-
isfiable.

Proof. For any downward saturated set D.S, we can easily construct a C valuation
v such that for every signed formula SX in the set, v(SX) = 1. How can we
guarantee this is in fact a valuation? First, we know that there is no pair TX
and F X in DS. Second, all premised C7 KE rules preserve valuations. That is, if
v(8X;) = 1 for every premiss SX;, then v(SC;) =1 for all conclusions C;. And if
v(8X1) =1 and v(§X3) = 0, where X; and X are, respectively, major and minor
premises of a C; KE rule, then v(S8'X5) = 1, where &’ X» is the conjugate of SXo.
Therefore, DS is satisfiable. d

Theorem 3.9 Let DS’ be a set of signed formulas. DS’ is satisfiable if and only
if there exists a downward saturated set DS” such that DS’ C DS”.

Proof. (<) First, let us prove that if there exists a downward saturated set DS”
such that DS’ C DS”, then DS’ is satisfiable. This is obvious because from DS”
we can obtain a valuation that satisfies all formulas in DS”, and DS’ C DS”.
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(=) Now, let us prove that if DS’ is satisfiable, there exists a downward satu-
rated set DS” such that DS’ C DS”.

So, suppose that DS’ is satisfiable and that there is no downward saturated set
DS” such that DS’ C DS”. Using items (ii) and (iii) of (3.7), we can obtain a
family of sets of signed formulas DS’; (i > 1) that include DS’. If none of them is
downward saturated, it is because for all i, {T X,F X} €DS’; for some X. But all
rules are valuation-preserving, so this can only happen if DS is unsatisfiable, which
is a contradiction. a

Corollary 3.10 DS’ is an unsatisfiable set of formulas if and only if there is no
downward saturated set DS” such that DS’ C DS”.

Theorem 3.11 The Cy KE system is sound and complete.

Proof. The C; KE proof search procedure for a set of signed formulas S either
provides one or more downward saturated sets that give a valuation satisfying S
or finishes with no downward saturated set. The C; KE system is a refutation
system. The €7 KE system is sound because if a 7 KE tableau for a set of
formulas S closes, then there is no downward saturated set that includes it, so S is
unsatisfiable. If the tableau is open and completed, then any of its open branches
can be represented as a downward saturated set and be used to provide a valuation
that satisfies S (in other words, S is satisfiable).

The C; KE system is complete because if S is satisfiable, no C7 KE tableau for
a set of formulas S closes. And if S is unsatisfiable, all completed 7 KE tableaux
for S close. a

3.2 Decidability

We do not prove here that the C; KE system is decidable, i.e., that there is an
algorithm for finding proofs in the C7 KE system. We only present the sketch of
such a proof that will be detailed in a future paper about the implementation of a
C1 prover.

The idea is to define a restriction of the C; KE system which imposes some
conditions on the application the PB rule (Figure 1). In this restricted C; KE
system, the PB rule can only be applied in a branch:

e when there is a non-atomic signed formula that can be the main premiss of a
2-premiss rule and that was not yet analysed (i.e. used as main premiss) in the
branch; and

¢ when either T A or F A can be the minor premiss of a 2-premiss rule, where A is
the PB formula (i.e. the A formula that appears as T A in the new left branch
and F A in the new right branch after PB application).

For all the 2-premiss rules in Figure 1, the minor premiss’s size is smaller than
major premiss’s size. This, alongside with the conditions above, guarantees the the
proof search procedure eventually terminates.
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4 A KEMS Strategy for ('

KEMS [18] is a theorem prover that can be used to implement strategies for many
different logical systems. For instance, the current version [20] has 6 strategies for
CPL, 2 strategies for mbC and 2 strategies for mCi.

We have to follow some steps to implement a strategy for a logical system in
KEMS. First, one has to know how KEMS implementation is structured (by reading
[18] and the source code available in [20]). Second, one has to implement the classes
that will represent the logical system (such as CPL or Cy). Third, one has to
implement the classes necessary to represent the rules of the KE system (such as
C7 KE system). Only after these three steps, one can implement one or more
strategies for a given KE system.

KE systems (as well as many logical proof methods) are usually presented by
showing their rules. The rules tells us only what we can do — they do not specify
in which order to use the rules. A strategy is a deterministic algorithm for a given
KE system, as well as a set of data structures used by the algorithm.

4.1 Cy KE Simple Strategy

The C; KE Simple Strategy resembles mbC and mCi Simple Strategies (see Sec-
tions C.4.4 and C.4.5 of [18]). Let us informally describe the algorithm performed
by this strategy:

(i) the strategy applies all possible linear rules in the current branch (in the begin-
ning, the current branch is the branch containing the formulas obtained from
the problem);

(ii) if the current branch closes (i.e. if a contradiction {T A,F A} is found), then
the strategy tries to remove a branch from its stack of open branches. If it
succeeds, this branch becomes the current branch and the control goes back to
the first step. If there is no remaining open branch, the procedure ends and
the result is that the tableau is declared closed;

(iii) if the current branch is linearly saturated (i.e. no more linear rules can be
applied), but not closed, the strategy tries to apply the PB rule. The PB
rule can be applied when there is at least one non-atomic signed formula in
the branch that can be the main premiss of a 2-premiss rule and this signed
formula was not yet used as the main premiss in an application of a 2-premiss
rule. If the strategy can apply the PB rule, then the (new) right branch is
put in the stack of open branches and the left branch becomes the current
branch. If the strategy cannot apply the PB rule, then the procedure finishes
by declaring the tableau open.

The order of rule applications is:
(i) C1 KE 1-premiss rules;
(ii) C1 KE 2-premiss rules;
(iii) the PB rule.
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See Sections C.2 and C.4 of [18] for more details on how rules are applied in KEMS.

4.1.1  Implementation Remarks

This strategy is a very straightforward strategy for a C; KE system. The idea is
to use the PB rule only as a last resource (as shown in the canonical procedure
for KE [12]). The difference is that in the C1 KE system we cannot restrict the
strategy to perform only analytic applications of PB. An analytic application of PB
is an application of PB where the PB formula (i.e. the A formula that appears as
T A in the new left branch and F A in the new right branch after PB application) is
a subformula of some formula in the branch.

Another difficulty in the implementation of this strategy (actually in the imple-
mentation of almost any proof system for C7) is how to deal with the consistency
connective.

We have two options:

(i) only accept problems using the connectives in 3. Therefore, all rules presented
in Figure 1 will have to be implemented using ¥ connectives (which makes the
rules and the associated pattern matching more complex). Note that the size
of problems written in 3° may grow exponentially (in the worst case) when
translated to X

(ii) accept problems written in ¥° and, whenever a =(A A —=A) formula appears
(for any A), treat it as if it was (also) oA in the applications of rules that have
formulas with o as premisses. Although this option allows the prover to deal
with smaller problems, it makes rule applications more difficult.

C1 Simple Strategy will use option (i) above. Option (ii) will be used on a second
strategy for C; KE.

5 Problem Families to Evaluate C; Provers

A problem family is a set of problems that we know, by construction, whether they
are valid, satisfiable or unsatisfiable [18]. A problem is a sequent that can be given
as input for a theorem prover. The i-th instance (for i > 1) of a problem family is
a (valid, satisfiable or unsatisfiable) sequent.

In Section D.1.2 of [18], seven families of difficult problems that can be used to
evaluate theorem provers for paraconsistent logics were presented. All these families
were families of valid sequents. To the best of our knowledge, there are no other
families of difficult problems designed with this purpose in mind. The families
presented there can be used to evaluate provers for two logics: mbC and mCi,
which are part of the class of logics of formal inconsistency (LFIs) [6].

In [6] it is shown that C; can also be classified as an LFI and that it extends
mbC. Therefore, the first four families created to evaluate mbC provers [18] can
also be used to evaluate provers for Cf.

However, these families do not test all C; KE rules. That is, to prove the
problems in those families using the 'y KE system, one does not need to use all
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its rules. Therefore, to extend what we could call “rule coverage”, i.e. to test more
rules, we present two more families of sequents. These sequents are valid in C; (but
not in mbC, therefore they can also be used to test mbC provers) and, for proving
them, we have to use rules that are not used in the first four families’ proofs.

These families were not developed with any intuitive meaning in sight. As the
objective was to test theorem provers, they were designed to be difficult to prove,
by using as many rules as possible.

The motivation for developing and presenting these problem families before the
actual C7 prover was implemented was, inspired by the Test-Driven Development
technique for software development [1], to use the tests as a guide for the design
and implementation of the sofwtare.

Note: to make it easier to read the problems, we have used the connectives in
3° and we sometimes use “[” and “|” in place of “(” and “)”.

5.1 Fifth family

The sequents in this family (®°) demand Cy’s T —— rule to be proven valid. @3
(the nth instance of ®°) is:

n n

oAr, \(AD), AlAnsr — (A v By) = (0Aip1)]: (] 0Ai) = = Anss F =—=Aniy

i=1 i=1 i=1

For instance, ®3 in signed tableau notation is:

T oA

T Ay A Ay A Az

T [Ay — ((A1V B1) — (0A2))]
N[Ag — (A2 V By) — (0A3))]
A[As— ((A3V B3) — (0A4))]

T ((0A1) A (0Ag) A (0A3)) — —Ay

5.2 Sizth family

In order to prove, using the C; KE system, that the sequents in this family (®5) are
valid, it is necessary to use the two C'; KE rules where “o” is the main connective

in the main premiss: F o @1 and F o @5. ®8 (the n-th instance of ®9) is:

n

A\ (Bi), \(C:), \((Ai V B;) = (04i41)), (\ Ci) = (D A=C1) F[\/ (o(Aiy1 — Ci))] Vv D
i=1 i=1 i=1 i=1

i=1 i= =
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For instance, (Dg is:

T By A By A\ B;

T oCi N oCy A oCs

T((A1V B1) — (0A2)) A (A2 V Ba) — (0A43)) A (A3 V Bs) — (0Ay4))
T(Cy A Cy A Cy) — (D A=Ch)

Flo(A2 — C1)] V [o(A3 — Ca)] V [o(Ag — C3)] v D

6 A Motivating Example

We present here an example almost completely based on the example shown in [17]:

Consider the construction of a simple medical system aimed at diagnosing three

diseases K, L and M. There are two different symptoms, denoted by N and O.

The intended usage of this system is as follows:

e The core part of the system is the knowledge provided by a doctor (DOC}).

¢ When we intend to apply this knowledge to a specific patient, other profession-
als conduct medical tests on this patient add the results of these tests to the
knowledge base.

¢ In order to use the system, we submit a goal to the program in a similar way
as it is done in Prolog.

We assume that the system is written in the form of a finite set of formulas
over C. Suppose that DOC] provided us the following five rules (formulas):
(F1) K — —L
(F») L — K
(F3) K—>M
(Fy) N - K
(F5) O — L

Intuitively, the doctor is telling that:

An individual cannot have both diseases K and L (F; and F5).

If an individual has the disease K, them he has the disease M (F3)
If an individual has the symptom N, them he has the disease K (Fy)
If an individual has the symptom O, them he has the disease L (F5)

To exemplify the use of this knowledge base, we describe four situations. The
first one is similar to a query to a Prolog program, while the other three explore
the capacity of handling inconsistencies:

Case 1: Suppose that the patient has symptom N and we want to know if he
has the disease K but not L.

To answer this query we must verify if

F17F27F37F4aF57N'7C'1 K AN—=L
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is valid. As the KE proof for this sequent is a closed tableau, this sequent is valid.
It is also valid in classical logic.

Case 2: Now suppose that the patient tested positive for symptoms N and O,
and we want to know if he has both diseases K and L.

To answer this query we must verify if

F17F27F37F47F57N70|_K/\L (1)

isvalid. (1) isvalid in C7. In classical propositional logic, (1) is also valid. Actually,
in classical propositional logic:

F17F27F37F47F57N70|_B (2)

is valid for any formula B. However, (2) is not valid in C for any formula B .
Case 3: Now suppose that the patient tested positive for symptoms N and O,
and we want to know if he has not the disease M.
To answer this query we must verify if

F17F27F37F47F57N70|_C1 -M (3)

is valid. The KE proof for this sequent (an open tableau, which shows that the
sequent is NOT valid) is the following:

TK — —-L
TL — —K
TK - M
TN - K
TO — L
TN
TO
F-M
TK
TL
TM
T-K
T—-L

However, this sequent is valid in classical logic, because a classical contradiction
is found (T K and T —K).

Case 4: Now suppose again that the patient tested positive for symptoms N
and O, but now we want to know if he has the disease K and if this conclusion is
not consistent (o K).

To answer this query we must verify if

FlaF27F37F47F57N7OF01K/\_'OK <4)
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is valid. The KE proof for this sequent (a closed tableau) is the following:

TK — L
TL — —-K
TK — M
TN - K
TO — L
TN
TO
FKNAN—-oK
TK
TL
T-L
T-K
™M
F-oK
ToK
FK
X

This query shows that, besides “dealing with inconsistencies in the knowledge
base without every formula becoming derivable” [17], a common feature of para-
consistent logics, C; allows us to express propositions about the (in)consistency of
formulas.

The sequent (4) is valid in classical logic. Note that, for any formula B, “-o B”
is a theorem in classical logic. Therefore, in classical logic, I' F K A = o K if and
only I' - K.

7 Related Work

A tableau system for (' was presented in [7]. As this system is based on analytic
tableaux (AT) [22], it has four branching rules: the three ones from AT plus a T —
branching rule. Due to this T — rule, infinite loops may occur during the proof
search, postponing indefinitely the analysis of formulas that involve the negation
and consistency operators. Notwithstanding, this system is decidable. This system
has been implemented but the source code is not available.

In [4] two tableau systems for C'; were presented, the second one being a version
of the first one considered by the authors more adequate to be implemented. The
first system has 12 rules (8 of them are branching rules) while the second has 20
rules (12 of them are branching rules). The rules are rather complex, involving
much more formulas and connectives than C7 KE rules. The second system was
elegantly implemented in LISP (the source code is available in [3]). However it was
written in a LISP dialect (muLISP) which cannot be compiled in modern LISP
compilers.

We have experimented using Buchsbaum’s system with the formulae described
in Section 5. For example, it was not able to prove instance (I>S7 due to lack of
memory. This confirms that the family ®° is a family of difficult problems. We are
translating this prover to a different LISP dialect to make it more robust.
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Another C; tableau system appears in [6]. It was obtained by using a gen-
eral method for constructing tableau systems [5]. Although this system has a PB
branching rule, a feature of KE systems, is not a KE system. To be a KE system
it should have only one branching rule, but it has 8 branching rules. Just like the
system in [7], it is based on AT. However, it does not have rules that lead to infinite
loops. We do not know of any implementation of this method.

In [15], tableau systems for several logics of the C), hierarchy were presented.
The C} tableau system presented there is also based on AT. While in the previous
systems oA e —(A N —A) was applied whenever necessary to generate the branches
of the tableau, this system has specific rules to directly deal with all operators,
including “o”. However, as it is based on the analytic tableau method, it also has
too many (six) branching rules. We also do not know of any implementation of this
method.

Therefore, the distinctive feature of our C7 KE system is that it has 13 essential
rules and only of them is a branching rule. This feature will allow us to implement
efficient strategies for this system in KEMS [20].

8 Conclusion

In this paper, we have presented a sound and complete KE system for Da Costa’s
(1 calculus for paraconsistent logic. We have shown that our system has less branch-
ing rules than other tableau systems for Cy described in the literature [3,4,6,7,15].
Therefore, it is probably more efficient than those systems (see [12] for a discussion
on why branching leads to inefficiency).

We have also described a strategy for this KE system that can be implemented
in KEMS. Future work includes implementing this strategy, as well as designing
and implementing other strategies for the C; KE system.

In order to evaluate C; KE strategies, we have developed two problem families.
These families and the first four problem families described in section D.1.2 of
[18] can also be used to evaluate other theorem provers for Ci, such as Arthur
Buchsbaum’s prover for Cy [3].

As further work, we intend to compare the results obtained by our strategies (in
the style of section D.2 of [18]) among themselves as well as with Arthur Buchs-
baum’s prover.
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