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Abstract

There are efficient solutions to planning problems mod-
eled as a Markov Decision Process (MDP) envolving
a reasonable number of states. However, known ex-
tensions of MDP are more suited to represent practical
and more interesting applications, such as: (i) an MDP
where states are represented by state variables, called a
factored MDP; (ii) an MDP where probabilities are not
completely known, called an MDPIP. In this work, we
are interested in exploring efficient algorithms to solve
factored MDPIPs.

Introduction
The main approach to solve a probabilistic planning problem
is modeling it as a Markov decision process (MDP) (Bonet
and Geffner 2005). Originally proposed by the community
of decision theory, MDPs (Puterman 1994) provide an el-
egant mathematical framework for representing and solv-
ing sequential decision problems under uncertainty in com-
pletely observable environments.

An MDP models the interaction between an agent and its
environment: at every stage, the agent decides to execute an
action (with probabilistic effects) that will produce a future
state and a reward. The agent’s goal is to maximize the re-
ward gained over a sequence of action choices.

Since acquiring the probability distribution of models
from humans is difficult and often subjective, we should
try to deal with imprecise probabilities in order to represent
incomplete, ambiguous or conflicting expert believes about
transitions of states. A Markov Decision Process with Im-
precise Probabilities (MDPIP) (White III and Eldeib 1994)
is a generalization of an MDP that allows the representation
of imprecise probabilities. However, there are no efficient
solutions for MDPIPs (Shirota et al. 2007).

Since, efficient solutions based on linear programming are
known for factored MDPs, it seems that an MDPIP modeled
in this way can be solved in a more efficient form. The goal
of this Ph.D. project is to define the idea of a factored MD-
PIP and investigate different forms to solve this new prob-
lem, for which we have not found solutions in the literature.
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Background
This section contains a brief review of the linear program-
ming formulation for MDPs and factored MDPs. We also
show how an MDPIP can be formulated as a non-linear pro-
gramming.

MDP
Formally, an MDP is defined by the tuple M =
〈T, S, A,R, P 〉 where: T is a countable set of stages, S is
a finite set of states, A is a finite set of actions, R is the re-
ward function and P defines the transition probabilities. Let
V ∗(s) be the optimal value of the state s ∈ S, based on the
value of the possible successor states s′ ∈ S, for an agent
that wants to maximize his expected reward. The Bellman
Optimality equation is:

V ∗(s) = maxa∈A{R(s, a) + γ
X
s′∈S

P (s′|s, a)V ∗(s′)} (1)

The formulation of an MDP problem as a linear program-
ming is given by (Manne 1960)(α is the state relevance):

min
V ∗

:
X

s

α(s)V
∗
(s) (2)

s.t. : V
∗
(s) ≥ R(s, a) + γ

X
s′∈S

P (s
′|s, a)V

∗
(s

′
), ∀s ∈ S, a ∈ A.

MDPIP
An MDPIP models an agent that at every stage decides to
execute an action (with probabilistic effects) that will pro-
duce a future state and a reward that also depends on the
choices of nature (w.r.t. the probability imprecisions). The
agent’s goal is to maximize the reward gained over a se-
quence of choices of actions assuming, for example, that the
nature chooses either to minimize agent’s reward (maxmin
criteria) or to maximize agent’s reward (maxmax criteria).
Formally, the definition of an MDPIP, described by the tuple
M = 〈T, S, A,R, K〉, follows the definition for an MDP
plus the credal conditional sets1 Ka(s′|s), represented by
linear inequations, to express all possible probability distri-
butions (Cozman 2000). The Bellman Optimality equation
for MDPIPs that adopt the maxmin criteria is:

V
∗
(s) = max

a∈A
min

P (s′|s,a)∈Ka(s′|s)
{R(s) + γ

X
s′∈S

P (s
′|s, a)V

∗
(s

′
)} (3)

1A credal set K(X) contains a set of probability distributions
for variable X .



The Equation (3) can be reduced to a bilevel programming
problem (Shirota et al. 2007):

min
V ∗

:
X

s

α(s)V
∗
(s) (4)

s.t. : V
∗
(s) ≥ R(s, a) + γ

X
s′∈S

P (s
′|s, a)V

∗
(s

′
), ∀s ∈ S, a ∈ A.

P ∈ argmin
X

s′∈S

P (s
′|s, a)V

∗
(s

′
).

s.t. : P (s
′|s, a) ∈ Ka(s

′|s)

This bilevel problem can be transformed in an equivalent
multilinear program (Shirota et al. 2007):

min
V ∗,P

:
X

s

α(s)V
∗
(s) (5)

s.t. : V
∗
(s) ≥ R(s, a) + γ

X
s′∈S

P (s
′|s, a)V

∗
(s

′
), ∀s ∈ S, a ∈ A

P (s
′|s, a) ∈ Ka(s

′|s).

Some algorithms for solving MDPIPs are based on dy-
namic programming (White III and Eldeib 1994) (Givan,
Leach, and Dean 2000; Trevizan, Cozman, and de Barros
2007). Some of them only solve special cases of MDPIPs.
We do not give details about these algorithms since the main
focus of this project is to solve general MDPIPs using ap-
proximate methods based on optimization (linear or nonlin-
ear programming), instead of using dynamic programming.

Factored MDPs
Much of the recent work in AI has focused on factored struc-
tured representations of MDPs and their efficient solutions.
In a factored MDP, the states are described using state vari-
ables Xi for i=1..n; the transitions are represented in com-
pact form by using Dynamic Bayesian Networks (DBN); the
value function and the reward are also factored (Guestrin
2003). Although a factored MDP becomes exponential on
the number of state variables, its representation explores the
behavior of the state variables in the state transition model
(Guestrin 2003).

Factored Transition Model In factored MDP, for each ac-
tion a we define a DBN with two layers directed acyclic
graph: one representing the actual state and other represent-
ing the next state. The nodes are denoted by Xi and X ′

i
for state variables in the actual state and next state, respec-
tively. Edges are allowed from nodes in the first layer into
the second layer, and also between nodes in the second layer.
We denote by Parents(X ′

i) the parents of X ′
i in the graph.

The graph is assumed endowed with the following Markov
condition: a variable X ′

i is conditionally independent of its
nondescendants given its parents. This implies the following
factorization of transition probabilities:

P (s′|s, a) =

nY
i=1

P (x′i|Parents(X ′
i), a) (6)

Factored Value Function V ∗(s) can be approximated us-
ing a linear combination of basis functions h1, ..., hk, i.e.:

bV (s) =

kX
j=1

wjhj(s) (7)

A necessary condition to make efficient calculations (Koller
and Parr 1999) is the scope of each basis function be re-
stricted to some subset of state variables Ci ⊂ S =
{X1, ..., Xn}.

Factored Reward Function Like for the factored valued
function, the scope of each local-reward function Ri should
be restricted to some small subset of state variables Di ⊂
S = {X1, ..., Xn}.

R(s, a) =

kRX
i=1

Ri(Di(a), a) ∈ R (8)

Algorithms for solving factored MDPs Approximate lin-
ear programming (ALP) has emerged recently as one of
the most promising methods for solving complex factored
MDPs (Guestrin 2003):

min
w

:
X

s

α(s)
kX

i=1

wihi(s) (9)

s.t. :
kX

i=1

wihi(s) ≥ R(s, a) + γ
X

s′∈S

P (s
′|s, a)

kX
i=1

wihi(s
′
),

∀s ∈ S, a ∈ A.

Refinements for the ALP approach have been devel-
oped over the past few years, e.g. the algorithm ALP-
Reformulation (Guestrin 2003) that creates a new smaller
set of equivalent constraints for the Problem (9), avoiding to
enumerate the complete set of states. There are other effi-
cient algorithms that use general techniques to solve linear
problems with large number of constraints (Patruscu 2004;
de Farias and Roy 2004; Dolgov and Durfee 2006).

Proposal
Our proposal is to define a model with all advantages of
factored MDPs that also represents the imprecision over the
transition probabilities, that is, a factored MDPIP. Thus, the
goals of this project are: (i) to give a formal definition of
a factored MDPIP (not found in the literature) and (ii) to
propose a solution for a factored MDPIP, for which the al-
gorithms for factored MDP can not be applied.

Factored MDPIP: definitions
In a factored MDPIP, the states are defined using state vari-
ables Xi for i = 1..n and the transitions are represented
by Dynamic Credal Networks (DNC). The value and reward
functions are factored as for a factored MDP.

Factored Transition Model: Dynamic Credal Network
A credal network (Cozman 2000) generalizes the concept of
a Bayesian network, allowing each variable, for each config-
uration of its parents, be associated with a set of probability
densities (credal sets), instead of a single density (Cozman
2000). A DCN has also two layers, one representing the ac-
tual state and other the next state. We assume the Markov
condition to operate over all combinations of distributions,
each one satisfying the factorization in Equation (6).

Algorithms for solving factored MDPIPs Using the fac-
tored value function and replacing it in Problem (4):

min
w

:
X

s

α(s)
kX

i=1

wihi(s) (10)



s.t. :
kX

i=1

wihi(s) ≥ R(s, a) + γ
X

s′∈S

P (s
′|s, a)

kX
i=1

wihi(s
′
),

∀s ∈ S, a ∈ A.

P ∈ argmin
X

s′∈S

P (s
′|s, a)

kX
i=1

wihi(s
′
).

s.t. : P (s
′|s, a) ∈ Ka(s

′|s)

where:

P (s
′|s, a) =

Y
i

P (x
′
i|Parents(X

′
i), a)

Note that: there are |S| ∗ |A| constraints in the first level
and m2 constraints in the second level of the bilevel prob-
lem; the constraints in the first level are non-linear; there are
the same variables in the first level and the second level (the
variables that correspond to probabilities). So, the Problem
(10) is not a simple bilevel problem and most known algo-
rithms for solving bilevel problems can not be used. Based
on that, we claim that it is better to work with an equivalent
multilinear problem:

min
w,P

:
X

s

α(s)
X

i

wihi(s) (11)

s.t. :
X

i

wihi(s) ≥ R(s, a) + γ
X

s′∈S

P (s
′|s, a)

X
i

wihi(s
′
),

∀s ∈ S, a ∈ A.

P (s
′|s, a) ∈ Ka(s

′|s)

where:

P (s
′|s, a) =

Y
i

P (x
′
i|Parents(X

′
i), a)

There are |S|∗|A|+m2 constraints in the multilinear pro-
gramming problem for factored MDPIP, the same for bilevel
problem. However, there are more available techniques for
solving multilinear problems than bilevel problems. Note
that in a factored MDPIP, modeled as a multilinear program-
ming, the objective function coefficients can be calculated in
the same way as factored MDP, since this function has not
changed. Although for an MDPIP the probabilities are vari-
ables, it is possible to calculate the constraints in an efficient
way, as in factored MDP, since the constraints are of the
same type. However, we are still working with the complete
set of constraints (|S| ∗ |A|+ m2) and the direct use of gen-
eral non-linear solvers for factored MDPIPs, can only solve
problems with small state space. Therefore, the challenge is:
how to reduce the number of constraints.

The main idea of this proposal is to apply the ALP-
Reformulation technique (Guestrin 2003) to solve factored
MDPIPs. This is possible since the constraints of the mul-
tilinear program are the same type of the constraints in the
linear program for factored MDPs, with the addition of the
probability variables. Applying this technique, the set of
constraints are replaced with an equivalent set of constraints
avoiding to enumerate the complete set of states. Thus our
claim is that, to solve factored MDPIPs, the most promis-
ing approach is to apply the ALP-Reformulation technique
in the multilinear problem (11) and then use a solver that can
work with many constraints.

To carry out our experiments we also want to solve prob-
lems described in PPDDL, that uses a representation very
close to a factored MDPIPs (using the probabilistic and
oneof operator (Trevizan, Cozman, and de Barros 2008)).
The question is: how to obtain the basis functions for these
domains? This is a challenge that we will have to face. One
extra challenge we have to deal with is how to represent and
take advantage of the initial and goal states in a factored
MDPIP (Problem (11)).
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