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Abstract

In this paper we investigate the use of a generative model

to the object recognition task in omnidirectional images.

The purpose of our work is to find and classify objects typ-

ically found in indoor office environments (tables, chairs,

etc) through the analysis of images obtained from an om-

nidirectional vision system. First, a set of generic features

are obtained from the query image and clustered in appear-

ance clusters. In training mode we make use of labeled fea-

tures to compute the joint probability for the containing

classes by matching those features to the appearance clus-

ters. The recognition proceeds by matching the features ex-

tracted from the query image to the model, computing the

likelihood used in the decision equation, through the Bayes

rule. Results are presented for some first experiments.

1. Introduction

Object recognition is one of the most actively researched

areas of computer vision. This ability can enlarge the possi-

bilities and join useful tasks to the robots, in especial to mo-

bile robots [13]. Objects can be used to represent targets or

places and can help machines to be able to accomplish hu-

man tasks. In this research line, more generic approaches

that deal with multiple classes of objects instead of specific

ones are gaining more attention inspired for the task of hu-

mans’ detection [11, 2, 7].

Multi-class object detection task has been receiving vary

approaches. Some of them work sliding a window across

the image, and applying binary classifiers to each window.

Those classifiers, which discriminates between the class or

the background, are trained using standard machine learn-

ing techniques, such as boosting [14] or support vector ma-

chines [12]. However, such classifiers are trained and run in-

dependently, and are unlikely to scale up to the detection of

real world amount of object classes. Modern approaches are

based on local features which can be shared between vari-

ous classes of objects. They make use of collections of fea-

tures or parts, where each part has a distinctive appearance

and spatial position.

Local features are typically extracted from images and

subsequently grouped into clusters to reduce the size of the

feature space. This feature space can reach thousands in a

single image. Another benefit acquired with clustering fea-

tures is the generalization where multiple classes share the

same feature information. Previous related works based on

local features intended to detect and recognize specific ob-

jects previously learned. So they needed to hold all the fea-

tures informations of those objects as a codebook. The same

way, with those approaches, the computational cost in time

and space might be unfeasible for real world applications.

In object detection, frequently used clustering methods

are k-means, because of its computational simplicity, and

hierarchical agglomerative clustering which can be used di-

rectly to obtain a data structure for efficient volume search.

The combination of both methods as proposed in [6] pro-

duces an approximate clustering solution similar to the ex-

act solution but in a faster way. To summarize the approach

we first apply k-means to partition the feature space. Then

agglomerative clustering is applied within each partition.

Finally, the agglomerative method is applied once more on

all the cluster centers computed in the previous step. The

tree produced in this stage, still holds in its leaves all the

features of the training set. An approach proposed in [10]

executes a pruning in a defined level of the tree to reduce

the search effort. The product of the clustering stage is used

as our object representation. This structure contains the ap-

pearance clusters in its leaves and for each cluster, an ob-

ject class likelihood distribution is computed. That process

of computing the likelihood distribution is defined as the

learning stage.

Another point of our work is the use of omnidirectional

vision systems. Because of the benefits acquired when hav-

ing a vision system that can observe a large part of the

scenery, omnidirectional cameras are being used more and



more in different applications, mainly in mobile robotics.

A drawback in that vision system is the object deformation

in the produced image. That deformation varies in function

of the position of the object in the image and difficult the

use of geometric models as base for the recognition. Fig-

ure 1 is an exemplar of the dataset.

Figure 1. Image obtained from an omnidirec-
tional vision system

The combination of such technologies – local features,

generative model and clustering methods – have already be-

ing exploited for the object recognition task, but not to om-

nidirectional vision systems, up to now. So that is the con-

tribution of this work.

This paper is organized as follows. Section 2 describes

the generative model used in the approach, in Section 3

the implementation is described including feature detection,

clustering method, learning of the model and recognition. In

Section 4 we present the results for the initial experiments.

Finally, Section 5 presents the conclusions of the paper and

points to some future works that are worth pursuing.

2. The generative model

In the literature, the approaches for the object recogni-

tion task have been categorized based on the model used in

the process. They can be categorized as discriminative or

generative.

For comparison, consider the scenario in which an input

image, represented in a vector X of pixels or characteristics,

needs to be classified as one of the K classes k = 1, ...,K.

The best solution for this classification is given by the class

k which maximize the posterior probability p(k|X).

In discriminative classifiers, the decision boundaries be-

tween classes are modeled by computing the posterior prob-

ability p(k|X) directly or learning the direct map from in-

put X to the class labels. This classifiers are typically fast

during execution and the correct prediction rate is high for

well trained object classes.

On the other hand, generative classifiers learn a model

of the joint probability p(k, X), by learning the class

prior probabilities p(k) and the class-conditional densi-

ties p(X|k) separately. The posterior probability p(k|X)
used for the decision is computed using Bayes rule, and

then picking the most likely k.

p(k|X) =
p(X|k)p(k)

∑

j p(X|kj)p(kj)
(1)

This model grants to the system some characteristics: the

ability to handle missing data or partially labeled data; the

ability to handle composite objects (e.g. faces with glasses

and/or hats); a new class can be added incrementally by

learning its class-conditional density independently of all

the previous classes. A drawback in this model is that the

decision depends on an iterative process, slower then the

discriminative process.

In our approach, a generative model based on [4] is used

to make the classification. The likelihood p(k|X) and the

priors probabilities for the object classes are estimated dur-

ing the learning stage. To explain the model we detail the

recognition step. Given features F detected in a query im-

age, appearance clusters A, we make a decision :

p(Om|A)

p(B|A)
=

p(A|Om)p(Om)

p(A|B)p(B)
(2)

where p(Om) and p(B) are priors probabilities of an ob-

ject Om and background B. We consider background in the

equations as every other object but Om. These priors proba-

bilities can be estimated from the training set or, considered

equal 1 for large sets. The likelihood p(A|Om) is given by

p(A|Om) =
∏

i

∑

j

p(aj |Om, fi)p(fi|Om) (3)

where p(fi|Om) is a feature probability for the given object

Om, and p(aj |Om) is the probability of an appearance clus-

ter aj for the same object Om. These probabilities are the

target in the training stage.

The likelihood value obtained from generative models is

more reliable than the posterior obtained from discrimina-

tive models, since generative models try to represent the true

density of the data. To improve the model, parameters like

geometric distribution of the features, color descriptor, con-

text, etc, can be used to compound the joint probability dis-

tribution.



3. Implementation

Our implementation follows the approaches proposed in

[4, 10, 6]. The implementation has four main steps: feature

detection, clustering, learning and recognition. The next

Sections detail these steps.

3.1. Feature detection

For feature extraction, as most of the approaches, we rely

on Lowe’s "Scale Invariant Feature Transform" (SIFT) fea-

tures [8]. In this approach keypoints are identified by finding

peaks of a Difference-of-Gaussian (DoG) function applied

to different scales of an image. Keypoints of an image are

located in regions and scales where there is a high amount

of variation. This means that these locations contain use-

ful information for matching. In addition, since these key-

points are in the peak of DoG, minor changes in their sur-

roundings do not greatly affect their locations. The SIFT

descriptor of a feature contents its location, scale and a lo-

cal key descriptor of the region around it. Performing Prin-

cipal Components Analysis (PCA) on the SIFT descriptors

we reduce their dimensionality from 128 to 40 and gain ro-

bustness to image deformations [15]. Besides the gain in ef-

ficiency, the dimensionality reduction also improves gener-

alization properties of these features since the similarity be-

tween two descriptors is calculated over lower dimension-

ality vectors.

Different methods to find features in the image can be

used. In [10] a Canny edge detection combined with Lapla-

cian based automatic scale selection is used instead DoG.

The Kadir and Brady method [5] used in [4, 3] finds circu-

lar regions in the image having the highest saliency based

on maxima of the entropy scale-space of region histograms.

In both cases, the SIFT descriptor is used as the identity to

the features.

To show the matching accuracy for SIFT features, a test

was made with two images from the same environment in

different observation points. The image produced by the

matching process is shown in Figure 2. We can observe that

most of the features in the top image match to the object re-

lated in the bottom image.

Figure 4(b) shows an image with the sift features ob-

tained by this process. The features are represented by vec-

tors where their sizes and directions represents the scales

and orientations in the image.

3.2. Clustering

The two main clustering methods used in related ap-

proaches are k-means and hierarchical agglomerative. We

first apply k-means partitioning to the feature space. For

each cluster produced, the agglomerative method is applied

Figure 2. Matching result

computing the distance between the features in the bottom

nodes and merging the two closest until the last two nodes

are merged. The node created in that merging carry the in-

dex of the merged nodes and based on their centers, the new

center calculated. The average linkage criteria is applied to

obtain the center of the node and the Euclidean metric is

used in distance calculations. The agglomerative method is

applied once more to merge the top nodes. The k value in

the k-means process is defined based on [9] as :

k ≈ (n/2)1/2 (4)

where n is the number of features.

The tree now is pruned in a chosen level. The more lev-

els has the tree more specific will be its bottom nodes, now

called appearance clusters, because the proximity to the lo-

cal features. The name appearance clusters is given due to

the agglomeration of features whose descriptors are near in

Euclidean space, in other words, they have the same visual

appearance, even belonging to different objects.

In Figure 3 we show an example of the tree structure.

The dashed line shows the pruning level. The selection of

the number of levels depends on the feature distribution and



needs to be empirically defined. A level definition analy-

sis is shown in Section 4.

Figure 3. Appearance cluster representation

3.3. Recognition

Given a query image, the features are extracted and clus-

tered as described above and a query tree is produced. The

objective is to match the query features in the model to com-

pute the likelihood function as describe in Section 2. The

clustering stage is used upon the query features to speedup

the process since described in [10], this process is approxi-

mately 200 times faster compared to exhaustive search. The

likelihood is computed and finding local maxima in its dis-

tribution, we find initial hypothesis for objects. As we de-

spise the geometric distribution of the objects while build-

ing the tree model, we are not able to return the exact space

where the object is in the query image, but the bounding

box that hold the features of the hypothesis object.

3.4. Learning

The process of learning an object category is unsuper-

vised. As described in Section 2, the learning objective is

to estimate the model p(aj |Om) and p(aj |B). That way

we first extract features F from all labeled training exam-

ples. We then build the appearance clusters by clustering

the feature set with k-means and agglomerative as described

above. After pruned, the tree is ready to receive the likeli-

hood information. We match the features back to the appear-

ance clusters centers. Matches are considered only within a

threshold β, defined for each appearance cluster during ag-

glomerative process. It represents the distance from the cen-

ter of the cluster to the most far feature agglomerated in this

cluster. Each feature that matches to aj contributes to the

probability estimate. A different feature set can be used in

this stage.

The parameter to be calculated in this stage, as defined

in Section 2, is the likelihood of the appearance cluster aj

given a object Om. This probability is given by

p(aj |Om) =
∑

i

p(aj |Om, fi)p(fi|Om) (5)

We make use of threshold based matching where

p(aj |fi) is a binary decision where the feature match or

not the appearance cluster, and p(aj |Om) would be a ra-

tio of the number of features that match to cluster aj to the

total number of matches.

There are two ways to compute the likelihood, the

threshold based and a function of similarity. The func-

tion of the similarity between the labeled feature and the

appearance cluster is used in the approach [10]. For com-

parison, the similarity function can have the following

model:

p(aj |fi) =
1

Z
exp

(

−
‖aj − fi‖

2

β

)

(6)

Z is chosen such that
∑

j p(aj |Om) = 1. The constant β is

a threshold when matching the fi to the cluster aj .

4. Experimental results

The presented approach was tested using a real world an-

notated data set, obtained from the project "From Sensors to

Human Spatial Concept" [1]. The image sequence was cap-

tured by an omnidirectional camera using a hyperbolic mir-

ror at 7.5 fps. However, only the odd numbered images were

annotated. The complete data set used is composed by 1401

images. For the training set, we use one to each ten im-

ages resulting in a set of 140 images. The color informa-

tion is not used in our approach, only the intensity informa-

tion is used, in other words, a gray scale representation of

the color image. To enhance the image quality a simple his-

togram equalization was performed.

The target objects in our dataset are armchair, bookcase,

cabinet, computer desk, couch, wardrobe and tv. The Fig-

ure 1 is an exemplar of the dataset and Figure 4(a) has the

annotation example used in training stage. Some of the tar-

get objects can be found in these images.

The background – in other words, everything but the tar-

get objects – is responsible for about 65% of the features

in the feature space. Furthermore, these features belong to a

plenty of other objects that fits the appearance clusters and

in many cases, their probabilities are higher than the objects

that belongs to the cluster. This way, the background recog-

nition reaches 99% of success but disturb the other objects

recognition. To overcome this issue, the background fea-

tures can be partially rejected in learning stage.

Our first observations were made upon the labeled fea-

tures. We match these features to the model and analyze the



(a) Annotated image (b) Features detected and represented in the image

Figure 4. Image examples

result individually. Another way is to analyze the clusters

of features belonging to the same object in the query im-

age. That way the error rate must be lower.

One study we made cares about the tree level, which

might be empirically defined. We notice that low values

cause higher error rates analyzing the individual features.

Tree levels near the original (tree level before pruning),

cause lower error rates for individual features but a reduc-

tion in generalization. This happens in our tests because the

objects for each class are the same in the whole dataset,

for example, the couch in every image is the same. So it is

acceptable that when we math the features from couch to

the model with the original collected features during train-

ing stage, the matching result is higher. On the other hand,

when a different couch features are match to the model, the

error rate is higher. In this case we need more generic nodes

in the bottom of the tree. So the importance of the pruning

level. The Figure 5 shows that analysis for the couch ob-

ject.

Figure 5. Tree level analysis

The use or not, of background information in the train-

ing stage, was also analyzed. With the tree level fixed in 5

and using the background information in the training stage,

the error rate for the objects is 62% and for the background

features is 1%. Now, not using the background information,

the error rate is 49%. When using the background informa-

tion, the top probable object in the appearance cluster distri-

bution is background. That is the reason for the higher error

rate.

Object Features Recall

Cabinet 1418 9%

Wardrobe 1022 26%

Couch 537 59%

Bookcase 5360 57%

Armchair 570 24%

Desk 1562 32%

TV 122 29%

Table 1. Objects recall

In table 1 we show the target objects for recognition,

their amount of extracted scale invariant features and the

recall percentage in our first tests. For this test we set the

tree level in 5, which is the mean value in depth of most

the trees produced in clustering stage. We notice in this re-

sult that objects with more variability of features as a couch

or a bookcase have higher recognition values. Objects that

can be confused with others have lower recognition val-

ues. In recognition process they are also confused with sim-

ilar objects with higher likelihood. To overcome this issue,

other variables representing different characteristics in the

objects, like color, geometric details or texture, can be used



in a joint probability distribution. As more details we can

extract from the objects and map in the generative model,

as accurate can be our results.

In further tests, the lower error rate achieved was 6%.

However the analysis made in the level of the features only

partially reflects the analysis in object level. An object can

be located in an image with 3 strongly matched features

as shown in [8], so even with low rates of recognition in

the feature level, we can have high rates in object recogni-

tion. This object level analysis is being developed for the

progress of the research.

5. Conclusions and future work

With the presented approach we show our first attempts

to use a set of techniques to make the detection of object

classes in images obtained from omnidirectional vision sys-

tems. The used techniques are commonly applied to the de-

sired task with successful results. We observe that the gen-

erative model has a simple implementation but some par-

ticularities need exclusive attention, as the definition of the

method for the cluster-feature likelihood calculation. The

tree model used to represent the object classes is a power-

ful tool and also deserve some attention while defining the

tree level and other parameters.

An important point for discussion is the use of back-

ground features in the model. Our experiments show that

their presence during the training stage can cause a confu-

sion in the probabilistic model, but changes in the way we

treat them might correct this problem. In our implementa-

tion we deal with the background as being an object as the

others.

Future works include tests with image segmentation to

previously identify possible object regions in the image.

Also improvements in the object model as well as in recog-

nition and learning stages shall be done. The goal is to pro-

duce a real time system to equip mobile robots for new

researches. For that purpose, we are also concerned with

the computational costs in time and space. So tests and im-

provements also need to be done with this goal.
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