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Abstract

The aim of this work is to show how to compute an extra hypothesis H to an unproved sequent I' F* G,
such that:

e ') H F @ is provable;

e H is not trivial.

e If ' - G (which is not known a priory) then I', H - G has a much simpler proof.

Due to the last item, this is not exactly the usual abductive reasoning found in literature, for the latter
requires the input sequent not to be derivable.

The idea is that I' is a contextual database, containing background knowledge, (G is a goal formula repre-
senting some fact or evidence that one wants to explain or prove, and H is an hypothesis that explains the
evidence in the presence of the background knowledge or that facilitates the proof of GG from T'.

We show how this task is related to the problem of computing non-analytic cuts. Several algorithms are
provided that compute efficient proofs with non-analytic cuts via abductive reasoning.

This is a joint work with Marcello D’Agostino and Dov Gabbay.

Keywords: Abductive reasoning, proof efficiency, non-analytic cuts, sequent calculus.

1 Introduction

Abductive reasoning, as usually found in the literature, is concerned with computing
an explanation, or a extra hypothesis, such that, given a set of background data and
a goal, the data together with the extra hypothesis prove the goal. In formal terms,
given the data I' and the goal G such that I' I/ G, the abduction process produces
a formula H such that I', H I/ G[9,8,10,5,2,1,6].

The literature provides certain restrictions to a hypothesis H to be acceptable
as an explanation. In our case, we fix the following constraints.
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e ' H - G is provable;

o if ' U{G} is consistent then I'U {H} is consistent; and H I/ G, that is, H alone
does not imply G.

Although no underlying logic is fixed for the notion of abduction to be defined,
in this paper we consider only classical propositional logic.

Our task, however, is not exactly the usual abductive reasoning found in the
literature. It is in fact a generalisation of the traditional abduction task, simulta-
neously covering two cases:

(a) if I" I/ G, the problem reduces to traditional abduction, which we call hypothesis
generation. In generating H, we will search for a compromise between minimal-
ity and computational efficiency, which is, in fact, in accordance with Peirce’s
perception of “best explanation”, as he introduced the notion of abductive rea-
soning [7].

(b) if T'F G is provable, the task is not that of explaining a given set of data, but
that of facilitating its proof, which we call lemma generation. We further expect
the produced provable sequent I'y H - G to have a simpler proof than I' - G,
where “simpler” may mean “shorter” or just “easier to grasp”. There is also a
compromise to be reached between finding a simpler proof and finding a proof
at a small computational cost.

We are expanding the traditional explanationist view of abduction, with
asimplificationist view of abduction, that is, a capacity of providing a simpler or
more compact account of facts. This extended view of abduction makes sense if the
validity of I' - G in not known in advance, as in traditional theorem proving.

This process of computing extra hypothesis to a provable sequent is closely
related to computing non-analytic cuts. The composition of several abduction steps
leads to what we call dynamic abduction, in which a proof or refutation of a given
sequent I' F? @ is obtained by composing the abductive steps with non-analytic
cuts in sequent proofs.

This paper presents the algortihmic side of generalized abduction applied to
computing proofs, with a discussion for associated heuristics. A larger version with
a broader discussion of the method is in preparation [3].

We present a technique for computing an extra hypothesis based on tableau
method. The same technique is used for both cases: I' F G and I' i/ G. As
Smullyan’s Analytic Tableaux [11] is based on a cut-free version of the sequent
calculus, we employ the KE tableau method which is able to efficiently simulate
sequent calculus with full use of cuts [4]. This method can be dynamically iterated,
so as to compute non-analytic proofs. Those proofs tend to be shorter than ana-
lytic one. An example is presented showing how polynomially sized proofs can be
computed according to this method for a subclass of Tseitin formulas.

The paper is structured as follows. Initially, the concepts related to KE-tableau
in Section 2. The basic KE-tableau abductive procedure is presented in Section-
sec:branch. It is then shown how this method can be iterated to compute proofs
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with non-analytic cuts in Section 4. An example of how the method can be used to
compute polynomially sized proofs of a (limited) class of “hard” tautologies, namely
a subclass of Tseitin Formulas, is shown in Section 5. Section 6 then concludes the

paper.

2 Preliminaries

We consider formulas built over a countable set of propositional atoms denoted by
the lower case letters p,q,r, etc., and connectives =, A, V and —. We represent
formulas by upper case Latin letters: A, B, C, etc. We represent sets of formulas
by upper case Greek letters, such as I'; A, & and W. We write I'; A to represent
TU{A} and T, A to represent T' U A.

A sequent is an expression of the form I' H A, where I' is the antecedent and
A is the succedent. A sequent inference rule allows one to infer a sequent S from
zero or more sequents Si, ..., Sg. If the inference rule has 0 premisses, it is called a
sequent axiom. A k-premissed inference rule, with k > 0, is called analytic if every
formula in the k premisses occurs as a subformula in the conclusion §. In most
sequent calculi, all rules are analytic, except for the cut rule, which we assume to
have the following format

I'MEALA ATy Ay
', Ty A, A

(Cut)

The formula A is called the cut formula of this inference and the cut is analytic if
A occurs in T'1, Ty A1, As. A sequent proof is a tree whose nodes are sequents,
having sequent axioms at its leaves and such that every internal node is obtained
by the application of some k-premissed inference rule, k > 0. A proof is analytic if
it only uses analytic inferences. We assume that the only potentially non-analytic
rule is cut, so that a cut-free proof is always analytic. We write I' ¥ A when we
do not know if I' = A is provable.

KE-tableaux were proposed by D’Agostino and Mondadori [4] incorporating the
principle of excluded middle or, at the semantic level, to the principle of bivalence
(PB). This principle is the tableau correspondent of the cut rule in the sequent
calculus.

KE-tableaux deal with signed formulas. If A is a formula, T" A and ' A are
signed formulas. T' A is the conjugate formula of F' A, and vice versa; if X € {T, F'}
then X is defined as follows: T = F and F = T. Each connective is associated with
a set of linear expansion rules also called elimination rules. Linear expansion rules
always have a main premiss, i.e. the one containing the connective to be eliminated;
two-premiss rules also have an auziliary premiss. Figure 1 shows the KE linear
linear expansion rules for classical logic. The only branching rule in KE is the
Principle of Bivalence (PB), stating that a formula A must be either true or false,
as illustrated in Figure 2.

The expansion of KE-tableau for the sequent Aq,...,A, - Bi,..., B, starts
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Fig. 1. KE Expansion Rules

Fig. 2. Principle of Bivalence

with a single branch containing T A1, ...,TA,, FB1,...,FB,,. A branch expansion
step is allowed when the premisses of an expansion rule are present in the branch
and results in adding the conclusions of the rule to the end of that branch. The PB
branching rule splits a branch into two.

The goal of the expansion is to obtain a complete KE-tableau. The tableau is
complete if every branch in it is complete. A branch is complete if it is either closed
or saturated.

A branch is closed if it contains F' A and T' A for some A; otherwise it is open.
The tableau is closed if all its branches are closed; a closed tableau is complete.

A branch is saturated if it is open and all non-atomic signed formulas in it are
fulfilled. A signed formula is fulfilled in a branch if it is the main formula of an
instance of an expansion rule such that the conclusions of that instance already
occur in the branch. Clearly, if a formula is the main formula of an expansion it
becomes fulfilled; however, it is possible for a non-atomic signed formula to become
fulfilled by the expansion of other signed formulas as well. Note that any valuation
that satisfies the conclusions of an instance of an expansion rule also satisfies its
main formula, so that fulfilled formulas are “subsumed” by other formulas in the
branch. By definition, a signed atomic formula is always unfulfilled.
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The deductibility relation + .. is defined as follows:

KE

Ar, .. Ay by B, ..., By, iff there is a closed KE-tableau for
TA.,...,TA,,FB,...,FB,,. (1)

Any saturated branch provides a counter-valuation for the sequent.

3 A KE-tableau Abductive Procedure

The basic step of the method is to abduce a signed formula based on an open
branch, which may or may not be saturated. The branch is viewed as a set of
signed formulas, and a formula is abduced so as to close the branch.

Given a nonempty set of signed formulas ® = {T'Ay,...,TA,, FB1,...,FBy},
we compute the hypothesis H(®) as follows:

(

-Aq ,ifn=1,m=0
By Lifn=0m=1
H(®)=q =(A1A...ANAY) Lifn>1,m=0
BiV...VBp, Lifn=0,m>1
(AiN...NAp) — (B1V...VBy),ifn>0,m>0

Lemma 3.1 Given a KE-tableau branch containing formulas ®, if we add T H(®P)
as a top hypothesis, then this branch can be expanded into a closed subtree.

If the initial tableau has more than one open branch, then we have to apply
this method to each branch. The final abduced formula is the conjunction of the
formulas computed for each branch. This idea is presented in Algorithm 1, which
presents the branch-driven abduction algorithm. Note that it is a non-deterministic
algorithm in a twofold way. First, it lets one expand the tableau in whatever fashion
one wants, and the halting of this expansion is not specified; this non-determinism
is in fact hidden in the fact that a partially expanded tableau is given as input to
the abduction process. Second, one can choose the subset ® of unfulfilled signed
formulas to generate the abduced hypothesis.

Theorem 3.2 (Correctness of Algorithm 1) Algorithm 1 is correct, that is, on
input I'H* G it outputs a formula H such that T, H - G.

4 Cut-Based Dynamic Abduction

Before we describe the dynamic abduction procedure, consider the following result,
which is used extensively by it. This result is based on the application of the Cut
Rule to a pair of sequent; similarly, it can be obtained by the application of PB to
combine a pair of KE-tableaux.
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Algorithm 1 Branch-driven Abduction
BranchAbduction(T', G, T)

Input: A sequent I' -’ G, and 7 a partially expanded tableau for it
Output: A hypothesis H such that ' H - G

1: Let By, ..., By be the open branches in 7.
2: for i =1 to k do
3 Let U; = {X A € B;| X A unfulfilled in B;}
4:  Choose ¢; C U,
5 Let H; = H(q%)

6: end for

7. return Hy A... A Hyg

Lemma 4.1 Suppose ' H+FG. ThenT -G iff TH H,G.

The dynamic process of repeated applications of the branch abduction algorithm
is illustrated in Figure 3.

TT

TN

Fig. 3. The Dynamic Abduction Process

The idea of the construction on Figure 3 is the following. One starts with the
construction of a proof for the original sequent I' ¥ G. Suppose there is some
method for deciding how to start building a finite tableau 77 for it; it can be either
atom elimination, or approximated reasoning, or any decidable method. If 77, then
the proof is finished. Otherwise, the abduction Algorithm 1 is applied, yielding an
abduced formula Hy. The correctness of the algorithm guarantees that an extension
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of tableau 77 for T', H; G closes. Furthermore, Lemma 4.1 guarantees that the
original sequent is provable iff I' = H;, G is, so the proof proceeds by constructing
a tableau for T'F* Hy, G ; the KE-method, guarantees there is a proof or refutation
for it no longer than a proof or refutation for the original sequent. A proof for
the original sequent can be composed with a single application of a potentially
non-analytic cut, ie a branching over the abduced formula H;.

This process can then be iterated, as illustrated in Figure 3. Tableaux 71,...,7,
all close due to the correctness of Algorithm 1. After every abduction step 4, only
the rightmost branch, namely the one containing F' H;, is open. At the end of the
proof, the rightmost tableau 7* closes iff the initial sequent is provable, due to iter-
ated applications of Lemma 4.1. When this process terminates we have computed
potentially non-analytic cut formulas Hq,..., H,, generating a non-analytic proof
or refutation for the input sequent.

The dynamic abduction algorithm is shown in Algorithm 2. The idea is to
parameterise it with an abduction heuristic H. Note that the final product is a
non-analytic proof for the original sequent.

Algorithm 2 Non-analytic Tableau Proof via Dynamic Abduction
DynamicAbduction(T', G, H)

Input: A sequent I' - G and abduction heuristics H.

Output: A tableau 7 for I' - G or a counter-valuation

1: ¢:=1

2. openBranch := {TA|A € T} U{FG}
3: 7 := openBranch

4: while true do

5 7; := apply abduction heuristics H to openBranch

6 if 7; closes then

7: Attach 7; to the end of the open branch in 7

8: return 7

9:  else if there is a saturated open branch in 7; then

10: return a counter valuation obtained from the open branch

11: else

12: H; := BranchAbduction(openBranch, T;)

13: 7; := expand and close 7; U{TH;}

14: Expand 7 with an application of PB. On the left add TH; and 7;. On the
right add F H;

15: openBranch := openBranch U {FH;}

16:  end if

17 =141

18: end while

At each iteration step 4, a tableaux 7; is expanded as an application of the
abduction heuristics to I' F* Hy, ..., H;_1,G without using the abduced hypothesis
H;. In fact, H; can only be computed after 7; is expanded. When 7; is expanded,
there are three possibilities:
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¢ The analytic tableau for 7; closes (line 6). Then a proof has been constructed for
the original sequent I' - G.

e The analytic tableau for 7; has an open saturated branch (line 9). Then a coun-
terexample for I' I/ G has been obtained.

e 7, is open, with no saturated branch. In this case, we can apply Algorithm 1
and compute H; (line 12). By the correctness of the procedure, 7; can be closed
adding H; (line 13), so 7; is expanded an analytic closed tableau for T', H; F
Hl, ce 7Hz'—17 G.

The two initial cases are the termination cases of the non-analytic proof. In
the last case, the construction of the proof can continue, such that 7; is a closed
sub-tableau. In general, the abduced formula H; is not a subformula of the original
sequent, so the process is very likely to generate a non-analytic proof.

Theorem 4.2 (Partial correctness of Algorithm 2) If Algorithm 2 stops,
then either it produces a proof of I' = G or it produces a counter-valuation for
it.

Termination depends on the abduction heuristics chosen. If the abduction
heuristics has the potential of generating infinite proofs, this process can always
be interrupted. In this case, a fixed number of iterations k may be also given as
part of the heuristics, such that the abduction procedure can be replaced by a

simple analytic KE tableau expansion for ' * Hy, ..., Hi, G. This last expansion
generates the tableau 7* is Figure 3 and it is guaranteed to always terminate.

4.1 Abduction Heuristics

An abduction strategy or abduction heuristics is a procedure that allows one to
choose the abduction parameters. Such abduction heuristics has to decide:

* When to apply abduction?
¢ Which formula do abduce?

A naive heuristics can be described by:

e When to apply abduction?
After applying all linear expansion rules

e Which formula do abduce?
The least compromising formula. That is, for each branch compute H(®),
where ® is the set of all unfulfilled formulas in the branch.

However, this form of heuristics is non-terminating, for the tableau has the same
unfulfilled formulas after applying abduction as it had before.

This means that abduction is not a panacea. It can give extra hypotheses that
make the original proof more efficient, but a naive approach will not guarantee a
more efficient proof for the input sequent, I' - G.

A better abduction heuristics is given as follows. Instead of building a normal
tableau, several subsets of the signed formulas will be chosen after an initial linear
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saturation of the tableau. Each subset will not generate in general a closed tableau;
if one subset generates a closed tableau, the search space shrinks. So the abduction
procedure is applied to the complete tableau generated by a subset of the original
formulas, such that:

e The formulas in a selected subset must have some atoms in common.

e The abduction process will not compute the least compromising formula. The
aim is to eliminate from the abduced formulas some or all of the common atoms,
so as to promote a reduction in the “dimension” of the problem. This can be
done safely whenever such atom occurs only in the selected subset of formulas,
and nowhere else in that branch.

We call it the subformula elimination heuristics, which can be described by:

e When to apply abduction?
Choose a set of subformulas {Aj,..., Ax} to be eliminated, construct a com-
plete tableau for all formulas containing some A4;,1 < i < k.

¢ Which formula do abduce?
For each open branch B, compute H(®), where ® is the set of unfulfilled for-
mulas in B not containing some A;,1 <i < k.

Clearly, when the eliminated subformulas are atoms, the elimination heuristics
is terminating, for there are only finitely many atoms to eliminate.

Note that a generic sequence of elimination steps, each of which eliminates a
set of atoms or subformulas from the sequent, has the potential of producing a
multiplicative increase in the size of the resulting abduced formula, which can lead
to an exponential explosion on the size of the proof.

However, for a very well know class of “hard” formulas, this heuristics is capable
of producing short proofs.

5 An Example

We consider here Tseitin Formulas, for which it is know that there does not exit proof
of polynomial size with respect to the number of atoms, if only clausal resolution is
applied [12].

In fact, we are going to consider here a Tseitin sequent I' = A constructed as
follows. Consider any undirected graph G' = (N, E), where N is the set of nodes,
|IN| = n, and the FE is the set of edges, |E| = m < n(n —1); it is possible that more
than one edge connects two nodes. Every edge is associated to a distinct atom pj,
1 < j < m, and every node is associated to a formula Ay, 1 < k < n, namely the
exclusive-or of all adjacent edges. An odd number of nodes receive marks; usually,
a single marked nodes suffice. Let I' be the set of formulas associated to marked
nodes, and let A be the set of formulas associated to unmarked nodes. The sequent
I'F A is always provable, a fact associated to the property that the sum of degrees
of all nodes in a graph is even. In fact, each propositional valuation represents a
subgraph of GG, to which the property also applies.



48 M. Finger / Electronic Notes in Theoretical Computer Science 247 (2009) 39—49

We consider here a subclass of Tseitin Graphs, namely 2, k-grids, which are
graphs of the following format:

1 1 1 1
v Vy Vi1 Vi
2 2 2 2
51 D) Vi1 Vi

Theorem 5.1 Let I' = A be a Tseitin sequent based on a 2,k-grid graph G =
(N, E) with an odd number of marked nodes. Then the the subformula elimination
heuristics produces proof of polynomial size on the size of T' = A.

The proof is sketched as follows. Let Gy = (G. There are two phases. In the
first phase, each abduction step ¢ transforms G;_; into G; with one fewer node a
one or more fewer edges. This is done by choosing a pair of adjacent nodes, v} and
v2, and fusing them into uil ’2, eliminating the edges with extremities on v} and 2.
After k steps, the result is the following graph.

12 —— 1,2 — — 12 /1,2
1 \/VQ '“\/Vk—l\/ k

In this process, no node has degree above 4, so the formulas computed by ab-
duction with subformula elimination heuristics, which associates a formula for each
node I/Z-l 21 < i < k, have at most 2% atoms, so are of bounded size with a fixed
bound; to abduce each such formula, there are two formulas in the initial tableau
with two branches each of depth at most m. As there are k node fusion in this
phase, this part of the proof is O(km) in space.

The second phase consists of fusing two adjacent nodes in the graph at the end
of phase 1, shown above. This corresponds to performing abduction to eliminate
the two proposition symbols representing the two edges between the nodes. When a
single node is obtained, the tableau is closed. The formulas computed by abduction
have also at most 2¢ atom occurrences. Each abduction step produces a tableau
with at most four branches of depth at most m. So the second phase of the proof
is also O(km) in size. So the constructed tableau is polynomial in size with the
number of atoms of the initial problem, times k, which finishes the proof.

A method that deals with any kind of Tseitin formula is currently under analysis.

6 Conclusion

A generalized abduction method was presented which allows for the computation
of non-analytic cuts in KE-tableau proofs. The method presented was capable
of generating polynomially sized proofs to some limited class of “hard” theorems.
Future work intends to explore the application of these methods, with possibly new
abduction heuristics, to a larger class of problems.
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