SEMINÁRIO JUNIOR

Algebras de Lie e de Jordan e suas Representações

Irreductible Representations of Jordan Superlgebras JG(n)

A dot-bracket superalgebra $F = (F_0 + F_1, \cdot, \{,\})$ is an associative, supercommutative ϕ -superalgebra (F, \cdot) together with a super-skew-symmetric bilinear product $\{,\}$. With this a **Kantor superalgebra** J(F) is defined via the **Kantor doubling** process that is a Jordan superalgebra if and only if $\{,\}$ is a Jordan superbracket. In particula, when $F = G_n$ is the Grassman superalgebra with odd generators e_1, e_2, \ldots, e_n , with $e_i e_j + e_j e_i = 0$ and $e_i^2 = 0$, together a bracket (Jordan Superbracket), it is obtained $JG(n) = J(G_n)$ that is a Jordan superalgebra. It is shown that the irreductible representation (Bimodules) have finite dimention and give its table of multiplication for n = 2, 3, 4, the only open cases, and some results for any n over a field of characteristic $\neq 2$.

Olmer Folleco Solarte

USP

18/03/2013, Segunda-Feira, 16:00h, Sala 241-A.