ULRICH IDEALS AND MODULES – A BASIC THEORY

S. GOTO

My lecture is based on the joint work [GOTWY] and reports a generalization of Ulrich modules (and ideals) in a given Cohen-Macaulay local ring A. The purpose is to explore their structure and give some applications. I will talk about the basic theory of Ulrich ideals and modules.

Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring and $d = \dim A \ge 0$. We assume that the residue class field A/\mathfrak{m} of A is infinite. Let M be a finitely generated A-module. In [BHU] B. Ulrich and other authors gave structure theorems of <u>Maximally Generated</u> <u>Maximal Cohen-Macaulay</u> modules, i.e., those Cohen-Macaulay A-modules M such that $\dim_A M = d$ and $e^0_{\mathfrak{m}}(M) = \mu_A(M)$, where $e^0_{\mathfrak{m}}(M)$ (resp. $\mu_A(M)$) denotes the multiplicity of M with respect to \mathfrak{m} (resp. the number of elements in a minimal system of generators for M). Let us call these modules MGMCM or, simply, Ulrich modules ([HK]).

We shall generalize this notion in the following way.

Definition 1. Let I be an m-primary ideal in A and let M be a finitely generated A-module. Then M is called a Ulrich A-module with respect to I, if

- (1) M is a Cohen-Macaulay A-module with dim_A M = d,
- (2) $e_I^0(M) = \ell_A(M/IM)$, and
- (3) M/IM is A/I-free,

where $\ell_A(*)$ stands for the length.

If the ideal I contains a parameter ideal Q as a reduction, condition (2) is equivalent to saying that IM = QM, provided M is a Cohen-Macaulay A-module with $\dim_A M = d$. Remember that Ulrich modules with respect to the maximal ideal \mathfrak{m} are exactly Ulrich modules in the sense of [HK].

We define Ulrich ideals as follows.

Definition 2. Let I be an \mathfrak{m} -primary ideal in A. Then we say that I is a Ulrich ideal of A, if I/I^2 is A/I-free, I is not a parameter ideal of A, but contains a minimal reduction Q such that $I^2 = QI$.

When $I = \mathfrak{m}$, this condition is equivalent to saying that our Cohen-Macaulay local ring A is not a RLR, possessing maximal embedding dimension in the sense of J. Sally [S].

In my lecture I will report some basic structure theorems of Ulrich modules and ideals, including the following.

Theorem 3. The following three conditions are equivalent, where $\text{Syz}_A^i(A/I)$ $(i \ge 0)$ stands for the *i*th syzygy module of the A-module A/I in a minimal free resolution.

- (1) I is a Ulrich ideal of A.
- (2) $\operatorname{Syz}_{A}^{i}(A/I)$ is a Ulrich A-module with respect to I for all $i \geq d$.
- (3) There exists an exact sequence

$$0 \to X \to F \to Y \to 0$$

- of A-modules such that
- (a) F is a finitely generated free A-module,
- (b) $X \subseteq \mathfrak{m}F$, and
- (c) both X and Y are Ulrich A-modules with respect to I.

When d > 0, one can add the following.

(4) $\mu_A(I) > d$, I/I^2 is A/I-free, and $\operatorname{Syz}_A^i(A/I)$ is a Ulrich A-module with respect to I for some i > d.

It seems very interesting to explore how many Ulrich ideals are contained in a given Cohen-Macaulay local ring. For example, let k[[t]] be the formal power series ring over a field k and let

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]]$$

be a numerical semigroup ring, where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $GCD(a_1, a_2, \ldots, a_\ell) = 1$. Let \mathcal{X}_A^g be the set of Ulrich ideals in A which are generated by monomials in t. Then the set \mathcal{X}_A^g is finite, because every Ulrich ideal I of Acontains the conductor $A: \overline{A}$. Just for example, we get the following.

- (1) $\mathcal{X}^{g}_{k[[t^3, t^4, t^5]]} = \{\mathfrak{m}\}.$

- (1) $\mathcal{X}_{k[[t^{a},t^{a},t^{5}]]}^{g} = \{(t^{4},t^{6})\}.$ (2) $\mathcal{X}_{k[[t^{a},t^{a+1},...,t^{2a-2}]]}^{g} = \emptyset$, if $a \ge 5$. (3) $\mathcal{X}_{k[[t^{a},t^{a+1},...,t^{2a-2}]]}^{g} = \emptyset$, if $a \ge 5$. (4) Let 1 < a < b be integers such that GCD(a,b) = 1. Then $\mathcal{X}_{k[[t^{a},t^{b}]]}^{g} \neq \emptyset$ if and only if a or b is even.
- (5) Let $A = k[[t^4, t^6, t^{4\ell-1}]] \ (\ell \ge 2)$. Then $\sharp \mathcal{X}_A^g = 2\ell 2$.

Let $\mathcal{X}_A = \{I \mid I \text{ is a Ulrich ideal of } A\}$. We then have the following answer also.

Theorem 4. Suppose that A is of finite C-M representation type. Then \mathcal{X}_A is a finite set.

When A is of finite C-M representation type and dim A = 1, I will give a complete list of Ulrich ideals in A.

References

- [BHU] J. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61, 1987, 181–203.
- [GOTWY] S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida, Ulrich ideals and *modules*, Preprint 2012.
- J. Herzog and M. Kühl, Maximal Cohen-Macaulay modules over Gorenstein rings and [HK] Bourbaki sequences. Commutative Algebra and Combinatorics, Adv. Stud. Pure Math., **11**, 1987, 65–92.
- [S]J. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra, 56 (1979), 168-183.