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Abstract. A structural analysis of product Boolean algebras is used as an intuitive
ground for the formulation of algorithms in pattern recognition. In this analysis, we
show some mathematical results to elucidate the properties of product Boolean alge-
bras relevant to understand how its structure can be used for classification in the fea-
ture space. In this sense, we discuss two algorithms for clustering selection in feature
spaces where the clusters are not clearly delimited.

1 Introduction

In [2] was proposed that the product Boolean algebras are the most natural way to deal with
bit sequences, as long as we want to use a structured algebraic framework. In that paper,
a study of the relationship between the bit sequences and the basic structural properties of
product Boolean algebras is carried out. The aim of this paper is to continue that work and of
the [3] in showing the manner how a deeper structural analysis of these algebras can be used
to yield new ways to generate algorithms.

The organization of this paper is as follows. In Section 2 we discuss the distance concept
in a general, abstract way. In Section 3 we present the definition of product Boolean algebra
and define a distance function into this algebra: the Boolean valued distance. This distance
concept is fundamental in the approach of this paper, and the sequel of this paper is based on
it. In Section 4 we show how the Boolean space can be partitioned into clusters by using the
Boolean valued distances. Finally, in Section 5 we present two algorithms that show how to
apply the theoretical concepts.

2 Similarity and Distance Concepts

Let us assume as known the basic concepts of pattern recognition as feature vector, feature
space, and so on (see [6], 3). Following [6], letX be a data set. The (hard) clustering ofX is
a partition ofX into n setsX0, X1, . . . , Xn−1 such that the vectors inXi are “more similar”
to each other than the feature vectors of the other clusters. But “more similar” is a vague and
imprecise expression and it should be replaced for a more precise one. In order to formalize
the concept of similarity, several measure concepts were proposed (see, for instance, [4],
271–272 and [1], 130–136). The most used is a concept ofdissimilarity measure, or distance,
formalized by using the framework of the topology of metric spaces.

DEFINITION 2.1. Let E be a feature space. A mapd : E × E −→ R (the set of real
numbers) is a dissimilarity measure or distance if:
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a) d(x, x) = 0, ∀x ∈ E;
b) d(x, y) = d(y, x), ∀x, y ∈ E;
c) d(x, y) = 0 ⇒ x = y, ∀x, y ∈ E;
d) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ E.

The question we want to discuss is: can we replaceR by another set appropriate to give
measures? This requires an abstract analysis of the conditions of Definition 2.1 and in this
analysis we prefer to talk about an indetermined setA, instead ofR, and about a distinguished
elementd0, instead of01. Condition a) states that each element of the space is identical to
itself, i.e., that the distance function takes ad0 value, whered0 denotes the non-dissimilarity.
Furthermore, it can be necessary to establish certain properties of thisd0 w.r.t. the operation
+ in d). Condition b) is only the symmetry of the distance function. The c) is the classic
identity of the indiscernibles, i.e., the indistinct elements of the space must be the same. At
first look, it seems that this is not a very important condition, since we can set the indistinct
elements in the same class, and then we work with these classes in some kind of quotient
space. But this condition prevents the collapse ofd, in the sense that∀a, b ∈ A d(a, b) = d0.

Whereas conditions a), b) and c) do not implicate structural properties on the setA, con-
dition d) requires a relation≤ and an operation+. We will assume once more an abstract
viewpoint and we will discuss about the relationρ and the operation?, instead of≤ and+.
First, we analyze the question: what about the relationρ? We want to useρ for clustering. The
minimum for this purpose seems to be thatρ can be used to fix limits and then we can take the
elements inside these limits to select a cluster. On the one hand, ifρ has cyclic subgraphs2, we
cannot take these limits in a simple way (this means thatρ is a too connected relation). On the
other hand, if there exists many isolated points inA, thenρ also seems to be not appropriate
for clustering. Ifρ is an order or an order alike relation, thenρ seems to induce a structure of
A appropriate to take these limits. With an “order alike relation” we indicate a relation that
with a little work can be transformed into an order, for instance, making the transitive closure
or taking out some points. This order represents the intuitive meaning of “more similar” in a
natural way. In brief, the use of a relationρ to select clusters can be extremely difficult when
ρ is not an order.

Let us assume thatρ is an (partial) order. The operation? represents some kind of cumu-
lative condition on the setA, since condition d) imposes that? must satisfy∀a∈A a ≤ a ? a
(at least, for the image ofd). Other properties of? can be necessary in order to represent the
cumulative properties of the distances: for instance,∀a, b∈Aa?b = b?a, ∀a 6=d0 ∀b b < a?b,
and so on. If we pretend thatρ represents the degree of dissimilarity, it can be interesting that
thed0 will be the minimum ofA with respect toρ, and that∀a∈A a = a ? d0. In a general
way, the condition d) implicates the lack of shortcuts by using?. In other words,d(x, y) is the
shorter path betweena andb, that is, the intuitive meaning of the triangular inequality. This
premise can generate a further discussion, but it is outside the proposal of this paper.

Actually, the properties, relations and operations of the real numbers were used in clus-
tering. For instance, a definition of the Euclidean distance is widely used in clustering, and
requires not only the sum, but also the difference, the square and the square root. The purpose
of this discussion is not how to eliminate the measures onto the reals, but in what cases an an-
other set can be an appropriate candidate. In this sense, we propose a more general definition
of a distance map:

1[6], 358, also usesd0, butd0 ∈ R.
2Non trivial cyclic subgraphs, i.e. with more than one element.
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DEFINITION 2.2. Let E be a feature space,A a set,≤ a partial order onA, ? a binary
operation onA andd0 a distinguished element ofA. Then,d : E × E −→ A is a distance
map if:

a) d(x, x) = d0, ∀x ∈ E;
b) d(x, y) = d(y, x), ∀x, y ∈ E;
c) d(x, y) = d0 ⇒ x = y, ∀x, y ∈ E;
d) d(x, z) ≤ d(x, y) ? d(y, z), ∀x, y, z ∈ E.

The use of this abstract definition is limited by the choice of appropriateA,≤, ?, andd0.

3 Bit sequences and product Boolean algebras

In order to minimize the processing time, bit sequences have been used a long time ago
for encoding information. Thus, instead of dealing with a single information each time, a
parallel processing of information is carried out. In spite of the widely divulged use of bit
sequences, the structure of the product Boolean algebras was rarely applied as their theoretical
framework. Actually, the algebras that can be used in this sense are products of several (but
finite number) two-valued,{0, 1}, algebras. The elements of these algebras are sequences
of 0’s and 1’s, immediately related to bit sequences. In the sequel, we summarize the main
concepts of the Boolean algebras needed in this paper3. First, we need to define a lattice.

DEFINITION 3.1. A lattice 〈L,≤〉 is a partially ordered setL with an order relation≤, a
join or supremum operation (∨) and a meet or infimum operation (∧), such that for any
{x, y} ⊆ L, has a supremum and an infimum.

A lattice can be also denoted as〈L,∨,∧〉. Let us denote0 the minimum of a lattice, and1
the maximum of the lattice, if they exist. Now, we can define a Boolean algebra. Forx ∈ L,
a complement forx is ay ∈ L such thatx ∧ y = 0 andx ∨ y = 1.

DEFINITION 3.2. A Boolean algebra〈B,∧,∨,∼, 0, 1〉 is a distributive lattice with0 and1,
such that eachx ∈ B has a (unique) complement.

For a family of Boolean algebras, we can yield a new Boolean algebra that is the product
of this family (see [5], 40–42):

DEFINITION 3.3. Let〈A0, . . . , An−1〉 be a family of Boolean algebras. The product Boolean
algebra is〈A,∧,∨,∼, 0, 1〉, whereA = A0 × . . . × An−1 and the operations defined point
to point, i.e.,

〈a0, . . . , an−1〉 ∧ 〈b0, . . . , bn−1〉 = 〈a0 ∧ b0, . . . , an−1 ∧ bn−1〉

〈a0, . . . , an−1〉 ∨ 〈b0, . . . , bn−1〉 = 〈a0 ∨ b0, . . . , an−1 ∨ bn−1〉

and the order in the same way:

〈a0, a1, . . . , an−1〉 ≤ 〈b0, b1, . . . , bn−1〉 iff a0 ≤ b0 anda1 ≤ b1 and . . . andan−1 ≤ bn−1.
3For a detailed treatment see [5].
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The product Boolean algebras used in this paper are all (finite) products of{0, 1} algebras,
and therefore their elements are always sequences of 0’s and 1’s.

In the context of product Boolean algebras, we can choose asd : B × B −→ R the
function thatd(x, y) = n wheren is the number of bits inx that are different from thoose
in y. We will show that thisd satisfies the conditions of Definition 2.1. The only condition
that requires an argument is d): letx, y andz be bit sequences and letd(x, z) = ε. We can
suppose without loss of generality thatd(x, y) = σ, with σ < ε. Let us consider the bits with
the same value inx andy. We see thaty andz must differ at least inε−σ bits. Otherwise, let
y andz differ in κ bits, withκ ≤ ε−σ. Then, since these bits have the same value inx and in
y, then onlyκ of the considered bits ofx and ofz were different, beingd(x, z) = κ+ σ < ε,
a contradiction. Thus the functiond is a distance in the sense of Definition 2.1.

The approach that is based on the number of bits that are different in both sequences is
useful, but it does not matterwhichare the different bits. In [3] we have introduced another
notion of distance that takes into account this fact. This can be necessary, for instance, if we
are looking for vectors that differ from the representative in a determined way, i.e., in certain
bits and not inn whichever bits. For these cases, the values of the functiond can be taken
in the same Boolean algebra which represents the feature space and we defined(x, y) =
x XOR y, the point to point XOR. We need also theρ and the? of Definition 2.2. The order
of the Boolean algebra is the natural candidate forρ. For the? we choose the join∨. Thus,
we can define:

DEFINITION 3.4. Let B be a product Boolean algebra.d : B × B −→ B is a Boolean
valued distance if:

a) d(x, x) = 0, ∀x ∈ B;
b) d(x, y) = d(y, x), ∀x, y ∈ B;
c) d(x, y) = 0 ⇒ x = y, ∀x, y ∈ B;
d) d(x, z) ≤ d(x, y) ∨ d(y, z), ∀x, y, z ∈ B.

PROPOSITION3.1. The operation XOR is a distance in the sense of Definition 3.4.

Proof: As above, a), b) and c) are obvious. For d), notice that it suffices the argument for
one bit, since all the operations and the order were defined point to point, i.e., bit to bit. Let
xn, yn andzn then-th bit ofx, y ez, respectively. We suppose, without loss of generality, that
xn XOR zn = 1, then-th bit is different inx from z. We have only two cases: orxn 6= yn or
yn 6= zn. Then,xn XOR yn ∨ yn XOR zn = 1.

4 Distances and clustering

The most natural way to select clusters into the feature space is to group in the same cluster
the closest vectors, i.e. closest with respect to the distance mapd in the sense that we fix a
threshold of dissimilarityε such that forx andy in the same cluster we haved(x, y) ≤ ε.
Another way consists in fixing once more a distance thresholdε, but defining thatx andy
belong to the same cluster if there exists a patha = a0, a1, . . . , an = b such thatd(ai, ai+1) ≤
ε. With the first approach, the simplest way is the existence of a set of representatives. Such
a set of representatives can be conceived as having a central vectora in each cluster, so
that it suffices to take everyx such thatd(a, x) ≤ ε to select each cluster. In the best case,
this set of representatives partitions the feature space. Such a set is nameda complete set of
representatives, and defined:
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DEFINITION 4.1. Let A be a set,E a feature space,≤ an order relationship onA, ? an
operation on? : E×E −→ A and letε be a distance threshold. Then,D ⊆ E is a complete
set of representatives if:

a) d(x, y) > ε ? ε, ∀x, y ∈ D;
b) ∀x ∈ E ∃y ∈ D d(x, y) ≤ ε.

The existence of a complete representative set yields a partition of the feature space in
clusters that group the closest vectors.

PROPOSITION4.1. LetD be a set satisfying the conditions of Definition 4.1. ThenD yields
a partition of the feature space.

Proof: Let us assume the notation of Definition 4.1. We definex = {y ∈ E : d(x, y) ≤
ε}, for eachx ∈ D. We will show thatP = {x : x ∈ D} is a partition ofE. First, note
thatx 6= ∅, sincex ∈ x. For

⋃
P = E, onlyE ⊆

⋃
P needs an argument, since the other

inclusion is immediate from the definition of the classesx. Letx ∈ E. Hence,∃y ∈ D, by b)
of Definition 4.1, such thatd(x, y) ≤ ε, and thenx ∈ y ∈ P . We will show thatx

⋂
y = ∅,

for x 6= y. To get a contradiction, suppose∃z z ∈ x e z ∈ y. Then we haved(x, z) ≤
ε e d(y, z) ≤ ε. We sum these inequalities and haved(x, z) ? d(y, z) ≤ ε ? ε. By using b) and
d) of Definition 2.1, we haveε ? ε < d(x, z) ≤ d(x, z) + d(z, y) = d(x, z) + d(y, z) ≤ ε ? ε.

If the feature space is isomorphic toRn, n ∈ N+, then we will not find frequently such a
set of representatives. For a more general definition, we consider anεx for each representative
x:

DEFINITION 4.2. Let E,A, ε,≤ and ? be as above. Furthermore, letD be the set of the
couples〈x, εx〉 with x ∈ E andεx a distance threshold depending ofx. ThenD is a relative
set of representatives if:

a) d(x, y) > εx ? εy, ∀ 〈x, εx〉 , 〈y, εy〉 ∈ D;
b) ∀x ∈ E ∃ 〈y, εy〉 ∈ D d(x, y) ≤ εy.

The first problem that we find by using these definitions is that frequently the set of
representatives does not exist. Another problem is that by usingR to give distances, the
feature spaces are partitioned into hyperspheres, so that it can be hard to put any vector in
some hypersphere, since the space is not the (finite) union of hyperspheres. Alternatively,
we can choose to partition the feature space into hypercubes, instead of hyperspheres. But if
we use hypercubes of different sizes, we can have a vector in the vertices which is closer of
the representative of another cluster than the cluster that it belongs. This is not the case with
a Boolean algebra, since the distances that satisfy the Definition 3.4 yield clusters that are
Boolean hypercubes.

Actually, once determined a distance threshold in a Boolean algebra, it is very easy to
define a partition of the feature space. We note that:

Hx,ε = {y ∈ B : d(x, y) ≤ ε}

is a Boolean hypercube and also a Boolean algebra4 with the restriction of the Boolean oper-
ations toHx,ε. We denote with

∧
Hx

= x0 ∧ x1 ∧ . . . ∧ xn, with xi ∈ Hx,ε the minimum of
4It is possible thatHx would not be a sub-algebra ofB since the minimum and the maximumHx can be

different inB and inHx,ε, but the Boolean operations ofHx,ε are a restriction of the operations inB.
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this algebra, and
∨
Hx,ε

= x0 ∨ x1 ∨ . . . ∨ xn the maximum. Anytime thatε results obvious
from the context, we useHx. We will now define the useful concept of mask. Letxi be i-th
bit of x. Then

(≡Hx)i = 1 iff ∀a, b ∈ Hx ai = bi

In other words,≡Hx has thei-th bit equal to 1 if and only if this bit is equal for all the
vectors inHx. We note that, fora ∈ Hx, it holds a ∧≡Hx =

∧
Hx

. For A ⊆ B, we
state∼A = {∼a : a ∈ A}. Then we havea ∨ ∼≡Hx =

∨
Hx

, and fora, b ∈ Hx, we
havea ∧≡Hx = b ∧≡Hx. Eachx ∈ B, whereas is considered a mask, partitionsB into
equivalence classes. As above, each such equivalence class is a Boolean algebra with the
restricted operations and the minimum and maximum defined from the mask and anyx ∈ B.
Furthermore, for any class it can be found a distance thresholdε ∈ B such that,d(a, b) ≤ ε
if a andb belong to the same class. In brief, any vector of the Boolean algebra can partition
the algebra into classes of similar vectors, whereas we consider it as a mask.

We have analyzed above the distance concept based on the number of different bits in two
sequences. We can define now more formally:

DEFINITION 4.3. Let q(x) be the number of bits equal to1 in x ∈ B.

AndQ(x, y) as:

DEFINITION 4.4.

Q : B ×B −→ N Q(x, y) = q
(≡{x,y})

5 Algorithms

The concepts that we have discussed above yield a new viewpoint useful for the development
of algorithms, since the purely pragmatic manners to work with bit sequences can be replaced
for general methods in a powerful framework. Consider, for instance, the binary morphology
clustering algorithms (see [6], 516). The first step, the discretization of the feature space, has
no sense, since the Boolean spaces are always discrete. It can be necessary to consider the
“resolution” or granularity, because of the impossibility of the computational treatment of
all the hypercubes of the Boolean space. In these cases we can proceed by using blocks of
bits instead of all the elements in the Boolean space. Actually, we have implicitly defining a
homomorphism of the initial algebra in the one formed by blocks of bits.

To present an algorithm (see [3]), we first need a definition:

DEFINITION 5.1. LetB be a product Boolean algebra. Forn ∈ N , let Fn be the family of
distances of degreen, defined by:

Fn = {ε ∈ B : q(ε) = n}

We can now present the following algorithm:
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ALGORITHM 5.1. Cluster Detection by Valley Creation Algorithm, CDVCA.

Initially no element is consider as processed.
Fix b, n ∈ N .
Repeat

Choose a nonprocessed x.
Consider in the sequel only the nonprocessed elements.
If there is some class Hx,ε with more than n elements
for ε ∈ Fb:

a) Choose the Hx,ε’s with the greatest number of
elements.

b) For Hx,ε, set H ′x,ε = Hx,ε −
⋂
δ∈Fb Hx,δ.

c) Choose one H ′y,ε, with y ∈ H ′x,ε, with the greatest
number of elements, create a new cluster Hy,ε and
consider x and the elements of Hy,ε as processed.

Else
consider x as processed

EndIf
Until all elements have been processed.

This algorithm is specially useful when, in the one hand, the feature space has regions with
difference of density, but there is not “valleys”, i.e., regions of the space without elements
that make the cluster selection easier, but, in the other hand, we do no want too few clusters.
This is the purpose when we take out the intersection of the classes selected in a first step
(theHy,ε’s): we want to create “artificial valleys” and then we will use these valleys to divide
too big regions. In this sense, the CDVCA has a certain analogy with thek-closest neighbors
algorithms (see [1], 88). Notice that the structure of the Boolean algebra allows that there
exists a procedure that in other spaces (for instanceRn) would be trivial. The distances in
Fb formalize the tentatives to define the classes of the elementx in different directions of
the Boolean space. If we conceive the feature space as encoding information by using bit se-
quences, then these tentatives are looking for sets with properties that are common to several
objects. Furthermore, it can be interesting to set a weight for each element in the Boolean
algebra, i.e. reformulate the CDVCA, so that in step b), we will sum the weight of elements,
instead of the number of the elements in each class, and then we will select the classes with
the greatest weight.

Another algorithm that results of the application of the Boolean ideas is:

ALGORITHM 5.2. Minesweeper.

Fix a k ∈ N and a distance threshold ε.
Divide the Boolean space in hypercubes (i.e. algebras with
the same number of elements).
For each hypercube, calculate the number of objects in it.
For each hypercube, calculate the sum of the elements of
itself and the other hypercubes in the ε-neighbor.
This result in a number n for each hypercube.
Consider the hypercubes with n < k as processed and the
others as nonprocessed.
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Repeat
Choose a hypercube c among the nonprocessed of the
greatest n.
If there exists nonprocessed elements in c then

Choose a nonprocessed element x of c.
Create the cluster A = {y ∈ B : d(x, y) ≤ ε },
by using only nonprocessed y.
Consider c and the elements in A as processed.

Else
Consider c as processed.

EndIf.
Until all hypercubes have been processed.

To find theε-neighbor hypercubes we can use, for instance, the minimum of each hyper-
cube (we have seen that the hypercubes are Boolean algebras). Two hypercubesc andd are
neighbors if the minimumx of c is different and contiguous to the minimumy of d:

x ≤ y and ¬∃z z 6= x, z 6= y x ≤ z ≤ y

or
y ≤ x and ¬∃z z 6= x, z 6= y y ≤ z ≤ x.

We can consider once more the weight for reformulate the algorithm.

6 Conclusions

In our opinion, the use of product Boolean Algebras to represent bit sequences seems to be a
promissory field for research and development. The use of the Boolean valued distance that is
exposed shows to be fruitful in creating new viewpoints and applications. Some well-known
concepts can be moved into the framework of product Boolean algebras to yield new tools
and techniques, and we have intended to show this in the algorithm section. The structure of
the product Boolean algebras can seem complex in a first view, but then happens to be very
motivating as a conceptual way of dealing with information encoded using bit sequences.
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