MAT2127 - Cálculo Diferencial e Integral para Química II Lista 6 - 2011

1. Seja f=f(x,y) uma função de classe \mathcal{C}^2 e seja $g:\mathbb{R}^2 \to \mathbb{R}$ dada por

$$g(u,v) = uf(u^2 - v, u + 2v).$$

- (a) Determine $\frac{\partial^2 g}{\partial u \partial v}$ em função das derivadas parciais de f.
- (b) Sabendo que 3x + 5y = z + 26 é o plano tangente ao gráfico de f no ponto (1,4,f(1,4)), que

$$\frac{\partial^2 f}{\partial x \partial y}(1,4) = \frac{\partial^2 f}{\partial x^2}(1,4) = 1 \text{ e } \frac{\partial^2 f}{\partial y^2}(1,4) = -1,$$

calcule
$$\frac{\partial^2 g}{\partial u \partial v}(-2,3)$$
.

Resposta: (b) 21

2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$, f com derivadas parciais contínuas em \mathbb{R}^2 e tal que 2x + y + z = 7 é o plano tangente ao gráfico de f no ponto (0,2,f(0,2)). Seja

$$g(u,v) = u f(\text{sen}(u^2 - v^3), 2u^2v).$$

Determine $a \in \mathbb{R}$ para que o plano tangente ao gráfico de g no ponto (1,1,g(1,1)) seja paralelo ao vetor (4,2,a).

Resposta: a = -4

3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável e suponha que as imagens das curvas $\gamma(t) = (2,t,2t^2)$ e $\mu(t) = (2t^2,t,2t^4)$ estejam contidas no gráfico de f. Determine o gradiente de f no ponto (2,1).

Resposta: $\nabla f(2,1) = (1,4)$.

4. Seja $f(x,y)=\cos(x-y)-x\mathrm{e}^y$. Determine a equação da reta tangente à curva de nível de f que contém o ponto (1,1) em (1,1).

Resposta: x + y = 0.

5. Ache a derivada direcional máxima de f no ponto dado e dê a direção em que ela ocorre.

(a)
$$f(x,y) = xe^{-y} + 3y$$
, (1,0);

(b)
$$f(x,y) = \ln(x^2 + y^2)$$
, (1,2).

Resposta: (a) $\sqrt{5}$, (2, 1); (b) $\frac{2}{\sqrt{5}}$, $(\frac{1}{5}, \frac{2}{5})$.

6. Seja f uma função diferenciável em \mathbb{R}^2 e considere os pontos A=(1,3), B=(3,3), C=(1,7) e D=(6,15). Sabe-se que a derivada direcional de f em A na direção de \overrightarrow{AB} é 3 e que a derivada direcional e f em A na direção de \overrightarrow{AC} é 26. Encontre a derivada direcional de f em A na direção do versor de \overrightarrow{AD} .

Resposta: $\nabla f(1,3) = (11,-7)$ e a derivada direcional pedida é $-\frac{29}{13}$.

7. Mostre que $f(x,y) = \sqrt[3]{x^2y}$ é contínua em (0,0) e tem todas as derivadas direcionais em (0,0). É f diferenciável em (0,0)?

Resposta: f não é diferenciável em (0,0).

8. Determine todos os pontos nos quais a direção de maior variação da função

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

é a do vetor (1, 1).

Resposta: Em todos os pontos da reta y = x + 1.

9. Seja f uma função diferenciável em \mathbb{R}^2 tal que a imagem da curva

$$\gamma(t) = (t+1, -t^2), \ \forall t \in \mathbb{R}$$

está contida em uma curva de nível de f. Sabendo que $\frac{\partial f}{\partial x}(-1,-4)=2$, determine a derivada direcional de f no ponto (-1,-4) e na direção e sentido do versor de $\vec{u}=(3,4)$.

Resposta: $\frac{4}{5}$.

- 10. Sejam $f(x,y) = 3x^2y 2xy^2$ e $(x_0, y_0) \in \mathbb{R}^2$ tais que:
 - (I) $\nabla f(x_0, y_0)$ é tangente à curva $xy^3 x^3y 2xy y^3 + 6 = 0$ no ponto (1,2);
 - (II) a derivada direcional de f no ponto (x_0, y_0) na direção do vetor $\vec{w} = \frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$ é igual a $\frac{9}{\sqrt{2}}$.

Determine <u>todos</u> os pontos (x_0, y_0) para os quais se tem <u>simultaneamente</u> as condições (I) e (II) acima satisfeitas.

Resposta: Os pontos são $\left(\sqrt{6}, 3\frac{\sqrt{6}}{2}\right)$ e $\left(-\sqrt{6}, -3\frac{\sqrt{6}}{2}\right)$.

- 11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que:
 - (I) a imagem da curva $\gamma: \mathbb{R} \to \mathbb{R}^3$ definida por $\gamma(t) = \left(t^2 + t + 1, 2t + 3, \frac{5t + 1}{t^2 + 1}\right)$ está contida no gráfico de f;
 - (II) a imagem da curva $\mu:\mathbb{R}\to\mathbb{R}^2$ definida por $\mu(t)=(t^2+t-1,t+2)$ está contida em uma curva de nível de f.

Determine a equação do plano tangente ao gráfico de f no ponto (1,3,f(1,3)).

Resposta: z = -x + 3y - 7.