MAT0222-Álgebra Linear II

Lista 7 - 2013

Nesta lista o corpo $\mathbb K$ sempre será $\mathbb R$ ou $\mathbb C$.

- 1. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno \langle , \rangle .
 - (a) Se $\mathbb{K} = \mathbb{R}$, mostre que para $u, v \in V$, $\langle u, v \rangle = 0 \Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$.
 - (b) Mostre que (a) é falso se $\mathbb{K} = \mathbb{C}$.
 - (c) Se $\mathbb{K} = \mathbb{C}$, mostre que para $u, v \in V$, $\langle u, v \rangle = 0 \Leftrightarrow \|\alpha u + \beta v\|^2 = \|\alpha u\|^2 + \|\beta v\|^2$ para todo $\alpha, \beta \in \mathbb{C}$.
- 2. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno \langle , \rangle . Mostre que vale a *lei do paralelo-gramo*:

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

para todo $u, v \in V$.

- 3. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno $\langle \, , \, \rangle$. Se $\mathbb{K} = \mathbb{R}$, mostre que para $u,v \in V$, $\|u\| = \|v\|$ se, e somente se, u+v e u-v são ortogonais. Discuta a afirmação para $\mathbb{K} = \mathbb{C}$.
- 4. Seja V um espaço vetorial sobre \mathbb{C} , com produto interno \langle , \rangle . Mostre que para todo $u,v \in V$, vale a *identidade de polarização*:

$$4 \langle u, v \rangle = \|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2.$$

Mostre que se V é um espaço vetorial sobre $\mathbb R$ então vale, para todo $u,v\in V$ a identidade de polarização:

$$4\langle u, v \rangle = \|u + v\|^2 - \|u - v\|^2.$$

- 5. Ache uma base ortonormal de cada um dos seguintes subespaços S e determine também, em cada caso, o subespaço S^{\perp} .
 - (a) S é o subespaço de \mathbb{C}^3 gerado pelos vetores $v_1=(1,0,i)$ e $v_2=(2,1,1+i)$,com o produto interno usual.
 - (b) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$, com o produto interno usual.

(c)
$$S = \{p(x) \in \mathbb{P}_3(\mathbb{R}) \mid xp'(x) = p(x) \in \langle p,q \rangle = \int_0^1 p(x)q(x)dx.$$

(d)
$$S = \{A \in M_3(\mathbb{R}) \mid tr(A) = 0\} \text{ e } \langle A, B \rangle = trAB^t.$$

- 6. Seja $V=M_3(\mathbb{C})$ com o produto interno $\langle A,B\rangle=trAB^*$. Ache W^\perp , onde W é o subespaço de V constituído pelas matrizes diagonais.
- 7. Seja V = C([-1,1]) com o produto interno $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$. Seja W o subespaço de V formado pelas funções pares, isto é, $W = \{f \in V \mid f(x) = f(-x) \ \forall x \in [-1,1]\}$. Ache W^{\perp} .
- 8. Seja V um espaço vetorial de dimensão finita sobre \mathbb{K} , com produto interno \langle , \rangle . Seja $B = \{v_1, v_2, ..., v_n\}$ uma base de V e sejam $c_1, c_2, ..., c_n$, n escalares quaisquer. Mostre que existe um único vetor $v \in V$ tal que $\langle v, v_j \rangle = c_j$ para todo j = 1, 2, ..., n.
- 9. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno \langle , \rangle . Prove que se

$$|\langle u, v \rangle| = ||u|| ||v||,$$

então u e v são linearmente dependentes.

- 10. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno $\langle \ , \ \rangle$ e seja W um subespaço de V. Seja $v \in V$. Um vetor $w \in W$ é uma **melhor aproximação para** v **por vetores em** W se $\|v-w\| \le \|v-u\|$ para todo $\|u \in W$. Prove que:
 - (a) O vetor $w \in W$ é uma melhor aproximação para $v \in V$ por vetores em W se, e somente se, $v-w \in W^{\perp}$.
 - (b) Se uma melhor aproximação para $v \in V$ por vetores em W existe, então ela é única.
 - (c) Se $\dim W < \infty$ então existe uma melhor aproximação para $v \in V$ por vetores em W e ela é dada por

$$w = \sum_{i=1}^k \langle v, e_i \rangle e_i,$$

onde $\{e_1, e_2, ..., e_k\}$ é uma base ortonormal qualquer de W.

Quando tal vetor *w* existe, (ele é único) é chamado **projeção ortogonal de** *v* **em** *W*.

- 11. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno $\langle \ , \ \rangle$ e seja W um subespaço de V. Seja $v \in V$. Seja $E: V \to V$ a função tal que Ev = w = projeção ortogonal de v em W.(Assuma que para todo $v \in V$ existe tal w.) Prove que:
 - (a) E é um operador linear em V.
 - (b) *E* é idempotente.
 - (c) ImE = W e Ker $E = W^{\perp}$.
 - (d) $V = W \oplus W^{\perp}$.

- 12. Conside \mathbb{R}^3 com o produto interno usual e seja W o subespaço gerado pelos vetores (1, -1, 1) e (1, 1, 1). Encontre o operador linear E (do exercício anterior), ache a matriz de E na base canônica de \mathbb{R}^3 .
- 13. Seja V um espaço vetorial sobre \mathbb{K} , com produto interno \langle , \rangle e seja W um subespaço de dimensão finita de V. Mostre que $(W^{\perp})^{\perp} = W$. O resultado continua verdadeiro se a dimensão de W não é finita?
- 14. Sejam V um espaço vetorial sobre \mathbb{K} , com produto interno \langle , \rangle , W um subespaço de dimensão finita de V e E a projeção ortogonal de V em W. Prove que $\langle Ev, u \rangle = \langle v, Eu \rangle$ para todo $u, v \in V$.
- 15. Seja V = C([0,1]) com o produto interno $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$.
 - (a) Ache uma base ortonormal do subespaço de V gerado pelos polinômios $1, x \in x^2$.
 - (b) Ache o polinômio de grau menor ou igual a 2 que melhor aproxima $f(x) = \cos x$ no intervalo [0,1].
- 16. Seja $V = C([0,2\pi])$ com o produto interno

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

Seja

$$S = \{1, \cos(nx), \sin(mx), m, n \in \mathbb{Z}\}.$$

- (a) Prove que *S* é um conjunto ortogonal de *V*.
- (b) Seja

$$f(x) = \begin{cases} \pi, \text{ se } 0 \le x \le \pi \\ x, \text{ se } \pi < x \le 2\pi \end{cases}$$

Ache a função da forma $g(x) = a_0 + a_1\cos x + b_1\sin x + a_2\cos(2x) + b_2\sin(2x)$ que melhor aproxima f no intervalo $[0, 2\pi]$.

17. Determine:

$$\min_{a,b\in\mathbb{R}}\int_0^1 (x^2 - ax - b)^2 \mathrm{d}x.$$

(Resposta: $\frac{1}{180}$.)