MAT0222 Álgebra Linear II Lista 6 2013

- 1. Prove que duas matrizes complexas 3×3 são semelhantes se, e somente se, têm o mesmo polinômio característico e o mesmo polinômio minimal. Dê um exemplo para mostrar que o mesmo resultado já não vale para matrizes 4×4 .
- 2. Classifique, a menos de semelhança, as matrizes reais 6×6 com polinômio minimal $(X-1)^2(X+1)(X-2)$.
- 3. Determine quais das matrizes seguintes são semelhantes:

$$A = \begin{bmatrix} -1 & 4 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 13 & -16 & 2 & -1 \\ -9 & -13 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 3 & -8 & -6 & 0 \\ -1 & 5 & 3 & 0 \\ 2 & -8 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} e C = \begin{bmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -4 & -1 \end{bmatrix}.$$

- 4. Classifique, a menos de semelhança, todas as matrizes 6×6 nilpotentes.
- 5. Sejam N_1 e N_2 matrizes 6×6 nilpotentes com o mesmo polinômio minimal e o mesmo posto. Mostre que elas são semelhantes. Mostre que o mesmo resultado já não vale para matrizes 7×7 .
- 6. Sejam $n \ge 2$ e N uma matriz $n \times n$ nilpotente, com $N^{n-1} \ne 0$. Prove que N não tem uma raiz quadrada, isto é, não pode existir uma matriz A tal que $A^2 = N$.
- 7. Seja

Ache a forma de Jordan J de A e encontre uma matriz inversível P tal que $P^{-1}AP = J$.

- 8. Seja V um espaço vetorial de dimensão n, com $n \ge 2$ e seja T um operador linear em V de posto 2. Determine todas as possíveis formas de Jordan de T.
- 9. Seja $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ o operador linear definido por T(p(X)) = p(X+1).
 - (a) Determine a forma de Jordan de *T*.
 - (b) Se n = 4, encontre uma base B de $P_n(\mathbb{R})$ tal que $[T]_B$ esteja na forma de Jordan.
- 10. Determine o número de matrizes não semelhantes A em $M_6(\mathbb{R})$ satisfazendo $(A-2I_6)^3=0.$
- 11. Mostre que as matrizes complexas

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
 e
$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{bmatrix}$$

são semelhantes.

12. Seja $T: \mathbb{R}^6 \to \mathbb{R}^6$ um operador linear com polinômio característico $p_T(X) = (X-a)^3(X-b)^3$ e polinômio minimal $m_T(X) = (X-a)^2(X-b)$ e $a \neq b$. Ache a forma de Jordan de T.

- 13. Classifique, a menos de semelhança, todas as matrizes reais 7×7 com polinômio característico $p_T(X) = (X-1)^4(X-2)^2(X-1)$.
- 14. Considere a matriz real

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & -1 & -1 \\ -3 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & 3 & 3 \\ -2 & -2 & 0 & -2 & 3 \end{bmatrix}.$$

Ache a forma de Jordan J de A e encontre uma matriz $P \in M_5(\mathbb{R})$ tal que $P^{-1}AP = J$.

- 15. Mostre que toda matriz $A \in M_n(\mathbb{C})$ é semelhante à sua transposta.
- 16. Classifique, a menos de semelhança, todas as matrizes complexas 3×3 tais que $A^3 + I_3 = 0$.