MAT0222 Álgebra Linear Lista 4

2013

- 1. Seja W o subespaço de \mathbb{R}^4 gerado pelos vetores $w_1=(1,0,-2,1)$ e $w_2=(1,2,3,1)$. Determine W^0 e ache um sistema de equações lineares homogêneo que tenha W como espaço solução.
- 2. Sejam U e W subespaços de um espaço vetorial V. Prove que U=W se, e somente se, $U^{\circ}=W^{\circ}$.
- 3. Sejam U e W subespaços de um espaço vetorial de dimensão finita V. Prove que:
 - (a) $(U+W)^{\circ}=U^{\circ}\cap W^{\circ}$.
 - (b) $(U \cap W)^{\circ} = U^{\circ} + W^{\circ}$.
- 4. Sejam U e W subespaços de um espaço vetorial V tais que $V = U \oplus W$. Prove que

$$V^* = U^\circ \oplus W^\circ$$
.

- 5. Seja $V=P_3(\mathbb{C})$ e seja W o subespaço de V constituído pelos polinômios que são múltiplos do polinômio x^2+1 .
 - (a) Ache uma base de W° .
 - (b) Mesma pergunta do item (a), só que com \mathbb{R} no lugar de \mathbb{C} .
- 6. Seja V um espaço vetorial de dimensão finita n sobre o corpo \mathbb{K} e sejam $f_1, f_2, \ldots, f_n \in V^*$. Mostre que $\{f_1, f_2, \ldots, f_n\}$ é LD se, e somente se, existe $0 \neq v \in V$ tal que $f_i(v) = 0$ para todo $i = 1, 2, \ldots, n$.
- 7. Seja $f \in (\mathbb{C}^2)^*$ definida por f(z, w) = z + iw. Determine $T^t(f)$ para $T \in L(\mathbb{C}^3, \mathbb{C}^2)$ dada por:
 - (a) $T(z_1, z_2, z_3) = (z_1 + z_2, z_2 + z_3)$
 - (b) $T(z_1, z_2, z_3) = (z_1 + z_2, 2z_2 z_3)$
- 8. Seja n um inteiro positivo e seja $V=P_n(\mathbb{R})$. Seja $D\in L(V)$ o operador derivação. Determine D^t . Determine também T^t , onde $T\in L(V)$ é o operador linear definido por T(p(x))=p(x+1) para todo $p\in V$. Determine também uma base de $\mathrm{Ker}D^t$ e de $\mathrm{Ker}T^t$.
- 9. Seja n um inteiro positivo e seja $V = P_n(\mathbb{R})$. Sejam a e b números reais fixos, com a < b, e defina $f \in V^*$ por

$$f(p) = \int_{a}^{b} p(x) \mathrm{d}x.$$

Se D é o operador derivação, o que é $D^t(f)$?

- 10. Seja $A \in M_n(\mathbb{K})$ uma matriz fixa e seja $T_A \in L(M_n(\mathbb{K}))$ o operador linear definido por $T_A(M) = AM MA$. Se tr é o funcional traço, descreva $(T_A)^t(\operatorname{tr})$.
- 11. Seja V um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $T \in L(V)$. Suponha que existe um escalar α e um vetor não nulo $v \in V$ tal que $Tv = \alpha v$ (isto é, α é um **autovalor** de T). Mostre que existe um funcional linear não nulo $f \in V^*$ tal que $T^t(f) = \alpha f$. Vale a recíproca? A afirmação continua sendo verdadeira se a dimensão de V não for finita?
- 12. Seja A uma matriz $m \times n$ com coeficientes **reais**. Mostre que A=0 se, e somente se, $\operatorname{tr} A^t A=0$.
- 13. Seja V um espaço vetorial de dimensão finita sobre \mathbb{K} . Mostre que a função $T\mapsto T^t$ é um isomosfismo de L(V) em $L(V^*)$.