MAT0222 Álgebra Linear II Lista 3

2013

- 1. Considere a base $B = \{(1, -1, 0), (1, 1, 1), (0, i, i)\}$, de \mathbb{C}^3 . Ache a base B^* , dual da base B.
- 2. Seja $\mathbb{K} \subset \mathbb{C}$. Mostre que $\{M \in M_n(\mathbb{K}) \text{ tais que tr} M = 0\}$ é igual ao subespaço de $M_n(\mathbb{K})$ gerado pelas matrizes da forma AB BA, A, $B \in M_n(\mathbb{K})$.

[**Sugestão:** Mostre que as matrizes $E_{ii} - E_{jj}$ e E_{ij} com $j \neq i$ são da forma AB - BA, com $A, B \in M_n(\mathbb{K})$. Considere o funcional linear tr: $M_n(\mathbb{K}) \to \mathbb{K}$ definido por tr(M) =traço M.]

3. Seja $V=P_2(\mathbb{R})$ o espaço vetorial dos polinômios de grau ≤ 2 com coeficientes reais. Defina três funcionais lineares em V por:

$$f_1(p) = \int_0^1 p(x) dx$$
, $f_2(p) = \int_0^2 p(x) dx$, $f_3(p) = \int_{-1}^0 p(x) dx$, para todo $p \in V$.

Mostre que $\{f_1,f_2,f_3\}$ é uma base de V^* e encontre a base de V da qual ela é dual.

4. Seja $V = P_3(\mathbb{R})$ e $a, b \in \mathbb{R}$. Defina $f_i \in V^*$, i = 1, 2, 3, 4 por:

$$f_1(p) = p(a)$$
, $f_2(p) = p'(a)$, $f_3(p) = p(b)$, $f_4(p) = p'(b)$, para todo $p \in V$.

Determine uma condição necessária e suficiente para que $\{f_1, f_2, f_3, f_4\}$ seja uma base de V^* e nesse caso ache a base de V da qual ela é dual.

- 5. Seja n um inteiro positivo e seja $V = P_n(\mathbb{K})$. Sejam a_0, a_1, \ldots, a_n elementos **distintos** de \mathbb{K} . Defina, para cada $i = 0, \ldots, n$, os funcionais $f_i \in V^*$ por $f_i(p) = p(a_i)$, para todo $p \in V$. Mostre que $\{f_0, f_1, \ldots, f_n\}$ é uma base de V^* e encontre a base de V da qual ela é dual.
- 6. Seja n um inteiro positivo e seja $V=P_n(\mathbb{R})$. Defina os funcionais lineares $\phi_k, k=0,...,n$ por

$$\phi_k(p) = \int_{-1}^1 x^k p(x) dx$$
, para todo $p \in V$.

- (a) Mostre que $B^* = \{\phi_0, \phi_1, \dots, \phi_n\}$ é uma base de V^* .
- (b) No caso n = 2, ache a base B de V da qual B^* é dual.
- 7. Seja V um espaço vetorial sobre o corpo \mathbb{K} e seja $0 \neq f \in V^*$ um funcional linear. Mostre que existe $0 \neq v_0 \in V$ tal que $V = \operatorname{Ker} f \oplus \mathbb{K} v_0$.
- 8. Seja $\mathbb{K} \subset \mathbb{C}$ um corpo e seja V um espaço vetorial sobre \mathbb{K} . Sejam f e g funcionais lineares em V. Suponha que a função h definida por h(v) = f(v)g(v) é um funcional linear. Prove que f = 0 ou g = 0.

- 9. Seja $\mathbb{K} \subset \mathbb{C}$ e seja V um espaço vetorial de dimensão finita sobre \mathbb{K} . Se v_1, v_2, \ldots, v_m são vetores de V, cada um deles diferente do vetor nulo, prove que existe um funcional linear $f \in V^*$ tal que $f(v_i) \neq 0$ para todo $i = 1, 2, \ldots, m$.
- 10. Prove que o funcional traço em $V=M_n(\mathbb{K})$, com $\mathbb{K}\subset\mathbb{C}$, é único no seguinte sentido: "Se $f\in V^*$ é tal que f(AB)=f(BA) para todas matrizes $A,B\in V$, então existe $\alpha\in\mathbb{K}$ tal que $f=\alpha$ tr. Se, alem disso, $f(I_n)=n$, então f=tr."
- 11. Sejam $f_1, f_2, ..., f_m \in (\mathbb{K}^n)^*$. Defina $T : \mathbb{K}^n \to \mathbb{K}^m$ por

$$T(v) = (f_1(v), f_2(v), ..., f_m(v)).$$

Mostre que T é uma transformação linear. Mostre também que se $T \in L(\mathbb{K}^n, \mathbb{K}^m)$ então existem $f_1, f_2,, f_m \in (\mathbb{K}^n)^*$ tais que $T(v) = (f_1(v), f_2(v),, f_m(v))$ para todo $v \in \mathbb{K}^n$.

- 12. Seja $V = P(\mathbb{R})$. Para cada $\alpha \in \mathbb{R}$ defina $f_{\alpha} \in V^*$ por $f_{\alpha}(p(x)) = p(\alpha)$. Mostre que $\{f_{\alpha}\}_{\alpha \in \mathbb{R}}$ é LI em V^* . Conclua que uma base de V^* é não enumerável!
- 13. Seja $V = M_n(\mathbb{K})$.
 - (a) Seja $B \in M_n(\mathbb{K})$ uma matriz fixa. Defina $f_B : M_n(\mathbb{K}) \to \mathbb{K}$ por $f_B(A) = \operatorname{tr}(B^t A)$ onde B^t é a matriz transposta de B. Prove que $f_B \in V^*$.
 - (b) Mostre que para todo $f \in V^*$ existe $B \in M_n(\mathbb{K})$ tal que $f = f_B$.
 - (c) Mostre que $B \mapsto f_B$ é um isomorfismo de V em V^* .