MAC0115

Introdução à Computação Segundo Exercício-Programa

Instituto de Física – 20. Semestre, 2019

Neste exercício você verá como utilizar o computador para calcular o valor numérico de integrais simples. Existem diferentes métodos para realizar este cálculo e neste EP você irá implementar um deles, denominado $M\acute{e}todo~dos~Ret\^{a}ngulos$. A função a ser integrada será a função cos(x).

1 Aproximação da função cos(x)

A função cos(x) pode ser aproximada pela seguinte série finita:

$$cos(x) \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^j x^{2j}}{(2j)!}.$$

Para definir a qualidade da aproximação, podemos utilizar um parâmetro ϵ e definir j como sendo o índice inteiro tal que $\left|\frac{x^{2(j-1)}}{(2(j-1))!}\right| \geq \epsilon$, mas $\left|\frac{x^{2j}}{(2j)!}\right| < \epsilon$.

2 Método dos Retângulos

Seja f(x) uma função integrável no intervalo real [0,K] e tal que $f(x) \geq 0, x \in [0,K]$. A integral $\int_0^K f(x)dx$ pode ser aproximada, usando o Método dos Retângulos, por

$$\int_0^K f(x)dx \approx I_0^K f(x)dx = \delta \times [f(\delta) + f(2\delta) + \dots + f(n\delta)]$$

sendo que δ é um valor positivo pequeno e n é tal que $n \times \delta \leq K$ e $(n+1) \times \delta > K$. Quanto menor o valor de δ , melhor a aproximação obtida para a integral.

3 Controle de qualidade de integral aproximada

Para a função cos(x) com valores de K dentro do intervalo $(0,\frac{\pi}{2}]$, a qualidade da aproximação da integral definida $\int_0^K cos(x) dx$ melhora uniformemente à medida que o valor de δ decresce. Portanto, se utilizarmos como valores de δ elementos da

série $\{\delta_0, \frac{\delta_0}{2}, \frac{\delta_0}{4}, \frac{\delta_0}{8}, ..., \frac{\delta_0}{2^m}\}$, obteremos respectivamente aproximações da integral $\{I_0, I_1, ..., I_m\}$ tais que $|I_0 - I_1| \ge |I_1 - I_2| \ge ... \ge |I_{m-1} - I_m|$.

Se introduzirmos um parâmetro de controle ψ , poderemos definir como aproximação suficiente o menor valor de m tal que $|I_{m-1} - I_m| \leq \psi$.

4 Exercício

- 1. Construa uma função em Python que receba como parâmetros os valores x e ϵ e retorne o valor aproximado de cos(X) conforme definido na seção 1.
- 2. Construa uma função em Python que receba como parâmetros os valores $K: 0 < K \leq \frac{\pi}{2}, \epsilon$ e δ e retorne o valor aproximado de $\int_0^K cos(x) dx$ usando o método dos retângulos conforme definido na seção 2. Sua função deverá, obrigatoriamente, utilizar a função de valor aproximado de cos(x) do item anterior.
- 3. Construa uma função em Python que receba como parâmtros os valores K: $0 < K \le \frac{\pi}{2}, \epsilon, \delta$ e ψ e retorne uma aproximação suficiente de $\int_0^K cos(x) dx$, usando o controle de qualidade de integral aproximada definido na seção 3. Sua função deverá, obrigatoriamente, utilizar as funções dos dois itens anteriores.
- Construa em Pythonum programa "main" que utilize as funções dos itens anteriores e:
 - (a) Solicite do usuário os valores de K, ϵ, δ e ψ .
 - (b) Apresente na tela o valor da aproximação suficiente da integral obtido, bem como os valores de j,m e n que produziram esta aproximação suficiente.

No começo de seu programa, coloque como comentários seu *Nome, NUSP, Código da disciplina* e *Nome do professor*.

Bom trabalho!!!