
Being Extreme in the Classroom:

Experiences Teaching XP

Alfredo Goldman Fabio Kon Paulo J. S. Silva
Department of Computer Science
University of São Paulo, Brazil
{gold,kon,rsilva}@ime.usp.br

http://www.ime.usp.br/~xp

Joseph W. Yoder
The Refactory, Inc. and

Department of Computer Science
University of Illinois at Urbana-Champaign

joeyoder@joeyoder.com

http://www.refactory.com

Abstract

Agile Methods propose a new way of looking at soft-
ware development that questions many of the beliefs
of conventional Software Engineering. Agile methods
such as Extreme Programming (XP) have been very ef-
fective in producing high-quality software in real-world
projects with strict time constraints.

Nevertheless, most university courses and industrial
training programs are still based on old-style heavy-
weight methods. This article, based on our experi-
ences teaching XP in academic and industrial envi-
ronments, presents effective ways of teaching students
and professionals on how to develop high-quality soft-
ware following the principles of agile software devel-
opment. We also discuss related work in the area,
describe real-world cases, and discuss open problems
not yet resolved.

1 Introduction

In the last few years, agile software development
methods have become widely known and have been
successfully adopted by hundreds of organizations
worldwide. Agile methods such as XP [4], Scrum
[27], and Crystal [10] are now used in small, medium,
and large companies, universities, research institutes,

and governmental agencies. However, a large num-
ber of organizations have a long history of using old-
style, heavyweight methods and many programmers
and managers were educated to develop software in a
bureaucratic way in which software quality is usually
not the top priority.

The Manifesto for Agile Software Development [7]
indicates the four most important aspects of agile
methods that differentiate them from conventional
software development. Agile methods value:

• Individuals and interactions over processes
and tools;

• Working software over comprehensive docu-
mentation;

• Customer collaboration over contract negoti-
ation;

• Responding to change over following a plan.

While the items on the left (in bold face) are the core
principles of a successful agile software development
project, most programmers and managers are edu-
cated in a culture that values the items on the right.

After participating in agile software development
projects, a large number of academic and indus-
trial software developers have come to the conclu-
sion that agile methods are the most effective way for
developing high-quality software in time-constrained
projects. There are plenty of examples of successful

1



agile projects [2, 18, 24, 8, 15, 1, 19, 13, 17, 26]. How-
ever, there is still a lot of work to do in the field
of teaching agility. According to our observations
over the last ten years, most undergraduate Computer
Science courses and training courses for industry are
based on conventional methods that focus on tools,
documentation, contracts, and following plans.

What CS education needs is a reality shock! We
need to modernize our courses to show students that
personal communication, working software, customer
collaboration, and dynamic adaptation are, at least, as
important as the traditional values that we are used
to teaching.

In this article, we present our findings in agile meth-
ods education from our experiences in teaching Ex-
treme Programming (XP) in academic and industrial
environments. In Section 2, we describe a few re-
lated works in this area. In Section 3, we give a brief
overview of XP and discuss the points in favor and
against XP, addressing when one should and should
not use this method. In Section 4, we describe the
adaptations that must be made in order to carry out
an XP project in an educational environment. In Sec-
tion 5, we describe some of our experiences in teach-
ing XP both in the university and in the industry and,
in Section 6, we discuss problems that are still unre-
solved. Conclusions are presented in the last section.

2 Related Work

Many articles have recently emerged in the liter-
ature on the subject of teaching XP or some of its
practices. However, special care must be taken if an
instructor desires to teach or apply isolated practices.
XP is clearly based on the synergy resulting from the
combined use of all of 12 practices together. Applying
only a subset of the practices may, in some cases, lead
to disastrous results1. Among the individual practices,
two emerge as being beneficial even when detached
from the others: pair programming and test-driven
development.

Pair programming has been extensively studied by
Williams et. al. [33, 9, 32]. Their experimental re-
search shows that pair programming is highly efficient.
Working in pairs, programmers can work twice as fast
and think of more than twice as many solutions to a
problem than two programmers working alone. Pair

1Consider, for example, a team doing extensive refactoring
without automated tests and pair programming to act as a
safety net. It is very likely that refactoring will add a large
number of bugs to the code

programming can also help attain higher defect pre-
vention since two pairs of eyes are looking over ev-
ery line of code. The results can be the faster de-
velopment of higher quality production code. Exper-
iments were performed with senior-level students in a
Software Engineering course at the University of Utah
and confirmed previous anecdotal evidence. Tomayko
also presents an interesting experiment [30] indicating
that pair programming can bring to code quality the
same benefits that a method centered on formal in-
spections, such as the Team Software Process (TSP),
would bring.

Nagappan et. al. [25] focus on the pedagogical ben-
efits of pair programming. It stimulates cooperation,
which is highly regarded in the working environment,
but somehow neglected in the academic setting. Pair
programming in the academic environment can lead to
improved success rates, that is the rate of students that
complete the course with a grade of C or better. The
future performance of the paired students has shown
to be about the same as the solo ones. This last ob-
servation addresses the concerns of some instructors
that some paired students might pass the workload to
his/her partner and not learn the course material. An-
other interesting benefit of pair lab sessions is that the
students solve, with their partners, most of the simple
questions, alleviating the lab instructors workload. Fi-
nally, the authors give some suggestions on how to use
pair programming effectively in the teaching lab. For
example, they suggest that the instructors must con-
stantly emphasize the different roles in the pair (driver
and navigator) and encourage role and pair changes.
Another interesting advice is to use some kind of peer
evaluation to avoid the “free ride” on the partner’s
work.

Test-driven development [6] is another practice that
fits easily in many different development methods and,
hence, can be taught separately from the other prac-
tices. Actually, test-driven development should be
taught before debugging techniques, as a better way
to avoid and catch errors. The instructor must be pre-
pared to face resistance from many students who feel
that tests are a waste of time. Here some good anec-
dotal stories may be beneficial, such as McBreen’s tes-
timony that he moved from daily debugging sections
to only three or four sessions a year after adopting XP
style unit tests [21].

Finally, refactoring [20] may prove beneficial to
teach to advanced students. However, caution has to
be taken since this practice is closely related to other
XP ideas such as incremental development, not adding
unneeded flexibility, tests, and continuous integration.

2



Astrachan, Duvall and Wallingford [3] report on teach-
ing and using just a few practices, suggesting, for ex-
ample, that teaching refactoring principles should al-
ways include information on testing. A panel discus-
sion held recently at the ACM Technical Symposium
on Computer Science Education addressed the topic
of gradually introducing some of the XP practices into
the CS curriculum [14].

Other works describe experiences on teaching full
XP. Tomek [31] presents his experience on teaching XP
in two Computer Science courses and proposes several
recommendations. According to his experience, it is
very important to provide a very agile environment,
therefore he used VisualWorks Smalltalk and its IDE.
In his first course, Tomek used two projects. The first
project was used to get the feeling of XP and was
followed by a more realistic one. During the second
course, he focused on a single project with a real cus-
tomer.

Wilson’s experience [34] is similar, although he used
Java instead of Smalltalk. The course project was to
improve a prototype Java IDE. Finally, Lappo [16]
taught an eXtreme Programming course to a group
of Masters students, who spent 12 weeks working full-
time to produce a Web-based resource management
application with Java technologies. In all these cases,
the instructors accumulated the role of mentor, coach,
and occasionally, even customer.

All three experiments presented small problems
such as the lack of real customers, the overload of being
mentor, coach, and client, the short period that can be
dedicated to the project in ordinary CS courses, and
the lack of adequate space for the XP team.

At this point, a few suggestions can help: students
enjoy meaningful projects that have real use, students
should be relatively advanced to be able to get the
most out of the course, it would be ideal to provide a
dedicated room for the XP class, and it might be in-
teresting to provide the students with an implemented
core of the application. Wilson suggests that this pro-
totype can work to give unity to the end result substi-
tuting the metaphor, which is one of the most difficult
practices to teach.

The courses also revealed some problems in trying
to follow all XP practices. In some cases pair program-
ming was partially neglected, even by the instructor
that refactored the code alone. Other problems were
the lack of a real client, the absence of a metaphor,
and some slips in the release schedule. Interestingly,
it seems like test-first development was quickly assim-
ilated by the students, who learned to appreciate its
advantages.

In Sections 4 and 5, we show how to avoid many
of the problems described above. In particular, we
show effective ways to teach XP, putting into practice
most or all of the practices in both industrial and aca-
demic environments, giving a complete XP experience
to students.

3 Overview of Extreme Programming

The Extreme Programming method was formulated
by Kent Beck and Ward Cunningham based on their
long experience in object-oriented software develop-
ment in Smalltalk. XP is composed of a collection of
practices that, in isolation, have been well known and
used widely for many years. The main contribution
of XP is the conjunction of these practices in a co-
hesive method, which fosters the synergistic effects of
this mixture.

3.1 The 12 Practices

When the method was first introduced in 1999 [4],
it consisted of 12 practices: Planning Game, Small
Releases, Metaphor, Simple Design, Testing, Refac-
toring, Pair Programming, Collective Code Owner-
ship, Continuous Integration, 40-hour Week, On-site
Customer, and Coding Standards. A few years later,
the 40-hour Week practice was renamed to Sustain-
able Pace and a new rule was added: Fix XP When
It Breaks. We will now describe briefly each of these
practices, for more detailed descriptions see [4] and
www.extremeprogramming.org.

Planning Game. A project starts with a short ex-
ploratory phase in which the customer expresses the
requirements (through user stories written in story
cards). The development team, together with the cus-
tomer, creates a release plan specifying which story
cards should be implemented for each system release.
The team negotiates with the customer and dates each
release based on business priorities and technical esti-
mates. However, the most important point here is that
the plan is just a plan, i.e., the team and the customer
know that it is not the reality that they will face. As
reality overtakes the plan, the plan must be updated.
So, rather than trying to put together an unrealistic
completed plan upfront, planning becomes part of an
everyday activity for an XP project. A good XP team
must know how to adapt dynamically to changes at
any moment in the development process.

3



Small Releases. Rather than developing big pieces
of software at a time, the team should implement a
very small piece of working software first and then
enhance it incrementally. Ideally, the team should de-
liver new releases of working software every few weeks
or, in some cases, days. The time between releases
should not exceed every few weeks.

In each release, the team implements a set of story
cards. Each story card is assigned to a specific pro-
grammer who becomes responsible for its comple-
tion (although the programmer does receive help from
his/her colleagues to complete his/her tasks). Sto-
ries that are more important to the customer receive
a higher priority and are implemented in the first re-
leases. Developers and customer may negotiate dur-
ing development to move cards from one release to the
other or to create, remove or modify them as the team
learns new things and business requirements evolve.

A key rule of incremental development in XP is: do
not code for the future and do not anticipate require-
ments. This spirit is usually expressed in the sentence
do the simplest thing that could possibly work. This
implies that one should not add flexibility that is not
needed to complete the current task. If you think that
a little more flexibility will be valuable in a couple of
weeks, don’t do it now; wait until it is really needed
and then refactor the code to add the required flexi-
bility.

Metaphor. A metaphor is a simple story of how the
system works and it should be shared by all the stake
holders in the project. It helps all the participants to
understand the basic elements and their relationships.
The primary function of a metaphor is to improve com-
munication.

Simple Design. The system should always have the
simplest possible design at any moment. If extra com-
plexity is found, it must be removed as soon as possi-
ble. And again: do the simplest thing that could pos-
sibly work.

Testing. Programmers write unit tests for all system
components so their confidence in the correct behavior
of the system becomes part of the system itself. In
a more recent book [6], Beck describes Test-Driven
Development in which the unit tests are written before
the actual working code is written, which is also called
Test-First Programming.

Customers write functional (acceptance) tests
which are used to demonstrate that the required fea-
tures are implemented correctly. If the customer is not

a programmer, one of the developers then pairs with
the customer to write the tests.

Refactoring. Using techniques such as the ones cat-
aloged by Fowler [12], programmers restructure the
system continuously to improve it without changing
its behavior. Possible improvements include simplifi-
cations, optimizations, enhancing clarity, adding flex-
ibility, etc.

Pair Programming. Each line of production code
is written with two programmers simultaneously at
a single machine. As explained in Section 2, pair
programming improves code quality greatly without
impacting the speed of development. Communica-
tion will flow better across team members if the pairs
change frequently (e.g., every day). The pairs are se-
lected based not only on availability but also in ex-
pertise. For example, if it is necessary to build a Web
interface to a database, one could select a pair in which
one of the programmers is an expert in databases while
the other is an expert in frameworks for building Web
interfaces.

Collective Code Ownership. Any developer can
change any piece of code in the system at any time
without requesting permission. This introduces a high
level of agility in the team. Since there are unit tests
for each component, programmers are less likely to
break each other’s code.

Continuous Integration. The source code must be
kept in a shared repository and every time a task is
completed, the new code must be built, tested, and, if
correct, integrated into the repository.

Sustainable Pace. The team should work in a pace
that it can sustain without harming its participants,
for example, 40 hours per week. A team that is phys-
ically or intellectually tired is very likely to produce
low-quality software. Working overtime in a certain,
special week is acceptable; however, if the team is
asked to work overtime two or more weeks in a row,
this is a sign that there is something very wrong with
the project.

On-site Customer. A real user of the system
should be included as part of the team and be avail-
able an any time for answering questions. No matter
what happens to the project (good or bad), there will
never be a big surprise to the customer since he/she is
following the development daily.

4



Coding Standards. In the initial phase, all the de-
velopers must agree on a common set of rules enforc-
ing how the system must be coded. This facilitates
communication and enable groups of many program-
mers to produce consistent code. Recent tools such
as the Eclipse Checkstyle plug-in (see eclipse-cs.
sourceforge.net) can help automate part of the pro-
cess.

It is important to emphasize that the value of XP
is in applying all the practices. Applying a subset of
the practices, without careful consideration, can even
be harmful. For example, applying aggressive refac-
toring without a good collection of unit tests may lead
to disastrous results as the programmers cannot verify
if their changes are breaking the code or not. Adopt-
ing the planning game, changing the plan dynamically,
without a close contact with the customer may lead
the team to build a system that is not the one the
customer wants.

3.2 Adapting XP

Teams that are new to XP should try to follow all 12
practices as rigorously as possible. More experienced
XP developers, however, will notice that this may not
be possible, or even desirable, in all situations. When
this happens you may need to adapt XP by applying
the Fix XP When It Breaks rule.

We present an example to illustrate this rule. An
experienced XP developer, Klaus Wuestefeld, working
on a project for a cable-TV scheduling system realized
that he would not be able to have an on-site customer
since the company contracting their services was lo-
cated in another state. The solution was to adapt
XP introducing the concept of Customer Proxy [35].
Klaus acted as a customer by answering programmer
questions immediately. He would then call the real
customers on the phone or email them later with the
questions verifying his response. Most of the time
the proxy’s guesses were correct and the development
evolved quickly. The few times in which he made the
wrong guess, he simply came back to the programmers
and said: “I changed my mind”, which is completely
acceptable within the rules of XP.

Another possibility is to select analysts that have
worked closely with the customers to become the cus-
tomer proxy. This adaptation has been reported by
Martin Fowler in projects carried out by Thought-
works.

In another project, Klaus noticed that developers
were worried too much about the story cards assigned

to them and were not always willing to help their col-
leagues by pair programming with them2. The solu-
tion he adopted in that case was to create a new role:
the Libero [35]. One of the programmers, called the
Libero, was not assigned any story card; his task was
simply to pair program with the others helping them
finish their cards.

A limitation of XP is that, since it requires direct
communication among all team members, it does not
scale well for groups with much more than 10 devel-
opers. To overcome this limitation, practitioners have
extended the method to work with larger projects of
up to 100 developers. This was achieved by dividing
the team into sub-groups of at most 10 people and in-
tegrating periodically the software produced by each
of the groups. Ron Crocker has worked many years
with large-scale agile projects for Motorola. His ex-
tension of XP is called the Grizzly method and a new
book on the subject is coming out in 2004 [11].

As a last example, sometimes teams allow for more
individual spike solutions to be developed. Then, these
solutions are released into the main code base only
after test cases are developed and a pair of eyes looks
over the solution. This can be a solution when pair
programming is not always possible.

Taber and Fowler [29] provide a few more examples
of interesting adaptations of XP.

3.3 When not to use XP

There are some situations when using XP should
be avoided. The possible pitfalls for XP adoption fall
in three categories: resistance from the development
team to embrace XP, resistance from the organiza-
tion that houses the XP team or from the customer
to accept XP corollaries, and inadequacies inherent to
the software that have to be developed. McBreen has
recently written an interesting book on this subject
called Questioning Extreme Programming [21].

The resistance from the development team could
have come from habits acquired during the team mem-
ber’s life as a programmer. At first glance, even pair
programming may be odd, test-driven development a
burden, and simple design seen as an excuse for lazy
minds. After an adaptation phase, however, many de-
velopers learn to appreciate the practices and the agile
development environment.

On the other hand, the resistance from the organi-
zation and its managers may be associated with one of
XP most profound facets: XP is a subversive method,

2This is actually not very common in XP projects; usually,
programmers negotiate among themselves to help each other
implementing their cards.

5



in the sense that it requires a completely new organi-
zation of the team. In traditional water-fall methods
there are distinct and well defined roles for the team
members such as requirement analysts, system ana-
lysts, software architects, programmers, testers, and
so on. In XP, all team members play all these roles,
they are all developers. This creates a completely new
balance of power within the team that may face great
resistance [21, 28]. In order to adopt XP, the team
must feel comfortable with the idea of working to-
gether as a group with the single goal of delivering
high-quality software in time.

To overcome this resistance, the XP instructor or
mentor should pick as members for the first XP exper-
iment a group of people that is naturally inclined to
experiment with new ideas and that are self-confident
enough not to feel threatened by the new balance of
power. To achieve this in industry, it is essential to
have management support. This kind of support can
help the mentor to identify good candidates for apply-
ing XP. In the university setting, this is better achieved
by using elective courses. After the first successful XP
experience, the word of mouth of the participants will
spread the news and it will be much easier to intro-
duce XP into the entire organization or to make the
course mandatory for all students.

Examples of resistance from the organization
and/or the customer are the lack of commitment by
the customer in participating actively in the devel-
opment process, a requirement for long and formal
descriptions of the product to be developed before
it is begun, the need to have a single person to
blame should anything go wrong3, and the need for
a long, detailed documentation for the maintenance
phase [4, 21]. All these XP consequences must be
clearly stated and understood both by managers and
developers before starting the first XP project in an
organization.

Finally XP is not meant for all software develop-
ment projects. Certain aspects of the software to be
developed may conflict with basic XP assumptions.
Does the project require a very large team (e.g., more
than 20 people)? Does the edit-compile-run cycle take
too long to complete? Do tests need several minutes
or even hours to run? Is it impossible to find an on-
site customer that will faithfully represent the future
users of the system? If the answer is yes to any of these
questions, then XP might not be a good choice for this
project or the method might need to be adapted sig-
nificantly [4, 21].

It should also be noted that an organization should

3That does not go well with collective code ownership.

not start learning and experimenting with XP with a
highly visible or mission critical project. Any kind of
difficulty could lead people to blame the XP process.
Or the temptation might be to adapt the process be-
fore giving it a chance to succeed. Therefore, it is bet-
ter to learn XP in a safer and less visible project, thus
gaining credibility before applying it to more visible
mission critical projects.

4 Adapting XP for the Classroom

In an educational environment, not all of the as-
pects of a real production environment are present.
Thus, when teaching XP in the university or in corpo-
rate training, some adaptations are required.

Different from most academic courses, an XP course
must focus on practice rather than on theory. Stu-
dents must spend most of the time programming in the
lab, not attending lectures. We identified two types of
courses that can produce good results: short courses
and long courses.

In an academic environment, a long course would
typically be a full-semester course in which the stu-
dents attend, initially, a few lectures describing the
method and then spend three to four months working
in the lab, two to four sessions per week. Since the
students work less hours in the project than a corpo-
rate employee, each release should contain only a few
story cards (e.g., five to ten) and should be planned
to be completed in approximately four weeks.

A short course in an academic environment can
range from a full-day, six hour workshop in which the
students are exposed to both theoretical and practical
aspects of XP, up to a one-month Summer course in
which more details can be covered.

In industrial environments, the long “course” takes
the form of mentoring. In this case, an experienced
XP consultant spends several hours per week working
in a real project of interest to the company, acting as
the team coach. The role of the coach is not to guide
the development but to make sure that all XP prac-
tices are being followed and to use his/her experience
to resolve conflicts and show the group how XP can
help overcoming the difficulties that arise. After a few
months, the role of coach can be handed over to one
of the developers and the consultant becomes a meta-
coach, gradually decreasing his/her responsibilities. It
is often said that the job of an XP consultant is to put
him/herself out of business in the long run by empow-
ering the team to work by itself using XP.

Short courses in industrial environments typically
take the form of immersion workshops in which devel-

6



opers spend 2 to 4 days working full-time in a simple
project going through all the steps of an XP project,
producing a few releases of working software.

Except for the mentoring case, which can mimic
a production environment perfectly, the other cases
may require some adaptations. The time span of the
courses is very different from that of real software de-
velopment projects. There might not be a real cus-
tomer available. The same person (e.g., instructor or
professor) may need to play the role of both coach and
customer, which is probably not a good idea.

All these issues must be analyzed carefully by the
instructor to enable the course participants to have an
XP experience as real as possible so that they will be
capable of applying the method in real life afterwards.

Our experience shows that, with proper planning,
it is possible to overcome all of these difficulties and
to provide a real XP experience to students. In the
next section we describe some of the long and short
curses we carried out in both academic and industrial
environments.

5 Experiences Teaching XP

We have had many experiences from 2000 to 2004
in teaching XP at the University of Illinois at Urbana-
Champaign, at the University of São Paulo4, and in
work as consultants both in the United States and
in Brazil. This wide variety of experience gives us
a broad view of what it takes to teach XP principles,
including teaching XP to many types of people coming
from different cultures.

In this section, we describe our experiences from
a full-semester course at the University of São Paulo,
from mentoring for the development of a Web-based
commercial product, from consulting for the Illinois
Department of Public Health, and from a short-term
course for a private company.

5.1 University of São Paulo

We started to disseminate the use of XP in Brazil
in early 2001 with a series of lectures about different
aspects of XP. These lectures included an overview of
the method, refactoring, debugging, testing, and cod-
ing style5. In addition to these individual lectures, we

4The University of Illinois at Urbana-Champaign and the
University of São Paulo are top 5 universities in the USA and
Brazil, respectively. The students in their CS departments are
in general very well prepared since there is a highly competitive
student selection process.

5Slides, in Portuguese, available at http://www.ime.usp.br/
~xp.

have been presenting an annual 4-month course called
Extreme Programming Laboratory. The course is tar-
geted to undergraduate students in the 3rd and 4th
year of the Bachelors program in Computer Science.
Course attendance is limited to 20 students and they
are divided in groups of 6 to 10 students. This is
per se something new for the students since they usu-
ally have not had an opportunity to work in such a
large group, where all the participants work together.
In fact, most courses discourage students working to-
gether. The rest of this section will describe the most
important aspects that must be addressed when im-
plementing such a course.

Workload. The students were required to be in the
lab during two weekly sessions lasting two to three
hours. We found that three hour sessions are much
more productive. However, due to schedule restric-
tions, we were sometimes forced to have 2-hour ses-
sions. A good way of keeping the students for a longer
period in the lab was to provide a modest lunch. Then
the students stay focused on programming for longer
periods, holding their sandwiches while pair program-
ming. Having food around a software development
lab relaxes and allows developers to communicate bet-
ter [4].

Besides these two mandatory sessions, it was highly
suggested to the students that they come to the lab
two to four additional hours per week for either pair
programming or to learn about the technology used in
their projects. These additional hours were not veri-
fied by the instructors.

Development site. The laboratory where the stu-
dent projects were developed was set up following the
guidelines to enable a high level of osmotic commu-
nication suggested by Alistair Cockburn [10]. This
enabled light communication channels across teams
as well as strong communication channels among the
members of the same team. Cockburn has studied and
experimented with many different room layouts and
identified their advantages and drawbacks (see [10],
Chapter 3, Communicating, Cooperating Teams).

The University of São Paulo lab, where the XP
courses are carried out, was reorganized to follow these
guidelines. As shown in Figure 1, the workstations
are arranged so there is space for two people sitting
in front of each computer, and the members of the
team sit facing each other. This contrasts with many
laboratories where the developers face a wall or in
which workstations are separated by dividers or en-
closed in cubicles. The two groups working in the

7



Figure 1: XP students in the lab

same lab are partially separated from each other by
two whiteboards, one for each group, which they use
to draw UML diagrams, notes, etc., as shown in Fig-
ure 2. Whiteboards act as what Cockburn calls infor-
mation radiators [10] that can be seen and accessed
easily by anyone entering the room. A large wall space
is reserved for another kind of information radiator:
posters taped to the wall showing information posted
by the trackers (see below) about project progress (see
Figure 3). The type of information posted was chosen
by the students themselves and it includes a list of
story cards and related information, graphs showing
number of unit tests written and number of user stories
implemented, and subjective evaluations of source-
code quality and team productivity.

Figure 2: Whiteboard dividing the space

Figure 3: Information radiators maintained by the
tracker

8



Coaching. We learned that choosing a good coach is
very important for the success of an XP course. Over
the years, we tried three different options for coach:
a professor knowledgeable in XP, a graduate student
that had attended the same course years before, and
one of the students taking the course and becoming a
novice in XP. We found that the best experience hap-
pened when the coach had both authority over the stu-
dents and knowledge of XP. The conjunction of these
two factors happened only when the professor was the
coach. Nevertheless, we do believe that the other cases
are also viable and, with proper care, can lead to good
results; one must make sure that the two requirements
are met (authority and knowledge of the method).

Customer. In the two initial years, the role of the
customer was also played by CS professors. They were
available during the two mandatory sessions and would
be real users of the system to be built. In 2003, we
developed a library management system so we invited
a professor from another area and some staff members
of our university library to act as customers. The ex-
perience was effective and very enlightening since the
students realized that they had to use a completely
different language to communicate with people that
were not educated in CS.

Choosing the system. The choice of which system
to build is very important: it must motivate the stu-
dents, it must be interesting from a technological point
of view, and it must be used often in order for us to
find real future users that can act as customers. To
meet all these requirements, we chose systems that the
university needed to manage its resources and people.

We started with a Web-based system for manag-
ing course selection; the students could to use it to
express which elective courses they would like to take
and the professors could express which courses they
were able to teach and which ones they preferred to
teach. The system then collected the results and used
optimization techniques to create a course schedule
for the following year. The system is now online at
mico.arca.ime.usp.br and is used every year.

Tracking. In XP, the tracker is one of the develop-
ers who is responsible for collecting statistics about
the performance of the team and who acts as its con-
science, evaluating the progress of the project. Asking
one student from each team to volunteer to be the
tracker showed to be a very successful approach. By
taking this approach we found highly motivated people
for the task.

After the trackers are selected they are asked to
read a few articles and book chapters on tracking, and
encouraged to come up with creative ways of capturing
team progress. Most of the time, the tracker chose
to keep a copy of the story cards on a Web site6 so
that team members could easily access them from any
location at any time. The trackers are also responsible
for maintaining the information radiators posted to
the walls, as mentioned previously.

Technologies. For developing the projects, students
utilize the latest real-world technology, which is very
valuable for their future professional life. Most stu-
dents consider this challenge motivating and work
hard to learn the new tools.

The professors teaching the course do not specify
any tool, language, or environment in which to develop
the system. All the decisions are made by the team
itself during the initial exploratory phase.

The systems were developed using modern, free
software tools such as Java, Eclipse, CVS, ant, Apache,
Tomcat, JSP/Struts, PostgreSQL, and Checkstyle.
For unit testing, JUnit and CppUnit have been used
in all our projects. User acceptance tests verifying
the correct behavior of Web interfaces were carried
out using HHTPUnit. Server-side Java code, such as
Servlets, EJBs, and Tag Libs, has been tested using
Cactus.

Student grading. Grades in Brazil are a numeric
value between 0 and 10. We chose not to administer
any exam during the XP course. So, the grades are
calculated at the end of the semester based on four
weighted criteria: attendance (30%), commitment to
the XP method (35%), quality of the software pro-
duced (25%), and self-evaluation (10%).

The percentage distribution shows what is most im-
portant to us: that the students attend all the pro-
gramming sessions and that the XP method be ap-
plied. Simply developing a good software system with-
out using XP is not the objective of this course and
this was made clear since the beginning.

5.2 Virtual Safe - When the Customer
Wants XP

In this section we describe the mentoring performed
by Alfredo Goldman and Fabio Kon at the Labora-
tory of Computer Networks Architecture at the Uni-
versity of São Paulo. A team from the lab was hired

6See, for example, http://www.ime.usp.br/~xp/2003/xops/
storycards.

9



by a large Brazilian hardware and software company
(Scopus Tecnologia S.A.) to develop a prototype of a
Web-based virtual safe to store various kinds of com-
puter files. In this case, the customer wanted to ex-
perience agile software development and chose XP as
the method.

The team was composed of four programmers and it
was supported by a manager who was responsible for
helping the team, providing books, software, and good
working conditions. Each of the two mentors visited
the team twice a week to chat with the programmers,
manager, and customer, to look at the source code,
and to help with planning and assessment of progress.
The mentors also had remote access to the source code
(via CVS) and exchanged a few email messages ev-
ery week. The 8 project participants subscribed to
an email discussion list that was followed by all par-
ticipants, although most of the posts came from the
programmers.

On-site customer. The customer was an experi-
enced systems analyst from Scopus. He agreed with
the XP practices and committed to be on-site twice a
week, which he did. In addition, the customer was also
available by email and phone. As a former program-
mer, he felt comfortable participating in the project
discussion list and acted as a link between the project
programmers, working in the lab, and the Scopus de-
velopers and marketing department.

User Stories. After two introductory lectures on
XP given by the mentors, the team started the plan-
ning phase. The customer wrote, with the help of the
team, all the stories. At the end of the first planning
meeting we had about 50 story cards which were di-
vided in five releases. To provide time estimates for
each release, we computed the average guessed time
for each card (each of the 8 project participants made
his guess and we used the arithmetic mean as the ini-
tial estimate of the group).

In addition to the story cards describing system
functionalities, the customer also wrote two cards de-
scribing non-functional requirements: scalability and
availability. These cards were not assigned to any par-
ticular developer, but they were hang on the wall so
everyone would see them daily.

Metaphor. The system metaphor – a safe where one
can store valuables – was proposed by the customer
and was used during the entire development process,
from the initial planning until the final marketing of
the product.

Figure 4: Subjective measure of team productivity
during two releases

Releases. In the beginning of the first release, dur-
ing the planning game, the programmers verified that
the best technology would be J2EE. However, they
had very little experience with it; they were Java pro-
grammers but did not know, for example, EJB which
was considered to be a valuable technology to be used
in the project. As the customer was present in this dis-
cussion, he agreed with the decision allowing an exten-
sion in the time estimate for the initial release; three
additional weeks were added so that the programmers
could learn and get used to EJB. The delay for the
other three releases was about one week on average.

During the project, some user stories were added
and others modified; some stories were also postponed
to a later release. At the time of the last release (which
included the least important user stories) the team
agreed to cancel the release. Therefore, the 6-month
project was delivered with a delay of a few days and
a working version of the software. Part of its non-
essential functionality was not implemented but this
was not a surprise to the customer since he was fol-
lowing the entire process very closely.

Tracking. During the initial exploratory phase, one
of the programmers volunteered to be the tracker. He
collected detailed statistics about the project progress
(e.g., number of tests, classes, and story cards written,
number of story cards implemented, delays, etc.). In
addition, one of the two available white boards was
used to display tracking graphs depicting the evolu-
tion of the project. The group chose to plot, not only
objective values (e.g. number of written tests), but
also more subjective measures such as “team produc-
tivity” defined at the end of each day as a number
between 0 and 100%. Figure 4 shows the evolution of
team productivity for releases 2 and 3.

10



Reflection Workshop. We also used the idea of re-
flection workshops (also known as retrospectives) pro-
posed by Alistair Cockburn [10]. After some time, all
the people gathered in a short meeting to discuss how
effective our method was and how we could improve
it. In this meeting each programmer answered three
questions:

1. What is working in the project?

2. What is not working in the project?

3. What can you suggest to improve our develop-
ment methods and communication?

After one of these meetings we realized that pair
programming and user stories were working fine, from
the beginning. We also noticed that the programmers
should pay more attention to unit tests. A suggestion
was to replace the test-first idea; the team preferred
to write tests after writing the functional code for a
task.

Other XP practices. In this project, pair program-
ming was used all of the time, and move pairs around
was also applied once in a while. Tests were written
with JUnit and even though the test-first practice was
rarely applied, almost all the code was covered by unit
tests. At the end, the programmers had written 160
unit tests. All the source code was shared in a CVS en-
vironment and, to check compliance to the group cod-
ing standards, the developers used the Eclipse Check-
style plug-in. The implemented tasks were integrated
to the repository continuously. At first, the team had
some difficulties in refactoring, as they had only an in-
troductory seminar on the topic. However as Eclipse
provided some refactoring facilities, they got used to it,
and they started to refactor the code more frequently.

5.3 Illinois Department of Public Health

In 1998 and 1999, The Refactory, Inc. provided
a team to the Illinois Department of Public Health
(IDPH) in order to assist with the development of
medical software. Many applications at the Illinois De-
partment of Public Health manage information about
patients and people close to the patient, such as par-
ents, children, and doctors. The programs vary in
the kind of information (and the representation) they
manage. However, there are core pieces of information
that are common among the applications and can be
shared among applications.

IDPH recruited The Refactory to assist with the
development of an Enterprise framework for creating

these medical applications with the primary goals of
1) achieving reuse, 2) creating easier and quicker ways
to deploy applications, and 3) to share common data
across applications.

The primary development environment was
Smalltalk, which was used for creating Windows-
based client-server applications that interacted with a
relational database running on a UNIX box. Joseph
Yoder was the main software architect and led a
10-person team using XP practices (though not pure
XP). This section will describe the experiences at
attempting to integrate XP into IDPH and will
point out some success and problems associated with
incorporating XP into industry.

Open Space. IDPH used cubicles for each devel-
oper. The first thing we did was to remove the cubi-
cles and create a shared common space. This common
space was for us to pair program and to communi-
cate more openly. We setup our workspaces in the
open area to allow two people to share a single com-
puter, primarily to facilitate pair programming. We
put tables in the middle of our open area where we
could gather around and share ideas. We also added
a couple of whiteboards in which we could openly get
together for brainstorm or shared design.

By setting up a shared area, we created an envi-
ronment for good communication among developers.
When new ideas were presented or new code released,
everyone in our area immediately knew about it. This
helped on the integration of new code. Refactoring
was also easier since everyone had immediate access
to all of the developers.

However, in general, most of the IDPH staff was
uncomfortable with the open space idea. Our open
space was almost too open. We were so open that all
people within the IDPH staff could see what we were
doing and hear us. Thus, we were too visible. We had
some advocates to support what we were doing, but
staff members not directly involved with our project
were not as open to what we were doing. This some-
times stirred some inner controversy. For example,
people would hear us talking amongst each other and
at times our conversations would be misinterpreted.

For example, comments would be made about how
we might be wasting time talking about items that
were not directly related to our project. It is a com-
mon social phenomenon for people to discuss many
items while dialoguing and quite often, people not in-
volved with our project would complain to manage-
ment that we were wasting time. They did not see
the additional benefit that was created from the open

11



social environment.
Because of this, the mentor quite often had to pro-

tect or defend what the group was doing. In a sense,
the mentor had to isolate or protect the team from the
rest of the IDPH staff. It might have been better if we
had isolated our shared space from the rest of IDPH.
For example, we could have been in a separate room
rather than in the middle of a large space. This would
provide for an open environment that was still private
from the rest of the organization. We could then prove
our concept by our deeds rather than someone judging
our process while in action.

However, everyone that was part of our shared
spaced really liked what we were doing. We all felt
that we were more productive in this environment
based upon our previous experiences. We felt that
we achieved more and had fun while we were doing it.
We do not have empirical data backing up our feeling
but each of us have had enough development experi-
ence to believe strongly that we produced more higher
quality production code in this environment than the
old “cubicle” style of developing software.

Pair Programming. Pair programming was used
to develop most of the production code. Pair pro-
gramming worked extremely well for us as knowledge
about our frameworks was shared. Also, we all had
an understanding of all of the code and we were never
dependent on a single individual. We had people both
leave the project and join our group. Because of pair
programming we had a group understanding of the
code and we were able to adapt to changes in our de-
velopment team. Pair programming also provided new
developers with good support for learning how to use
our frameworks, thus becoming more productive in a
less amount of time.

We would let individuals develop some spike solu-
tions and what they developed would often be good
enough to be incorporated into the code-base without
pair programming. However, this code was released
only with test cases and once the code was released
into the shared repository, anyone could change the
code. Therefore, there was no explicit code-ownership.
Everyone “owned” the code and we worked together
to make sure that we never left anything broken.

We did not rotate the pairs. Certain people tended
to gravitate together and worked better together. We
also had certain individuals that were very good at
working with the spike solutions and integrating them
into the environment. They worked well with the team
but did not want to work in pairs.

Testing. Test cases and suites was an area where we
went very “extreme”. We generated many test cases
and suites. Our test cases were not always created
first but we were very diligent about creating tests to
validate our code and also to show how to use our
frameworks. We always made sure to run the test
cases at the end of each day.

These tests were invaluable during refactoring and
integration. We all became strong believers when the
test cases pointed out problems while we were inte-
grating new functionality. Problems that would not
have normally been found until late in the game were
immediately found and fixed. It also made us com-
fortable about refactoring the code. We could apply a
design pattern such as the Template Method and know
immediately if we broke someone’s code.

One of the problems with building an application
with our reusable frameworks was that our frameworks
could be hard to understand and use. The tests pro-
vided a way to document how to use them, thus mak-
ing it easier for developers to see how to use and build
applications correctly with them.

Also, since we were using Smalltalk, we were able to
evolve SUnit easily to make it so that we could create
GUI tests. This allowed us to extend our test cases
and suites to provide more extensive functional tests.
We could then create complete user acceptance tests,
thus ensuring the application worked according to the
prescribed requirements.

Releases. We had regular internal releases and did
what it took to keep a working version. This allowed us
to demo the application often and get immediate feed-
back on what worked and what did not work. How-
ever, IDPH’s process for releasing applications did not
let us release our applications to state employees on a
regular basis. We could use our working version to
meet with users and show them the application work-
ing. However, we did not receive the additional ben-
efits that arise from regular feedback provided by a
real customer using a current released version of the
application.

Since our releases were never released to the cus-
tomer until we were near completion, we did not re-
ceive the benefits of the regular feedback that XP
promises. This is one of the XP principles that can
be difficult in industry. Many users may feel that it
is a waste of their time dealing with applications that
are not completely functional.

User Stories. We did not create formal user sto-
ries. This was due to the unfortunate fact that we did

12



not have direct access to the users. Instead Joseph
Yoder worked with the State Analysts to get the re-
quirements and helped coordinate the team in an XP
fashion. This is one of the biggest problems we had
with our process.

For an application called The Refugee System, we
had a customer that worked very closely with us. This
helped to ensure that the system we developed was
very close to what they needed. Therefore, when
we were ready to go into production, the application
pretty much met the needs of the end users.

However, we worked on another application called
Newborn Screening (NBS), which had lots of prob-
lems. We did not have a relationship with the end user
until the end of the development process. Because of
the lack of a close relationship to a real customer, the
system we developed was quite disparate from what
the users needed. This led to many problems and com-
plaints by the customers and management.

Upon reflection, we can see that a closer relation-
ship with the customer was vital for success. Only re-
lying on an analyst for the requirements was not good
enough and by creating user stories for all of our ap-
plications, we might have been able to minimize some
of the problems associated with NBS. Of course this
is not unique to XP.

Assessment. In summary, we always kept things
working, we were strongly test-driven, we did bene-
fit from pair programming and the like. Our open
space was invaluable to us though we would probably
have benefited more by creating our open space in a
semi-private area.

We wish we had pushed XP even further. However,
it was hard to even push the principles as far as we did,
given the political structure of a state organization.
What we did worked well for us but our experience
tells us that it could have worked even better.

For example, generating user stories and having reg-
ular releases could have helped ensure that our appli-
cations stayed on target. Rotating pairs would have
helped sharing knowledge more.

There are a couple variations on XP that might
have helped more such as possibly creating a proxy
customer and using this proxy to generate the user
stories. For example, we know of one organization
that has successfully used analysts that worked very
closely with the customer as a user proxy. Then user
stories were created as part of the XP process [29].

5.4 Recife Short Course

In August 2003, a company called Qualiti located in
Recife, Brazil presented a short XP course for industry
professionals taught by Joseph Yoder. This section
will outline how the course was presented along with
some learning experiences.

Course Description The course was taught on site
at Qualiti in Recife. We had twelve attendees which
were from various areas of industry. The course dura-
tion was three, four-hour days and its description was
as follows:

Evolving and adapting to changing re-
quirements has become a crucial part of
the design and programming process. Ag-
ile methods such as eXtreme Programming
(XP) empowers all those that have an in-
vestment in the software being created. This
ranges from the manager to the developer
and end-user.

This short course will teach attendees the
basic premise of Agile methods and will ex-
plore the details of the XP process. The
course will consist of a mixture of lectures,
reading groups, dialogs, and labs. The atten-
dees will read some online materials, discuss
the details of the techniques, and apply them
in a group setting.

The three-day course was broken down by present-
ing, on the first day, an overview of the XP process
followed by two days of hands-on experience actually
working with the XP process.

Overview of XP. The first day really focused on
ensuring that the students understood the main prin-
ciples of XP and how the process worked. The first day
overview presented: What is XP; Why XP; Principles
of XP; The XP Process. This four-hour session em-
phasized issues such as the Customer Bill of Rights,
the Programmer Bill of Rights, Rules and Practices
of XP, and the overall process which included a de-
tailed description of the iteration cycles and releases.
We concluded this section with an introduction to the
hands-on example that was worked on for the rest of
the course.

Hands-on Example. The only way to really learn
the principles of XP is by actually working with them.
This is why any short course should have at least part
of the course encourage students to actually try and

13



work through some of the principles. The students
were broken down into two six-person teams working
through the XP process. We would meet at regular in-
tervals to compare notes and to learn from each other.

The primary goal of this task was to put into prac-
tice some of the principles of XP. Some of the main
principles of XP that were described on the first day
included items such as:

• Getting user stories from the customer

• Creating acceptance tests

• Creating spike solutions to understand the prob-
lem

• Creating a system metaphor

• Working with the customer to create a release
plan

• Doing small iterations

• Doing an iteration plan

• Breaking the stories up into 1-3 day tasks

• Doing informal design such as CRC cards

• Doing test-driven development.

The example problem for practicing with XP dealt
with the early design of a Conference Paper Submis-
sion System. The instructor knew this problem well
and could thus work as the coach and customer; he
ultimately really wanted to build such a system to use
for the Pattern Languages of Programs (PLoP) con-
ferences.

The task included creating user stories, generating
acceptance tests, outlining an architectural spike to
get a system metaphor, creating a release plan, and
working through the start of an iteration where they
broke the story up into small one to three day tasks.
Then they did some initial design and outlined the
unit tests for validating that the system would work
properly. Rough requirements for the system were pre-
sented. This should be no surprise as this quite often
happens in the real world. So, part of the task was
to get better user stories from the user to make better
estimates.

Analysis. Forcing the students to work through the
process really emphasized how XP worked. The in-
structor could easily present a detailed overview of
XP but many items were not understood until the stu-
dents worked through the process. There was also a

huge benefit from the students interacting with one
another, specifically when we came together and com-
pared the results of the two groups.

One thing that was noted from the students was
that using CRC cards for the design was difficult.
Many of the students already knew UML well and they
could draw class diagrams more easily than trying to
learn a new way to describe their objects. The course
did not dictate CRC but most students wanted to try
it so that they could understand it and compare it to
methods they were familiar with. XP does not dictate
CRC and encourage developers to use whatever works
well for them as long as they do not over design.

The main problem that the students had was trying
to limit their designs. The students that attended the
course were all very sharp developers from industry
that had quite a lot of experience developing produc-
tion systems. Thus, when they would work on an it-
eration, the temptation would be to go ahead and add
some extra complexity or over design knowing what
some of the next iterations would need. This was when
refactoring and keeping it simple was emphasized. It
is a difficult point to make to experienced developers.
It goes against what they have learned in the past
and they will probably not be convinced until they see
the results by working many months on a successful
XP project. From this, we can conclude that short
courses are useful for introducing the concepts in in-
dustrial settings. However, this should be followed up
by a long-term mentoring process where a coach works
a few days a month on-site with the XP team.

6 Open Problems

Metaphor is one of the most difficult XP practice
to teach. A good metaphor can be very important to
improve the communication, although it usually does
not receive the deserved attention. For example, in
the University of São Paulo courses, the teams have
not yet been able to use the Metaphor practice con-
sistently. A possible way of introducing the use of
metaphors in an organization would be to give a talk
presenting examples of good and bad metaphors and
emphasizing their benefits. The keynote speech given
by Kent Beck at OOPSLA 2002 [5] could be used as a
starting point.

In an academic environment, another problem ex-
ists related to student motivation. In the beginning,
we may have an enthusiastic array of students, but
this may change over the semester. In our experience,
problems related to other courses (midterm and final
exams, exercises, etc.) and personal problems caused

14



detrimental interference in the development of some
XP projects. One solution would be to shorten the
length of the courses. However, since similar problems
also occur in real-life projects, it may be a good thing
that they appear in the academic setting so that the
participants learn to deal with them.

Finally, a problem often mentioned pertains to the
difficulty of performing unit tests in stand-alone ap-
plications based on GUIs. In some environments it
might be difficult to emulate user activities such as
mouse clicks, drag and dropping, etc. However, this
problem will probably not last too long since the tools
for testing graphical interfaces (e.g., based on capture
and replay of user movements) have been improving
significantly in the last few years and we can expect
the development of testing frameworks for these kinds
of graphical interfaces [22, 23].

7 Conclusions

Agile software development methods, such as XP,
are gradually being adopted by hundreds of organiza-
tions in the five continents. Nevertheless, the spirit of
agile development is still not present in most of the
organizations developing software. A new culture of
agility and adaptation to change must be developed
and educators must have a major role to play in this
regard.

In this article, we have described our experiences in
teaching XP in both academic and industrial environ-
ments and have discussed how one can be effective in
teaching and implementing XP in an organization.

We have observed that, although there may be a
priori fears of the consequences and effectiveness of
XP, once developers and managers have real contact
with a well-run XP project, the fears quickly dissipate.
XP has proved to be a very attractive method both in
academic and corporate environments due to the lack
of surprises for customers and developers (thanks to
the on-site customer practice) and to the high-quality
of the software produced. Additionally, the environ-
ment created is optimal for developers who feel free to
put all their energy in producing high-quality working
code without the distractions required by bureaucratic
processes that focus on tools and documents.

Within the next few years we expect that XP and
agile methods will become part of the curriculum in
many more universities around the world (at least as
elective courses) and that industrial training and men-
toring in XP will become more frequent. It is the role
of educators and researchers to promote and enable
this leap forward.

Acknowledgments The authors gratefully ac-
knowledge the energy, excitement and great ideas pro-
vided by all the students and professionals that par-
ticipated in our courses and mentoring projects. We
thank Carlos Eduardo Ferreira, Ricardo Komatsu de
Almeida and Eduardo Colli for being good customers,
Klaus Wuestefeld for all the ideas shared with us and
Eduardo Seiti Teruiya, César Rossi, Daniel Francis
Soriano, Dairton L. Bassi Filho, and Fabio Taroda,
Alexandre Freire, and Christian Asmussen for driving
out fear and embracing change. We also thank Paulo
Borba, Ralph Johnson, Steven Wingo, Paula Braga,
Jason Frye. Finally, we acknowledge the wonderful
feedback provided by the anonymous reviewers which
helped us to improve the article significantly.

Alfredo Goldman, Fabio Kon and Paulo J. S.
Silva were supported by CNPq under the grants
303246/2002-2, 302455/2003-5, and 304691/2002-0.

References

[1] Johan Andersson, Geoff Bache, and Peter Sutton.
XP with acceptance-test driven development: A
rewrite project for a resource optimization sys-
tem. In Proceedings of the 4th International Con-
ference on eXtreme Programming and Agile Pro-
cesses in Software Engineering (XP 2003), vol-
ume 2675 of Lecture Notes on Computer Science,
pages 180–188, 2003.

[2] Gary H. Anthes. Sabre takes ex-
treme measures. Computer World, see
www.computerworld.com/softwaretopics/
software/story/0,10801,91646,00.html,
March 2004.

[3] O. Astrachan, R. Duvall, and E. Wallingford.
Bringing extreme programming to the classroom.
In Proceedings of XP Universe 2001, Raleigh, NC,
USA, 2001.

[4] Kent Beck. Extreme Programming Explained:
Embrace Change. Addison-Wesley, 1999.

[5] Kent Beck. The metaphor metaphor. Keynote
speech - ACM OOPSLA’02, November 2002.

[6] Kent Beck. Test-Driven Development: By Exam-
ple. Addison-Wesley, 2002.

[7] Kent Beck et al. Manifesto for Agile Soft-
ware Development. Home page: http://
agilemanifesto.org, 2001.

15



[8] Piergiuliano Bossi. eXtreme Programming ap-
plied: a case in the private banking domain.
In Proceedings of OOP, Munich, 2003. Avail-
able at www.quinary.com/pagine/downloads/
files/Resources/OOP2003Paper.pdf.

[9] A. Cockburn and L. Williams. The costs and
benefits of pair programming. In Proceedings of
the First International Conference on Extreme
Programming and Flexible Processes in Software
Engineering (XP2000), Cagliari, Sardinia, Italy,
June 2000.

[10] Alistair Cockburn. Agile Software Development.
Addison-Wesley Longman, 2002.

[11] Ron Crocker. Large-Scale Agile Software Devel-
opment. Addison-Wesley, 2004.

[12] Martin Fowler. Refactoring: Improving the De-
sign of Existing Code. Addison-Wesley, 1999.

[13] Andrew M. Fuqua and John M. Hammer. Em-
bracing change: An XP experience report. In
Proceedings of the 4th International Conference
on eXtreme Programming and Agile Processes in
Software Engineering (XP 2003), volume 2675 of
Lecture Notes on Computer Science, pages 298–
306, 2003.

[14] Orit Hazzan, Joe Bergin, James Caristi, Yael
Dubinsky, and Laurie Williams. Teaching soft-
ware development methods: The case of Extreme
Programming. In Panel at the 35th Technical
Symposium on Computer Science Education
(SIGCSE’2004), Norfolk, Virginia, USA, 2004.
ACM. db.grinnell.edu/sigcse/sigcse2004/
viewAcceptedSession.asp?sessionType=
SpecialSession&sessionNumber=28.

[15] Donald Howard. Swimming around the waterfall:
Introducing and using agile devel. In Proceedings
of the 4th International Conference on eXtreme
Programming and Agile Processes in Software En-
gineering (XP 2003), volume 2675 of Lecture Note
in Computer Science, pages 138–145, 2003.

[16] P. Lappo. No pain, no XP: observations on
teaching and mentoring extreme programming to
university students. In Procedings of the 3rd
International Conference on eXtreme Program-
ming and Agile Processes in Software Engineering
(XP2002), Cagliari, Italy, 2002.

[17] Jim Little. Ats diary. C2 wiki site, see c2.com/
cgi/wiki?AtsDiary, 2000.

[18] Kim Man Lui and Keith C.C. Chan. Test driven
development and software process improvement
in china. In Proceedings of the 5th International
Conference on eXtreme Programming and Ag-
ile Processes in Software Engineering (XP 2004),
volume 3092 of Lecture Notes on Computer Sci-
ence, pages 219–222, 2004.

[19] Katiuscia Mannaro, Marco Melis, and Michele
Marchesi. Empirical analysis on the satisfaction
of it employees comparing xp practices with other
software development methodologies. In Proceed-
ings of the 4th International Conference on eX-
treme Programming and Agile Processes in Soft-
ware Engineering (XP 2003), volume 2675 of Lec-
ture Notes on Computer Science, pages 166–174,
2003.

[20] K. Maruyama and K. Shima. Automatic method
refactoring using weighted dependence graphs. In
Proceedings of the 21st international conference
on Software engineering, pages 236–245. IEEE
Computer Society Press, 1999.

[21] P. McBreen. Questioning Extreme Programming.
Addison Wesley, 2003.

[22] Atif M. Memon. A Comprehensive Framework for
Testing Graphical User Interfaces. PhD thesis,
University of Pittsburgh, July 2001.

[23] Atif M. Memon. GUI testing: Pitfalls and pro-
cess. IEEE Computer, 35(8):90–91, August 2002.

[24] Roger A. Mller. Extreme Programming in a uni-
versity project. In Proceedings of the 5th In-
ternational Conference on eXtreme Programming
and Agile Processes in Software Engineering (XP
2004), volume 3092 of Lecture Notes on Computer
Science, pages 312–315, 2004.

[25] N. Nagappan, L. Williams, E. Wiebe, C. Miller,
S. Balik, M. Ferzli, and M. Petlick. Pair learning:
With an eye toward future success. In Extreme
Programming and Agile Methods - XP/Agile Uni-
verse 2003, volume 2753 / 2003 of Lecture Notes
in Computer Science, pages 185 – 198. Springer-
Verlag Heidelberg, September 2003.

[26] Joseph Pelrine. Modelling infection scenarios - a
fixed-price eXtreme programming success story.
In ACM OOPSLA Companion Proceedings, pages
23–24. ACM Press, 2000.

[27] Ken Schwaber and Mike Beedle. Agile Software
Development with SCRUM. Prentice Hall, 2001.

16



[28] M. Stephens and D. Rosenberg. Extreme Pro-
gramming Refactored: The Case Against XP.
Apress, 2003.

[29] C. Taber and M. Fowler. An iteration
in the life on an XP project. Cutter IT
journal, 13(11), November 2000. Updated
eletronic version: http://www.martinfowler.
com/articles/planningXpIteration.html.

[30] James E. Tomayko. A comparison of pair pro-
gramming to inspections for software defect re-
duction. Computer Science Education, 12(3):213–
222, 2002.

[31] I. Tomek. What i learned teaching XP. In Pro-
ceedings of the ACM OOPSLA Educators Sym-
posium, pages 39–46, Seattle, Washington, USA,
November 2002.

[32] L. Williams and R. Kessler. Pair Programming
Illuminated. Addison-Wesley, 2002.

[33] L. A. Williams and R. R. Kessler. All I really
need to know about pair programming I learned
in kindergarten. Communications of the ACM,
43(5):108–114, May 2000.

[34] D. Wilson. Teaching XP: a case study. In Pro-
ceedings of XP Universe 2001, Raleigh, NC, USA,
2001.

[35] Klaus Wuestefeld. Customer Proxy and Libero.
E-mail personal communication, September 2002.

17


