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Recent advances in distributed, mobile,
and ubiquitous systems are creating new
computing environments that are character-
ized by a high degree of dynamism. Vari-
ations in resource availability, network con-
nectivity, and hardware and software plat-
forms impact greatly the performance of user
applications. The expected growth of ubiq-
uitous computing will further change the
nature of the computational infrastructure,
bringing a plethora of small devices and re-
quiring customized protocols and policies in
order to fulfill the user’s evolving quality of
service requirements.

In the past ten years, software develop-
ers witnessed the creation of various mid-
dleware technologies whose goal is to fa-
cilitate the development of software sys-
tems. Middleware resides between the op-
erating system and the application (thus
its name), mediating the interactions be-
tween them. Technologies such as OMG’s
CORBA 3, Sun’s Java-based J2EE, and Mi-
crosoft’s .NET hide from the programmer
the complicated details of network commu-
nication, remote method invocation, nam-
ing, and service instantiation, easing the
construction of complex distributed systems.

CORBA and Java also hide the differences
among the underlying software and hardware
platforms, increasing portability and facili-
tating maintenance as new versions of oper-
ating systems are released.

While conventional middleware technol-
ogy aids the development of distributed ap-
plications for the new computing environ-
ments, it does not provide appropriate sup-
port for dealing with the dynamic aspects of
the new computational infrastructure. Next
generation applications require a middleware
that can be adapted to changes in the envi-
ronment and customized to fit into devices
ranging from PDAs and sensors to power-
ful desktops and multicomputers [1, 2]. This
article draws on the experience of two in-
dependent research projects on next genera-
tion middleware. We argue that the reflec-
tive middleware model is a principled and ef-
ficient way to deal with highly dynamic en-
vironments, supporting the development of
flexible and adaptive systems and applica-
tions.
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Why Reflective Middleware?

A major advantage of using middleware to
develop software is that it hides the details
of the underlying layers and operating sys-
tem specific interfaces. Developers of dis-
tributed applications can write code that
looks very similar to code for centralized ap-
plications; the middleware takes care of net-
working, marshalling, method dispatching,
scheduling, etc. The code that runs on top
of the middleware is easily portable and the
programmer need not to worry about the in-
ternals of the operating system and of the
middleware.

On the other hand, some applications
can benefit greatly from knowing what is
happening inside the underlying layers, in
the computational environment, and in the
physical environment. For example, a multi-
media streaming or videoconferencing appli-
cation can obtain dramatic improvements in
its quality of service by selecting a network
transport protocol that suits the underlying
network infrastructure (e.g., wireless LAN,
wired LAN, or long distance Internet) and
the available bandwidth. It may also benefit
from being aware of its physical context, de-
tecting the presence of a wall display and re-
configuring the application to show the video
in the larger display. An e-commerce web
site can improve its response time by ex-
amining information about resource utiliza-
tion and changing dynamically the location
of its system components, creating replicas
of its most requested services, or changing
the middleware’s request scheduling policies.
A calendar application for ubiquitous com-
puting can be more effective if its code can
detect in what kind of hardware platform it
is executing (e.g., PDA, wrist watch, desk-
top, or wall display) so that it can provide a
graphical interface that is optimized for that
platform.

In other words, most of the applications
benefit from middleware that can hide the

details of the underlying layers, but some
applications can get very significant perfor-
mance improvements by examining the dy-
namic state of the underlying layers and tun-
ing the middleware implementation to its
needs [2]. Therefore, what we need is a
model of middleware that provides trans-
parency to the applications that want it and
translucency and fine-grain control to the ap-
plications that need it.

The Reflective Middleware
Model

In the reflective model, the middleware is
implemented as a collection of components
that can be configured at application startup
time. The middleware interface is unchanged
and can be used by applications developed
for traditional middleware. In addition, sys-
tem and application code may also use meta-
interfaces to inspect the internal configura-
tion of the middleware and, if needed, re-
configure it to adapt to changes in the en-
vironment. In that manner, it is possible
to select networking protocols, security poli-
cies, encoding algorithms, and various other
mechanisms to optimize system performance
for different contexts and situations.

In general terms, reflective middleware
refers to the use of a causally connected
self-representation to support the inspection
and adaptation of the middleware system
[1]. Thus, the same reflection techniques
used in traditional areas, such as program-
ming languages, apply to middleware as well
(see Sidebars). By self-representation, we
mean an explicit representation of the inter-
nal structure of the middleware implementa-
tion that is maintained and can be manipu-
lated by it; one can also say that the middle-
ware is self-aware. The self-representation
is causally connected if changes in the rep-
resentation lead to changes in the middle-
ware implementation itself and, conversely,
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changes in the middleware implementation
lead to changes in the representation.

Unlike traditional middleware that is con-
structed as a monolithic black box, reflective
middleware is organized as a group of collab-
orating components. This organization per-
mits the configuration of very small middle-
ware engines that are able to interoperate
with traditional middleware. Conventional
middleware implementations include all the
functionality that any application may ever
need; however, most of the times, applica-
tions use only a small subset of this func-
tionality. The current difficulties in deploy-
ing standard middleware technologies to the
small devices used in ubiquitous computing
do not apply to component-based middle-
ware. While conventional CORBA ORBs
and Java virtual machines require several
megabytes of memory, component-based re-
flective ORBs can have a memory footprint
as little as 6KB [3].

In addition to the characteristics men-
tioned above, a reflective architecture must
also provide support for customizing compo-
nent behavior dynamically and for fine-grain
resource management through system meta-
interfaces (see the Basic Reflection Termi-
nology Sidebar).

Case Studies

We now describe two different implementa-
tions of reflective middleware systems devel-
oped at the University of Illinois and at Lan-
caster University and explain how each im-
plementation addresses the issues discussed
above.

dynamicTAO

DynamicTAO [4] is an extension of the C++
TAO ORB [5], enabling on-the-fly reconfig-
uration of the ORB internal engine and of
applications running on top of it. In dy-
namicTAO , ComponentConfigurators repre-

Figure 1: dynamicTAO component configu-
rators

sent the dependence relationships between
ORB components and between ORB and ap-
plication components. A ComponentConfig-
urator is a C++ object that stores the de-
pendencies as lists of references, pointing to
other component configurators, creating a
directed dependence graph of ORB and ap-
plication components as shown in Figure 1.

Whenever a request for replacing a compo-
nent C arrives, the middleware examines the
dynamic dependencies between C and other
middleware and application components us-
ing the ComponentConfigurator object asso-
ciated with C. Programmers can extend the
ComponentConfigurator class by inheritance
to provide customized implementations deal-
ing with different kinds of components. Mid-
dleware developers use this feature to write
the code that takes the proper actions to
guarantee the consistency of the ORB inter-
nal structure in the presence of dynamic re-
configurations. DynamicTAO supports safe
dynamic reconfiguration of the middleware
components that control concurrency, secu-
rity, and monitoring.

DynamicTAO exports a meta-interface for
loading and unloading modules into the sys-
tem runtime, and for inspecting and chang-
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ing the ORB configuration state. This meta-
interface can be accessed by developers for
debugging and testing purposes, by system
administrators for maintenance purposes, or
by other software components that can in-
spect and reconfigure the internals of the
ORB based on information collected from
other sources, such as resource utilization
monitors [6]. In addition, to support the
reconfiguration of a large collection of dis-
tributed ORBs, dynamicTAO exports a sim-
ilar meta-interface for mobile agents. In this
case, system administrators use a graphical
interface to build mobile agents and inject
them in the network; the agents travel from
ORB to ORB, inspecting and reconfiguring
them according to the instructions the ad-
ministrator programmed [4].

To allow dynamic interposition of
application- or enterprise-specific code
into the remote method invocation path,
dynamicTAO provided support for intercep-
tors since its first releases. More recently,
the OMG defined a standard for portable
interceptors [7], which is now part of TAO.
Developers can install portable interceptors
at the client and server sides and at the
message or request levels. This facility
can be used for supporting cryptography,
compression, access control, monitoring,
auditing, etc.

DynamicTAO delegates resource manage-
ment to components that are not part of the
basic middleware engine but that can be dy-
namically loaded into it. It employs the Dy-
namic Soft Real-Time Scheduler (DSRT) [8],
which runs as a user-level process in conven-
tional operating systems like Solaris, Linux,
and Windows. DSRT uses the system’s low-
level real-time API to provide QoS guaran-
tees to applications with soft real-time re-
quirements. It performs QoS-aware admis-
sion control, resource negotiation, reserva-
tion, and real-time scheduling [6].

The mechanisms for reification, inspection
and reconfiguration of the ORB internal en-

gine that dynamicTAO adds to the conven-
tional TAO implementation make it a reflec-
tive ORB.

Open ORB

The Open ORB project [9] aims at the
design of highly configurable and dynami-
cally reconfigurable middleware platforms to
support applications with dynamic require-
ments, such as those involving distributed
multimedia and mobility.

Components with well-defined interfaces
implement the several elements of middle-
ware functionality. Customized instances of
the Open ORB platform can then be config-
ured by assembling the appropriate compo-
nents together, following a component model
that allows for hierarchic composition and
distribution. The Open ORB architecture
preserves components as identifiable entities
at runtime, which in turn facilitates run-
time reconfiguration, as it eases identifica-
tion of the parts of the platform that need
to change.

Dynamic reconfigurability is achieved with
the extensive use of reflection, with a clear
separation between base- and meta-level.
While the base-level consists of components
that implement the usual middleware ser-
vices, the meta-level comprises reflective fa-
cilities to expose such implementation, en-
abling inspection and adaptation. The struc-
ture of the meta-level follows the same com-
ponent model used to define the base-level,
which means that reflection can also be ap-
plied to inspect and adapt the meta-level
itself. Meta-level components comprise a
causally connected self-representation of the
platform and are associated with the base-
level components on an individual basis.
Each base-level component may have its own
private set of meta-level components, which
are collectively referred to as the compo-
nent’s meta-space.

To tackle the complexity of the meta-level
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architecture and to provide for manageable,
yet comprehensive reflective interfaces, the
meta-space of a component is defined ac-
cording to a multi-model reflection frame-
work [10]. The meta-space is partitioned
into distinct meta-space models, which offer
different views of the platform implementa-
tion and can be independently reified. Open
ORB currently defines four meta-space mod-
els, which are grouped according to the dis-
tinction between structural and behavioral
reflection, and are illustrated in Figure 2.

The Interfaces and Architecture meta-
space models support structural reflection.
The former model is concerned with the
external representation of a component, in
terms of the set of provided and required in-
terfaces. The associated meta-object proto-
col (MOP) offers facilities to enumerate and
search the elements of interface definitions,
allowing, for instance, the dynamic discov-
ery of the services a component provides.
The Architecture meta-space model in turn
is concerned with the internal implementa-
tion of components, in terms of its software
architecture. The self-representation consists
of two parts: a component graph, represent-
ing the interconnections between the com-
ponents in a component assembly, and a
set of architectural constraints, which define
the rules to validate component assemblies.
The associated MOP provides the ability to
inspect and adapt the software architecture
(e.g., to add, remove or replace components,
and to inspect and change the constraints),
enabling dynamic adaptation.

The Interception meta-space model sup-
ports behavioral reflection. The correspond-
ing MOP enables the manipulation of non-
functional properties, in the form of intercep-
tors that perform pre- and post-processing
of the interactions emitted and received at
an interface. In addition to this form of be-
havioral reflection, the Resources meta-space
model offers structured access to the under-
lying platform’s resources and resource man-

agement [11]. The associated MOP allows
the inspection and reconfiguration of the re-
sources, such as storage and processing, al-
located to particular activities in the sys-
tem (e.g., by adding or removing resources,
or changing the parameters and algorithms
for resource management). In this way, re-
source allocation and properties can evolve
to match the quality of service requirements
of applications.

The Open ORB research group imple-
mented prototypes of the architecture focus-
ing on performance, management of meta-
information, and resource management [9].
In each case, the researchers carried out tests
that demonstrated the suitability of the ar-
chitecture for the support of distributed mul-
timedia applications.

Comparison

Open ORB and dynamicTAO were devel-
oped independently at different sides of
the Atlantic by people with different back-
grounds using different technologies. Never-
theless, their motivations were the same and
both projects led to similar solutions based
on reflective architectures.

These projects illustrate two opposite ap-
proaches for the development of reflective
systems and, more specifically, reflective
middleware. The development of dynam-
icTAO started with TAO, a complete im-
plementation of a CORBA ORB that was
modular but static. The dynamicTAO de-
velopers re-used tens of thousands of lines
of code that were already functional and
concentrated on adding reflective features to
make the system more flexible, dynamic, and
customizable. Conversely, the development
of Open ORB started from scratch, its de-
signers had the opportunity to plan its ar-
chitecture from the earliest stages. There-
fore, while dynamicTAO focused on code re-
use and on leveraging existing systems, Open
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Figure 2: Structure of the meta-space in Open ORB

ORB focused on a novel middleware archi-
tecture where all the elements are consistent
with the principles of reflection.

Conclusions and
Future Directions

In the past two years, existing implemen-
tations of traditional middleware have been
incorporating some of the contributions of-
fered by research in reflective middleware.
CORBA has now a standard for portable in-
terceptors [7]. Orbix2000 allows the spec-
ification of different policies and supports
dynamic loading of new components called
plug-ins [12]. Despite the usefulness of
these features, the degree of support for cus-
tomization and dynamic adaptation is only
partial, not covering all aspects of the de-
sign and the different phases of a platform’s
life cycle. This is mostly due to the inher-
ent black-box nature of these technologies,
which limits the extent to which elements of
the design can be opened and exposed to the
programmer. Reflection, on the other hand,
offers a truly generic solution to the prob-
lem with a principled approach to middle-
ware design that naturally renders itself to

openness. Finally, the use of reflection per-
mits the manipulation and adaptation of the
different aspects of a platform in ways that
were not anticipated during its design.

We believe that it is now time for the mid-
dleware community to get together to dis-
cuss the architecture of the next generation
middleware technologies. Reaching an inter-
national consensus in this area and working
for the emergence of standards for reflective
middleware would be extremely beneficial.
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SIDEBAR1: Basic Reflection
Terminology

The foundations of reflective computing sys-
tems were originally laid out by Smith [1]
and Maes [2] in the context of programming
languages. In short, a system is reflective
when it is able to manipulate and reason
about itself in the same way as it does about
its application domain. As a result of such
introspective processing, a reflective system
provides the ability to inspect and change
itself during the course of its execution.

From its original application in program-
ming languages, reflection gained wider ac-
ceptance in other areas, such as operat-
ing systems [3] and distributed systems [4].
This was based on the assumption that the
same underlying principles seamlessly apply
to these areas. Such assumption has also fu-
eled the work on reflective middleware, as
seen in the main body of this article. We
now describe a few fundamental concepts of
reflective systems.

• reification: the action of exposing the
internal representation of a system in
terms of programming entities that can
be manipulated at runtime. The oppo-
site process, absorption, consists in ef-
fecting the changes made to reified en-
tities into the system, thus realizing the
causal connection link.

• meta-level architectures: a reflec-
tive system has a meta-level architec-
ture when it is explicitly structured in
terms of a base-level, which deals with
application concerns, and a meta-level,
which deals with reflective computation.

• meta-object and meta-object pro-
tocol (MOP): in object-oriented re-
flective systems, the entities that pop-
ulate the meta-level are called meta-
objects. The interaction protocol the

meta-objects support provides the re-
flective capabilities and is known as the
meta-object protocol (MOP).

• structural reflection: the ability of
a language (or system) to provide a
complete reification of the program cur-
rently executing, for instance, in terms
of its methods and state. This enables
the programmer to inspect or change
the functionality of the program and the
way it models the domain.

• behavioral reflection: the ability of a
language (or system) to provide a com-
plete representation of its own seman-
tics, in terms of internal aspects of its
runtime environment. This enables the
programmer to inspect or change the
way the underlying environment pro-
cesses the program, for example, with
regard to non-functional properties and
resource management.
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SIDEBAR2: Other Reflective
Middleware Implementations

A number of researchers have developed mid-
dleware architectures that apply the con-
cepts of reflection and meta-level architec-
tures. Some examples are discussed below.

FlexiNet is a configurable ORB architec-
ture aiming at environments of mobile Java
objects [1]. FlexiNet defines an open dis-
tributed binding framework, structuring it in
terms of modules in a protocol stack. It sup-
ports adaptation through a meta-object pro-
tocol that allows for reconfiguration of such
modules to alter the properties of the bind-
ing.

OpenCORBA is a reflective imple-
mentation of CORBA in NeoClasstalk, a
Smalltalk-like reflective language based on
the concept of meta-classes [2]. The re-
flective features of OpenCORBA are based
on the idea of modifying the behavior of a
CORBA service by replacing the meta-class
of the class defining that service.

Quarterware is a reflective middleware
platform supporting multiple middleware
standards such as CORBA, Java RMI, and
MPI [3]. It uses a component framework for
middleware, where the various ORB mech-
anisms are realized in terms of components.
A reflective interface allows the programmer
to plug customized versions of these compo-
nents into the framework.

mChaRM is a reflective middleware plat-
form that uses the communication reifica-
tion approach to enable explicit control over
multi-party communications [4]. The archi-
tecture is centered on channels as the main
meta-level abstraction, which permits the in-
terception of method calls to inspect and

adapt their structure and behavior.
Besides the object-oriented approach of

most reflective middleware projects, re-
searchers have considered the use of
the aspect-oriented programming (AOP)
paradigm to structure middleware meta-level
architectures. AOP extends the basic notion
of separation of concerns in reflective sys-
tems (i.e., base- vs. meta-level) to a finer
level of granularity, where multiple crosscut-
ting concerns or aspects (at both base- and
meta-level) can be implemented separately
and yet be integrated into a cohesive sys-
tem. In mainstream AOP research, aspects
are not preserved at runtime as identifiable
entities, thus hindering their use for dynamic
adaptation. Nevertheless, other approaches
for the realization of aspect-oriented systems
have employed mechanisms such as compo-
sition filters [5] and fragmented components
[6], which realize aspects in terms of first-
class runtime entities. This opens the pos-
sibility for aspect-oriented reflective middle-
ware, in which the design of the meta-level
benefits from the greater separation of con-
cerns that is typical of the AOP paradigm.
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