
Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Bringing Test-Driven Development to
Web Service Choreographies

Felipe Besson, Paulo Moura, Fabio Kon

Department of Computer Science

University of São Paulo
{besson, pbmoura, kon}@ime.usp.br

Dejan Milojicic

Hewlett Packard Laboratories

Palo Alto, USA
dejan.milojicic@hp.com

Abstract

Choreographies are a distributed approach for composing web services. Compared to orchestrations,
which use a centralized scheme for distributed service management, the interaction among the chore-
ographed services is collaborative with decentralized coordination. Despite the advantages, choreography
development, including the testing activities, has not yet evolved sufficiently to support the complexity
of the large distributed systems. This substantially impacts the robustness of the products and overall
adoption of choreographies. The goal of the research described in this paper is to support the Test-Driven
Development (TDD) of choreographies to facilitate the construction of reliable, decentralized distributed
systems. To achieve that, we present Rehearsal, a framework supporting the automated testing of chore-
ographies at development-time. In addition, we present a choreography development methodology that
guides the developer on applying TDD using Rehearsal. To assess the framework and the methodology,
we conducted an exploratory study with developers, whose result was that Rehearsal was considered
very helpful for the application of TDD and that the methodology helped the development of robust
choreographies.

Keywords: Automated testing, Test-Driven Development, Web service choreographies

I. Introduction

Service-Oriented Architecture (SOA) is a set of principles and methods that uses services as the
building blocks for the development of distributed applications. Web services can be composed to
create more complete services and then to implement complex business workflows. Different from
orchestrations, choreographies are a more scalable approach for composing services (Guimaraes
et al., 2012). The interaction among the choreographed services is collaborative: coordination is
distributed across all choreography participants. Locally, each choreography participant is only
concerned with the actions it must take to play the desired role. For this reason, choreographies
are a good candidate architecture for fully decentralized workflows (Barker et al., 2009).

Over the years, the way information is created, shared, used, and integrated in the Internet is
changing at a fast pace. As a result, the current Internet is evolving towards the Future Internet,
which is foreseen as a federation of services that will provide built-in mechanisms such as scalable
service access, mobility of network and devices, in a secure, reliable, and robust way (Tselentis
et al., 2010). With respect to service access, service choreographies are proposed as an adequate
architecture to deal with the large scale nature of the Future Internet, which can be translated into
a high number of interacting entities, parallel single service accesses, and massive service load
(Issarny et al., 2011).

A few standards have been proposed for modeling choreographies, such as the Web Services
Choreography Description Language (WS-CDL), a W3C standard candidate proposed in 2004,

1

http://www.sciencedirect.com/science/article/pii/S016412121400209X
https://www.researchgate.net/publication/228341221_The_benefits_of_service_choreography_for_data-intensive_computing?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/220066377_Service-Oriented_Middleware_for_the_Future_Internet_State_of_the_Art_and_Research_Directions?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

and, more recently, the OMG Business Process Model and Notation version 2 (BPMN2). However,
up to now, none of them have experienced wide adoption. This is also true for development
methods such as the one proposed by the Savara project (Madurai, 2009). Due to the inherent
characteristics of SOA – such as dynamism, inter-organization integration, reuse of service – the
automated, and even the manual, testing of choreographies is not conducted properly. This
scenario results in choreographies implemented using ad hoc, often chaotic, development processes.
As a consequence, choreography development activities cannot be performed properly. Normally,
neither the functional behavior nor scalability of choreographies is verified or assessed properly.

The goal of our research is to apply Test-Driven Development (TDD) to choreographies to
facilitate their construction and improve their adoption. TDD is a design technique that guides
the development of software through testing (Beck, 2003; Fowler, 2011). With TDD, test cases
are written before the code which they test, in a technique called test-first programming, which
forces the developer to think about what could possibly go wrong even before the implementation
itself begins (Erdogmus et al., 2005). Experiments and empirical observations in the industry
have shown that TDD increases code quality and reduces defect density. A case study (Bhat
and Nagappan, 2006) conducted in Microsoft assessed the impact of TDD in two different teams.
In the first one, although the initial development time of the project using TDD increased by
35%, the density of defects decreased by 62%. In the second case, the initial development time
increased 15% while the density of defects decreased 76%. Based on this favorable retrospect, our
research hypothesis was that TDD has a good potential to aggregate more quality to choreography
development.

This paper presents two major contributions:

1. Rehearsal, a novel framework for automated offline (development-time) testing of web
service choreographies;

2. A choreography development methodology, which guides the developer to use the frame-
work with TDD.

Both contributions were evaluated empirically via an exploratory study following sound Empirical
Software Engineering principles.

Our research involved a three-year study on the requirements and architecture for provisioning
a powerful tool and useful methodology for the development of robust choreographies. During
this period, we carried out a comprehensive study of the academic literature on the subject, a
detailed analysis of related software tools, and discussed the subject with tens of programmers,
researchers, and practitioners from the software industry. Our research findings indicate that the
tool and the methodology, as described in this paper, aid developers significantly in the complex
task of building large-scale decentralized systems composed of collections of web services.

Differently from the related works, Rehearsal and the development methodology provide
features and guidelines for testing and developing choreographies following agile software
development concepts. Therefore, with this framework, the developer can write tests before the
service implementation. Following the agile culture, the tests are created by developers based on
the choreography specification. This process is performed incrementally, and the tests guide the
design of the choreographed services. During the service integration, the exchanged messages can
be intercepted and validated through service proxies, which helps the developer to monitor and
debug the choreography behavior at the development environment. Moreover, Rehearsal provides
a feature to emulate (mock) third-party services that cannot be used during offline tests. This
feature can be invoked through a fluent interface that is similar to the interface of Java mocking

2

http://www.sciencedirect.com/science/article/pii/S016412121400209X
https://www.researchgate.net/publication/216027190_Test-Driven_Development-By_Example?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/3188484_On_the_effectiveness_of_the_test-first_approach_to_programming?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

tools (e.g., Mockito1 and EasyMock2).
This paper is structured as follows. Section II provides a brief background, a practical

choreography example, and requirements for a comprehensive testing infrastructure to deal with
real problems arising from testing choreographies. Section III discusses related work and its
relationship with our approach. In Sections V and VI, we present Rehearsal and our methodology
proposal and how these artifacts address the problems presented in our choreography example. To
assess both artifacts, an exploratory study has been conducted with advanced Computer Science
students. The study design and obtained results are presented and discussed in Section VII. Then,
an industrial validation carried out in the context of CHOReOS project is summarized in Section
VIII. Finally, we draw our conclusions and discuss ongoing and future work in Section IX.

II. Fundamental concepts

In this section, we present a brief introduction to web service choreographies and Test-Driven
Development (TDD), two fundamental concepts related to this work. Then, we present the
FutureMarket, an example of a choreography for distributed shopping. This example guides
the explanation of the Rehearsal features in the next sections. Finally, we present the existing
challenges of choreography testing that this work aims to cover.

I. Web Service Choreographies

The ability of composing web services effectively is one of the critical requirements for service
oriented computing (Erl, 2007). In this context, orchestrations and choreographies have been
proposed as approaches for composing web services. Orchestrations correspond to a centralized
approach where internal and external web services are composed into an executable business pro-
cess (Peltz, 2003). Some standards, such as the Business Process Execution Language (BPEL)3, have
been proposed for orchestrating services. In an orchestration, a central party (node) controls the
interaction flow of the other parties, unlike in choreographies, where the control is decentralized.

A choreography is a collaborative interaction in which each involved node plays a well defined
role. A role defines the behavior a node must follow as part of a larger and more complex
interaction. When all roles have been set up, each node is aware of when and with whom to
communicate, based on pre-established messages specified by a global model (Barker et al., 2009).
Therefore, when the choreography is started (enacted), there is no central entity driving the
interaction of the whole choreography. In a web service choreography, each role is formally
specified through a Web Service Description Language (WSDL) document.

Since orchestrations are executable processes, choreographies can be executed via distributed
orchestrations (Autili and Ruscio, 2011). In this approach, the developer associates an orchestration
to each choreography role. During the choreography information flow, many coordinators
(orchestrations) are then responsible for different parts of the flow. In this manner, there is no
entity keeping a global interaction state or, in other words, coordinating the entire business flow.

In an abstract (higher) level, the messages exchanged among the choreography roles are
specified by using modeling languages (e.g., BPMN 2). However, in an executable (lower) level, a
role implementation consists of an orchestration of a service or a set of services. In this case, the
WSDL interface exposed by the orchestration must be compatible with the interface required by
the implemented choreography role.

1http://code.google.com/p/mockito
2www.easymock.org
3BPEL: http://www.oasis-open.org/committees/wsbpel

3

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://code.google.com/p/mockito
www.easymock.org
http://www.oasis-open.org/committees/wsbpel
https://www.researchgate.net/publication/228341221_The_benefits_of_service_choreography_for_data-intensive_computing?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/2955996_Orchestration_and_Choreography?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/235720519_SOA_Principles_of_Service_Design?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 1: Orchestration of services playing roles in a choreography (Peltz, 2003)

Figure 1 depicts a role implementation through orchestrations. The orchestration in the left
side implements the Store role. During the choreography execution, this orchestration sends a
payment message to the Bank role that forwards part of the payment to the Shipper role. Finally, this
orchestration sends a confirmation message back to the Store role. During the message exchange,
the information flows across the choreography roles in a decentralized way.

II. Test-Driven Development (TDD)

Test-Driven Development (TDD) consists of a design technique that guides software development
through testing (Beck, 2003; Fowler, 2011). TDD can be summed up in the following iterative
steps:

1. Write an automated test for the next functionality to be added into the system;

2. Run all tests and see the new one fail;

3. Write the simplest code possible to make the test pass;

4. Run all tests and see them all succeed;

5. Refactor the code to improve its quality.

In addition to these steps, according to Astels (2003), to apply TDD, developers should follow
principles such as: maintaining an exhaustive suite of programmer tests and only deploying code
into the production environment if it has tests associated. Differently from unit tests, which are
written to assess a method or class, programmer tests are tests written to define what must be
developed. Programmer tests are similar to an executable specification since these tests help
developers understand why a particular function is needed, to demonstrate how a function is
called, or what are the expected results (Jeffries, 2011).

Having tests associated with the code, gives the developer confidence and courage to make
changes and detect immediately (or in a short time) potential problems introduced into the code.
Thus, with the absence of tests, it is not possible to assure the correct behavior of the code when it
is deployed or integrated into the production environment. Given this importance, in eXtreme
Programming (XP) (Beck, 2004), it is often said that a feature does not exist until there is a test
suite associated to it.

4

http://www.sciencedirect.com/science/article/pii/S016412121400209X
https://www.researchgate.net/publication/216027190_Test-Driven_Development-By_Example?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/2955996_Orchestration_and_Choreography?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

As a design technique, TDD is not only about software testing but also a learning process.
Applying different levels of tests, the development team can clarify the user and customer
expectations, and then refine the system requirements (Freeman and Pryce, 2009).

III. FutureMarket Choreography

The FutureMarket consists of a web service choreography, which provides a service for distributed
shopping following this workflow:

1. A customer provides a shopping list to the choreography;

2. The price of each list item is queried from multiple supermarket services to find which one
has the lowest price;

3. The choreography returns to the customer the total, least expensive price of its list and
provides features for purchasing and delivering the items.

To provide this workflow, the choreography is composed of services playing the Customer,
Supermarket, and Shipper roles, which we implemented as three BPEL orchestrations. Figure
2 presents a BPMN2 diagram that specifies the interaction of these roles during the Purchase
operation, which is executed after the minimum prices for each item are found.

Figure 2: Purchase workflow

5

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 2 presents three lanes; each of them represents a process or, in other words, a chore-
ography role. Besides, it is possible to represent the messages exchanged inside and across the
roles. As can be noticed, the coordination is decentralized. While new requests are delivered to
the Customer role, existing requests are processed by the other choreography roles in parallel.

IV. Challenges in choreography testing

Automated testing of choreographies is challenging due to their characteristics. In Figure 2, for
example, a reasonable testing framework for the presented choreography operation should cover,
at least, the following aspects:

• Atomic services correctness. All individual services, including third-party ones, must work
as expected. Thus, they must be tested in isolation.

• Message exchange correctness. Hundreds of messages may be exchanged in parallel when
the choreography is enacted in a production environment. Thus, tests must simulate such
scenario and, then, verify whether all messages are delivered in the expected order, within
the expected response time, and with the expected content.

• Message exchange debugging. During the development, problems such as errors in the
message exchange may be investigated through debugging mechanisms.

As explained in Section III, there are tools for assessing the correctness of atomic services.
However, in all of them, the WSDL interface of the service under test must be provided to write
the test cases, preventing the use of TDD, which requires writing the test before implementing
the service. Besides, there is a lack of tools supporting the testing of third-party services, which
may not be available at choreography development and offline testing time. To overcome these
problems, Rehearsal provides a feature for generating web service clients dynamically. This way,
tests can be written even if the WSDL interface does not yet exist. To deal with third-party services,
Rehearsal provides a feature for mocking (emulating) web services.

Regarding the message exchange aspects, Enterprise Service Bus (ESB) systems can be used to
intercept and collect messages. However, these systems are heavy (require considerable resources
to run), maintain hundred of services, and normally are only available in acceptance test or
production environments. These characteristics do not favor the ESB usage during choreography
development. During development, the computer resources needed by an ESB may not be available
for running the tests. Besides, in an ESB, messages may be collected only via log files, which
makes their integration with test cases written by the programmer difficult.

In general, debugging is conducted passively in ESBs; in other words, the developer cannot
pause the choreography execution to inspect the messages received by a web service. Full-layer
debugging strategies are out of the scope of this paper. With Rehearsal, we provide features for
debugging only those services that are under the developer’s control. For these cases, messages are
intercepted by service proxies that are introduced in the choreography. With the proxy, a developer
can retrieve all messages received by a certain service. Besides, if the proxies are running in a
developer IDE that supports debugging of Java objects, the developer can pause the choreography
and inspect the message exchange at runtime. Nevertheless, the debugging of distributed systems
consists of a topic already covered by our research group (Mega and Kon, 2004). As a future work,
Rehearsal can be integrated with our previous work on the Global Online Debugger(Mega and Kon,
2004), an open source debugger that aims at being an extensible and portable tool for developers
of distributed object applications.

All Rehearsal features and the methodology proposal are presented in detail in Sections V and
VI.

6

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

III. Related work

An initial effort for understanding the current scenario of testing techniques for web service
compositions was conducted by Bucchiarone et al. (2007). Later, a more comprehensive survey to
cover SOA testing was conducted by Canfora and Penta (2009). These studies propose alternative
approaches, adapting the traditional software engineering testing techniques and strategies to the
context of web service compositions.

According to these studies, in the web service composition context, the smallest unit of
software is the web service. Thus, testing the individual web services corresponds to unit testing.
Internally to a service composition, integration testing aims at assessing the interactions among the
units forming the composition. Finally, acceptance testing is conducted when an orchestration or
choreography is tested from the end-user perspective. In the next sections, we present the works
related to our goals based on this classification.

I. Atomic web service testing

Regarding the tools used for testing atomic (individual) web services, SoapUI (Eviware, 2010)
provides mechanisms for functional testing. From a valid WSDL (Web Service Description
Language) specification, SoapUI provides features to automatically build a set of XML-Soap
request envelopes to test service operations. The tool also provides a feature for mocking web
services. Rehearsal uses SoapUI internally to build Soap envelopes at runtime, thus we classify
SoapUI as an internal dependency of our work.

SoapUI provides a mechanism to generate automatically a test skeleton for the operations
presented in the WSDL. Although it automates the test creation, the produced test cases are
incomplete and must be filled in by the programmer. WS-TAXI (Bartolini et al., 2009b) was
proposed to improve this feature. Its goal is to automatically fill in these empty fields by deriving
XML instances from an XML schema. With this tool, test cases are generated from all possibilities
of data combinations for skeletons produced by SoapUI.

TTR (Test-The-REST) (Chakrabarti and Kumar, 2009) provides mechanisms for functional
testing (using the black-box strategy) and non-functional testing (e.g., performance tests). Similarly
to SoapUI, this tool provides support for testing the CRUD operations over REST service resources.

SOCT (Service Oriented Coverage Testing) (Bartolini et al., 2011) and BISTWS (Built-in Struc-
tural Testing of Web Services) (Eler et al., 2010) are approaches for applying structural (white-box)
testing in web services. The goal of these works is to calculate the test coverage of testing suites.
As a drawback, the services under test must be instrumented, which might be impossible for
third-party services. To enable integration testing, as explained in the next section, Rehearsal
supports functional (black-box) testing.

Besides these works, wsrbench consists of an approach to assess the robustness of web services
(Laranjeiro et al., 2012). Robustness testing aims at analyzing the service behavior when tested
under invalid and exceptional inputs. The goal of this work is to help with service selection by
providing web services with robustness metrics to clients (end users) and developers.

(role)CAST (ROLE CompliAnce Testing) (Bertolino et al., 2011) focuses on applying compliance
testing, aiming at testing services published in a registry. Its goal is to automatically apply
predefined tests on new services. In comparison, Rehearsal’s goal is development-time testing.
However, the same compliance tests created using Rehearsal can be reused by tools similar to
(role)Cast.

Arikan and colleagues introduced a Generic Testing Framework for the Internet of Services
(Arikan et al., 2012) in which test cases are specified in XML and the framework takes care of

7

http://www.sciencedirect.com/science/article/pii/S016412121400209X
https://www.researchgate.net/publication/51025280_RoleCAST_A_framework_for_on-line_service_testing?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/228348032_Testing_service_composition?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/234139744_A_robustness_testing_approach_for_SOAP_Web_services?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/234719824_A_Generic_Testing_Framework_for_the_Internet_of_Services?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/232652500_Test-the-REST_An_approach_to_testing_RESTfulweb-services?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/223549208_Bringing_white-box_testing_to_Service_Oriented_Architectures_through_a_Service_Oriented_Approach?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

generating and executing corresponding JUnit tests. In addition to behavioral tests, this framework
also supports stress, scalability, and parallel tests.

Most of these tools focused on testing the web services at the client side. However, Zhang
(2011) proposes a framework to test web services at server side by using mobile agents. In this
work, an agent starts the test execution in a machine and ends it in a different one. The goal of this
work is to reduce the communication costs that are inherent to web service performance testing.

II. Web service compositions testing

Pi4SOA (Pi4 Technologies Foundation, 2010) and CDLChecker (Wang et al., 2010) are tools de-
signed to test choreographies specified in the WS-CDL format, but they only provide mechanisms
for validating message exchange using simulation. We are interested in validating message
exchange by invoking the real choreography, working in real systems.

ValiBPEL-Web (Endo et al., 2008) is a tool to apply structural testing on BPEL processes. This
tool provides a web interface for instrumenting the process under testing, applying the test cases,
and analyzing the results. To cover these features, the BPEL process is mapped into a Parallel
Control Flow Graph (PCFG). BPEL activities such as Receive, Reply, Invoke, and Pick correspond to
the graph nodes. Message exchanges, both internal and external ones, correspond to the graph
edges. Then, after executing the tests, the tool measures test coverage, based on the defined test
requirements, and presents the results.

Hwang et al. (2011) proposed a method to apply compliance testing for choreography services.
The goal of this work is to verify whether the service contract is compatible with the contract
specified in the choreography global model. Each service is represented by a Finite State Machine
(FSM). In this model, the transition function represents the service requests and responses. For
example, a service (FSM), in the r state, moves to the r′ state, when receiving a request for a
specific operation. At design-time, services are mapped to FSMs and, then, the method identifies
which services are in compliance with the choreography roles.

With BPELUnit, Mayer and Lübke (2006) propose an architecture for testing web service
processes. This architecture consists of four layers. In the first layer, test cases are specified.
Then, in the second layer, these tests are organized in the framework. At this point, wrappers are
created around the processes to execute the test cases. In the third layer, the tests are executed
by simulation or by invoking the real services. Finally, the test results are presented in the forth
layer. BPELUnit consists of a framework that implements these four layers for validating BPEL
processes.

Greiler et al. (2010) propose a software application for detecting faults during a dynamic
reconfiguration of a service composition. During an online reconfiguration, the service to be
integrated (new service) is deployed in the production environment in parallel with the old
service. In this approach, the service implementation is not checked against its own specification
(interface), but against the expectation of another requesting service. Each service, including the
new service, contains a test suite to assess the functionality of its required services. Before being
published and integrated, the test suite of the new service is executed in three steps. First, discovery
tests are applied to check whether all required services can be discovered in the registry. Second,
binding tests are applied to check whether the required services can be bound and to validate their
interfaces. Finally, composition tests execute the required services to validate the message exchange.
If all tests pass, the new service is published and can replace the old one.

8

http://www.sciencedirect.com/science/article/pii/S016412121400209X
https://www.researchgate.net/publication/224347890_Web_Services_Composition_Testing_A_Strategy_Based_on_Structural_Testing_of_Parallel_Programs?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/234803444_Evaluation_of_online_testing_for_services?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/254019461_Verifying_Web_services_in_a_choreography_environment?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==
https://www.researchgate.net/publication/220621565_Web_services_choreography_validation?el=1_x_8&enrichId=rgreq-62599e3a-c3a4-462b-910f-06ea79d9a537&enrichSource=Y292ZXJQYWdlOzI2NzA0NzYwMTtBUzoxNjI0ODY3MTIwMjA5OTJAMTQxNTc1MTI1OTg5OQ==


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Identifier Requeriment description

R1 Create clients to invoke operations of Soap web services
R2 Create clients to interact with REST service resources
R3 Allow test case writing for services that do not have contracts (interfaces) defined
R4 Intercept (at the development environment) messages exchanged among the services of a

composition
R5 Emulate (mock) web services
R6 Configure a timeout when invoking a web service operation
R7 Provide objects that represent the choreography elements
R8 Validate the contract (roles) of choreography services
R9 Provide features that are not coupled to specific choreography and orchestration tech-

nologies, languages, or tools

Table 1: Comprehensive choreography testing framework requirements

III. Existing choreography development methodologies

With regard to efforts related to choreography development, we can highlight the Savara project
(Madurai, 2009). This project provides a set of tools to develop a choreography by following the
principles of a methodology called Testable Architecture. The goal of this methodology is to assure
that any artifact produced during a specific development phase can be validated based on artifacts
produced in the previous development phases. In the first three phases of this methodology,
the choreography requirements are collected and modeled. As a result, the global and the local
choreography models are produced. Then, based on these models, the services are implemented
and the choreography is enacted and monitored to verify its correct behavior. The goal of our
TDD methodology is to provide mechanisms to specify and develop the choreography following a
test-driven approach.

In the next section, we present the requirements for a choreography testing framework and
show how the works described in this section meet those requirements.

IV. Requirements for Testing Tools

We started addressing the challenges presented in Section IV by developing a first Rehearsal
prototype. This prototype consisted of: (a) ad hoc bash scripts to implement a choreography; (b)
JUnit4 test cases; and (c) a console that allows the user to execute the scripts and the test cases.

To evaluate the prototype, we developed an example choreography for planning and booking
trips by using the OpenKnowledge (OK)5, a framework for the peer-to-peer communication of
distributed software components. In this choreography, the user indicates to the Traveler service
where and when he/she intends to travel. Then, the user can reserve and buy the flight tickets.
During this flow, the Traveler service interacts with other services such as Airline, Acquire, and
Travel agency.

Based on the experience and results achieved from this prototype, we derive the requirements
for building a comprehensive web service choreography testing framework. In the Table 1, we
present these requirements.

In the Table 2, we present which of the presented requirements are covered by the related
works presented in Section III.

As can be observed in the Table 2, none of the related works cover all of the defined require-
ments. In particular, we can notice that SoapUI, an internal Rehearsal dependency, is the tool

4JUnit: http://www.junit.org
5OpenKnowledge: http://www.openk.org

9

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://www.junit.org
http://www.openk.org


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

R1 R2 R3 R4 R5 R6 R7 R8 R9

Testing of atomic web services

SoapUI (Eviware, 2010) • • • • • •
TTR (Chakrabarti and Kumar, 2009) • • •
WS-TAXI (Bartolini et al., 2009b) • • •
wsrbench (Laranjeiro et al., 2012) • • •
SOCT (Bartolini et al., 2009a) • • •
BISTWS (Eler et al., 2010) • • •
(role)CAST (Bertolino et al., 2011) • • •
Mobile-agent framework (Zhang, 2011) • • •

Testing of choreographies

PI4SOA (Pi4 Technologies Foundation,
2010)

• • •

CDLChecker (Wang et al., 2010) • • •
Compliance testing approach (Hwang
et al., 2011)

• • •

ValiBPEL-Web (Endo et al., 2008) • •
BPELUnit (Mayer and Lübke, 2006) • • •
Online testing framework (Greiler et al.,
2010)

• •

Table 2: Requirements covered by the related works

that covers more requirements than the other tools. Apart from the compliance testing approach
(Hwang et al., 2011), all tools focused on choreography testing are coupled to a specific technol-
ogy, tool or choreography language. Even thought all tools cover the requirement R4 (message
intercepting), only the ValiBPEL-Web and BPELUnit intercept real messages of the choreography.
In the other tools, the intercepting and validation occur in a message exchange simulation.

Based on this scenario, we developed the Rehearsal features and the TDD methodology to
cover all the requirements of a comprehensive web service choreography testing framework. These
features, as well as the Rehearsal architecture, are present in the next section of this paper.

V. The Rehearsal framework

In the context of web service choreographies, when all services are deployed correctly, the
choreography is ready to be enacted. In our work, we consider that, during all activities happening
before this point at development time, specially testing activities, the choreography is being
“rehearsed”.

Rehearsal6 is available as open source software under the GNU Lesser General Public License
(LGPL) and was developed within the CHOReOS7 and Baile8 projects. The goals of these projects
are to study, develop, and use web service choreographies in large-scale environments, in particular,
those related to Cloud Computing and the Future Internet. In both projects, this framework belongs
to research lines related to Verification and Validation (V&V) of choreographies.

I. Rehearsal Features

In this section, we cover in detail the main features of Rehearsal, namely dynamic generation
of web service clients, item exploration, message interception, service mocking, abstraction of

6Rehearsal page: http://ccsl.ime.usp.br/baile/VandV
7CHOReOS: http://www.choreos.eu
8Baile: http://ccsl.ime.usp.br/baile

10

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://ccsl.ime.usp.br/baile/VandV
http://www.choreos.eu
http://ccsl.ime.usp.br/baile


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

choreographies, and scalability exploration.

I.1 Dynamic generation of web service clients

In the SOA choreography system model, web services are considered the smallest system units. In
the Rehearsal approach, these units can be validated by using the functional (black-box) testing
technique. As explained previously, orchestrations and choreographies are accessible as atomic
services from the end user perspective. Thus, tests focused on validating the compositions
from this perspective are called acceptance tests. Since the system under test as a whole looks
like an atomic service, tools used in unit testing can also be applied to acceptance testing of
choreographies.

To cover these testing strategies, Rehearsal provides a feature in which the developer can
invoke and validate the web service operation automatically. During the development of the
first Rehearsal prototype, we identified some tools for this purpose, such as Apache Axis9 and
JAX-WS10. With these tools, the developer can create stub objects (also called clients) from the
WSDL specification to communicate with web services. This process is not totally automated and
human intervention is needed to create and use such objects. Besides, if the WSDL specification
changes, existing clients must be generated again.

As an alternative to stubs manipulation, Rehearsal facilitates the dynamic generation of web
service clients. With this feature, the developer can interact with web service clients without
requiring a priori creation of stubs. This way, test cases can be written before the creation of WSDL
interfaces. The service operations can be designed during the process of writing the tests. To make
the tests pass, the developer starts coding the service implementation, generating as a result its
contract (WSDL file). This feature uses SoapUI (see Section III) to build, send, and receive Soap
envelopes. Figure 3 depicts the workflow for using this feature.

Figure 3: Workflow to invoke web services

In the first step of Figure 3, the developer, using the WSClient object, specifies which operation
needs to be invoked. This object represents the dynamic client. To invoke the desired operation,
the developer uses the request method by providing the operation name and parameters. This
method supports primitive types (e.g., int and String). To avoid XML manipulation in the
complex types, Rehearsal provides the Item object, which is a recursive data structure to represent
XML documents. This object can be used to represent request and response of web services.

Figures 4 and 5 present a Soap envelope describing a complex type object and an Item object
that represents it. In the workflow presented in Figure 3, when an operation is invoked, Rehearsal
generates and sends a Soap envelope to the tested service (Step 2). Then, in Step 3, the framework
collects the Soap response. Finally, in Step 4, the framework maps the response to an Item object
that is returned to the developer.

9Apache Axis: http://axis.apache.org/axis
10JAX-WS: http://jax-ws.java.net

11

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://axis.apache.org/axis
http://jax-ws.java.net


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 4: Request Soap Envelope Figure 5: Equivalent Item object

To evaluate test writing using the WSClient, a test case has been written using this Rehearsal
feature and also using the JAX-WS tool. Figures 6 and 7 present both test case implementations.
As can be seen, in the code snippet, the test case A is two lines shorter than the one written
by using the WSClient. However, test case A uses the Flight object, a stub object that must be
generated a priori by JAX-WS by using command-line or graphical tools. Since the tested service
contains other operations, other stub objects must also be created and need to be integrated by
the developer in the test cases. Thus, the test case written with the WSClient is a little longer but
requires less work from the developer that does not need to deal with stub creation.

Figure 6: Example of stubs (test case A) Figure 7: WSClient (test case B)

On the other hand, test case B is free of stub generation. The presented code snippet is all that
the developer needs to test the getFlight operation. Besides, if the WSDL interface changes, only
the operation name and parameters need to be changed in the test cases.

I.2 Item Explorer

To help in the Item object creation, we developed the Item Explorer tool that automates the building
of such objects. From a valid WSDL, this tool automatically generates Java code skeletons for
retrieving web service requests and responses that can be integrated into the developer test cases.
Figure 8 presents the Item Explorer graphical user interface depicting its features.

12

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 8: Item Explorer

I.3 Message Interceptor

In the context of choreographies, integration tests can be applied by validating the messages
exchanged among the services. During the choreography development, there are two levels of
integration:

1. Intra choreography roles. As discussed previously, a choreography role can be implemented
via orchestrations. At this level of integration, the messages exchanged internally inside one
role are validated.

2. Inter choreography roles. In this level of integration, messages exchanged among the
choreography roles are validated. These messages are those represented in the choreography
global model.

Rehearsal supports both integration levels in an offline environment. The messages sent and
received by this service are incrementally validated with the message interceptor at development
time, after a service is added to the choreography. Figure 9 presents the basic workflow to use this
feature.

In the first step of Figure 9, the developer provides the URL where the service WSDL is
available, the port and the host name where the proxy will be published. In Step 2, the proxy
is published automatically by Rehearsal. A proxy consists of an object that provides the same
interface of the intercepted service Gamma et al. (1995). The proxy was built upon the SoapUI
Mock API.

In Step 3, Rehearsal executes the test cases written by the developer. In this execution, the
framework invokes the proxies (Step 4). At this point, the proxy stores and forwards the received
message to the service that is being intercepted. Finally, in Step 7, the developer can extract and
validate the intercepted messages. Messages are intercepted by a MessageInterceptor instance.
Figure 10 presents an example of use. In lines 39-40, the interceptor is instantiated, configured to
be available on port “4321", and to intercept the messages sent to the provided URL.

13

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 9: Message Interceptor workflow

Figure 10: Message Interceptor usage example

In lines 42–43 of Figure 10, the proxy is invoked through the registerSupermarket operation.
Then, the intercepted message is retrieved and validated (lines 44–47). This is a simple example
since the intercepted message is the same message triggered in the tests. The goal of this example
is only to show how this feature works.

I.4 Service Mocking

Inter-organization integration of web services is an inherent characteristic of SOA. In spite of
the advantages, this integration may also introduce problems for web service testing such as the
absence of a testing environment to invoke the services. This way, web service non idempotent
operations cannot be tested properly, preventing the application of complex and robust integration
tests. To deal with such problems, Rehearsal provides a feature for mocking (emulating) service
operations.

Figure 11 presents the basic workflow of this Rehearsal feature. In the first step, the developer
provides the WSDL URL to the framework as well as the mock name. Then, Rehearsal, via SoapUI,
creates and publishes a mock object (Step 2). It is also possible to define the mock host and port in
this step, before or after the mock is running.

In the third step of Figure 11, the developer configures new messages (or updates existing ones)
for the emulated service. These responses are applied in Step 4. To exercise different execution
scenarios, the developer can define conditional messages. Figures 12 and 13 present a usage
example of conditional messages.

As depicted in Figure 12, line 21, a mock object (called smMock) is created for the service
available in the URL specified in the SM_WSDL_URI variable. The emulated service provides

14

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 11: Service mocking workflow

Figure 12: WSMock usage example

the same contract (WSDL interface) of the real service. A conditional response is defined in line
23. If the request content matches the word “coke”, the mock response must show the price 3.50.
A similar conditional is defined in line 24. Finally, according to line 25, for all the other request
conditions (not containing the previous words), the response must contain the price 5.00.

In lines 26–27, the emulated service is configured to return the conditional messages when the
getPrice operation is invoked. In lines 29–32, an assertion validates the mock response. Figure 13
presents the XML messages that are exchanged when line 29 is executed.

In this example, the conditional requests and response contain only one parameter that is
a simple string. However, it is also possible to use complex objects in the conditionals. In this
case, an Item object can be used to define such conditionals. Throught the WSMock object, the
developer can configure multiple responses to support the validation of faulting scenarios. This
object provides the doNotRespond and crash methods to simulate response absence and service
crash, respectively.

I.5 Abstraction of choreography

To facilitate test writing and the usage of the above functionalities, Rehearsal provides a feature to
abstract choreographies into objects. Thereby, choreography elements, such as services and roles,
can be dealt with by accessing Java objects.

15

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 13: Soap envelopes

Figure 14: Public interface of abstraction of choreography

As can be seen in Figure 14, a Choreography object is created according to a descriptor file and
its architecture follows the composite design pattern (Gamma et al., 1995). Via this composite, the
developer can interact with all the services in the choreography. Each service plays one or more
roles in the choreography. The developer can extract the URI of a service WSDL specification via
the Choreography object. Due to the recursive nature of service composition, a Service object can
be a composition of other services. As can be observed, a Choreography is, itself, a Service. Thus,
a list of internal services can be extracted from a Service object.

A developer can use these objects to write tests before the choreography implementation.
During development, tests would be written using Service objects instead of particular endpoints.
Rehearsal extracts endpoint information in a descriptor file which is a YAML (YAML ain’t a
Markup Language)11 document containing the services’ endpoints and roles. Rehearsal extracts
the endpoints to use in the Service objects at run-time. With this feature, tests written in a
development environment will work with production services if the endpoints in the choreography
descriptor are updated.

Figure 15 shows how a Choreography object is created from a descriptor file and Figure 16
brings examples of how to use the abstraction to create WSClient, MessageInterceptor, and
WSMock. As can be seen, no real hard-coded endpoints must be used when writing tests, so the

11http://www.yaml.org

16

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 15: Choreography object creation

test code becomes more flexible.

Figure 16: Examples of Choreography Abstraction usage

17

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 17: Scalability Explorer Architecture

I.6 Scalability Explorer

Rehearsal provides the Scalability Explorer component to assist developers in verifying the
choreography scalability, serving as a guide for improvements in its implementation and design.
Its core is mainly composed of interfaces and abstract classes integrated as shown in Figure 17.
Implementations for each component of this architecture are included in the framework, hence
a scalability test can be built by plugging a set of them and writing a little code specific to the
interaction with a particular system that the user wishes to analyze. Notwithstanding, the user
can create new customized implementations for framework interfaces to adapt the experiments to
his or her needs.

The only concrete class among those in Figure 17 is ScaleCaster, which iteractively invokes
Scalable.execute(Number[]) passing values updated by theScalabilityFunction. The latter
implements a simple function that receives one value and returns another, following a pattern.
Currently the Scalability Explorer includes functions for linear and exponential increase.

Experiment is a Template Method (Gamma et al., 1995) for a scalability test, implementing
Scalable and using ScaleCaster. Its execution flow is depicted in Figure 18. An experiment is a
sequence of iterations where, for each iteration, scalability parameters related to workload and/or
the system architecture vary. In each iteration, a LoadGenerator sends a number of requests to
the target system. Experiment can use a Deployer to update the system architecture before each
iteration. After the iterations, an Analyzer receives experiment data and produces an statistical
analysis of the results.

Experiment includes a list of methods that can be overridden to define how to interact with
the system under test. One of these methods, execute(), is invoked to trigger the requests that
cause the system behavior that is under evaluation. The others can be used to include required
actions before and after each request, iteration, or experiment.

18

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 18: Experiment execution flow

Three extensions of Experiment are currently provided:

• ArchitectureExperiment: an experiment that varies one parameter used to specify some
aspect of the system architecture, such as number of service instances or hardware resources
available in a virtual machine. If a Deployer is used, scale receives this parameter.

• WorkloadExperiment: varies one parameter used to define the interval between requests
made to the system. This parameter is used to configure the LoadGenerator.

• ScalabilityExperiment: this experiment uses both scaled parameters described above and
they vary simultaneously.

The Analyzer is called at the end of the experiment to support examining the results of a
scalability test. It handles the collected metrics and scalability parameter values, generating a
meaningful output. Currently, the Scalability Explorer provides the following analyzers:

• RelativePerformance: displays a chart that shows how the performance varied in compari-
son with the first iteration. It can be used to create speedup or degradation charts;

• AggregatePerformance: aggregates the measurements made in each iteration in a single
value, using operations such as arithmetic mean or percentile, and plots a chart with the
aggregated performance obtained in each iteration.

• ANOVA: performs hypothesis test (Casella and Berger, 2002) to verify if the mean performance
obtained in all iterations are equivalent;

• SampleSizeEstimation: estimates the minimum number of request that should be per-
formed per iteration to make the ANOVA test meaningful.

• ComposedAnalysis: allows the usage of more than one Analyzer in an experiment.

19

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Deployer is an interface for a component used to deploy services during the experiment.
Deployer’s methods deploy() and scale(int) are used by Experiment. The former is called at
the beginning of the experiment to set the system up and the latter is called before each iteration,
passing the architectural scalability parameter as argument. Another method defined by this
interface is getServiceUri(String), which can be used to retrieve the URIs of a given service
during the experiment.

The EEDeployer is an abstract implementation of Deployer that encapsulates the interaction
with the Enactment Engine (Leite et al., 2014), a middleware system that provides a platform for
automation of the distributed deployment of Web service compositions in cloud computing envi-
ronments. EEDeployer can be extended by overriding the enactmentSpec() and scaleSpec(int)
methods to return the specification to be sent to the Enactment Engine when enact() and
scale(int) are called, respectively.

Thus, to write a scalability test, the programmer can choose one extension of Experiment,
override required methods, and set auxiliary components for load generation (LoadGenerator),
updating parameter values (ScalabilityFunction), and experiment analysis (Analyzer). If
needed, an automated deployment can be created using EEDeployer. Also, if some behavior is
not yet provided by the framework, it is possible to introduce it by implementing the available
interfaces.

VI. Test-Driven Development methodology for choreographies

Based on Rehearsal features (see Section V), the proposed methodology focuses on applying TDD
principles and benefits (Section II) to assist in the design, coding, and testing of choreography
services and roles. Depending on the development scenario, not all of the proposed activities
belonging to the methodology phases must be fully executed. Choreographies can be implemented
by partners of different organizations, thus, from a partner point of view, a developer can be
involved in different development scenarios.

In some scenarios, TDD does not help with the design of the contracts (because they are
defined previously). However, as outlined below, in such cases, the methodology still applies key
TDD practices. In particular, the methodology provides features for maintaining an extensive test
suites that gives the developer confidence to make business changes and detect immediately (or in
a short time) potential problems introduced into the code (services implementation). In the next
sections, we present the proposed development phases and scenarios.

Development Phases

The proposed phases are depicted in Figure 19 and presented below. All internal activities
belonging to each phase are performed in a testing/development environment, which can be
the developer computer or a cloud infrastructure when the activities demand a large amount of
resources.

Phase 1: Creation or adaptation of atomic web services

During the implementation of the choreography roles, new web services need to be created
or existing ones must be adapted to implement the role requirements. Normally, a traditional
approach is used for creating or adapting these services. In such approach, the service contract
is defined and then the service is implemented. In this case, the service operations have already
been defined in a contract, and based on it, the service is coded.

20

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 19: Methodology Phases

Rehearsal provides a feature for the dynamic generation of web service clients. With this
feature, the developer can interact with a service without creating stub objects. Given a web
service interface (in WSDL), its operations can be requested dynamically as depicted in Figure 20.

Figure 20: Example of dynamic request to a Soap service using the WSClient

In Figure 20, the service under test does not exist yet. But, using Rehearsal, one can apply a
test-driven approach for implementing it. Thus, in the test, the developer can specify the service
endpoint (WSDL URI), the operation name (getPrice), and signature (receive a String and return
a Double object). This test can be considered an executable specification of the service under
development. This artifact may help other developers to understand web service operations in
future maintenances. After writing the tests, the developer must code the service to make the tests
pass, and refactor the solution to improve the software architecture.

Phase 2: Integration of services to compose the choreography roles

After the services are created (or adapted) and tested properly, they are integrated to compose a
choreography role. As explained in Section II, at this point, a role consists of an executable process
defined by a service or a set of services. When a set of services is needed for the composition,
third-party services may not be available at development-time. To solve this integration problem,
Rehearsal provides a service mocking feature where real services (e.g., third-party ones) can be
simulated.

21

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

After all missing dependencies have been mocked, the services can be integrated to compose a
choreography role. To assess the messages exchanged among the services within the executable
process, Rehearsal provides a message interceptor feature. Using this feature, tests to validate this
message exchange can be written before the developer performs the real integration.

Phase 3: Integration of roles to compose the choreography

After implementing an executable process by following the steps defined in Phase 2, the developer
can assess the integration of the developed service with the rest of the choreography. Regarding
the development scenarios S1 and S2, the services playing the other choreography roles may not be
available at development-time. However, since the service contracts (WSDL interfaces) are defined
in the choreography models, through these contracts, the unavailable service can be mocked.

After all dependency problems have been overcome, the integration among the services is
performed and the external messages exchanged are intercepted and validated. However, this time,
the messages that must be intercepted and validated are the ones specified in the choreography
global model, and not the internal ones.

Phase 4: Acceptance and scalability testing

To complete the overall process, the choreography must be assessed taking into account properties
that affect directly the end user. Thus, acceptance and scalability assessments are applied. The
former focus on executing the choreography features to validate its functional behavior from the
end user point of view. The latter aims at investigating the choreography performance at scale.

Acceptance testing

Differently from other testing strategies, acceptance tests verify the behavior of the entire system
or complete functionality. From the point of view of an end user, the choreography is available as
an atomic service. Thus, the acceptance test validates the choreography as a unit service, testing a
complete functionality. In such context, the tools used for this type of test are similar to those used
for unit tests. This way, WSClient (see Figure 20) can also be used for testing the choreography.

Scalability testing

According to Law (1998), an application is scalable if improvements in its architectural capacity
implies the system capacity grows in direct proportion, maintaining the performance. However, all
these dimensions are multifaceted: the system architecture comprises available memory, number of
processor cores, processor frequency, storage space, network bandwidth etc.; the system capacity
can be considered in term of input size, number of simultaneous request and the request frequency,
for instance; and the system performance could be measured in terms of latency, throughput,
resource usage, reliability or availability. Usually, it is not feasible to consider so many variables,
therefore Law proposes to work with a single facet of each dimension. Therewith, a scalability test
could go through the following steps:

1. Choose the variables that define the system capacity, the performance metrics, and the
architecture capacity.

2. Define the functions of the complexity size of the problem, performance metric, and the
architecture capacity.

3. Choose initial values for these variables.

22

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

4. Execute the application multiple times, increasing the variable values and collecting the
performance metrics for each execution.

5. Analyze the performance metrics.

Given the choices made in Steps 1 to 3, the Rehearsal Scalability Explorer (Section I.6) can
support the implementation of scalability tests, automating their execution and metrics collection
(Step 4), and presenting charts for analyses, as the one shown in figure 21 (Step 5).

Figure 21: Resulting chart of a scalability test

After applying this assessment, the developer can have a good idea of how scalable the
choreography is according to the aspects and metrics he/she chooses. If the result is not suitable,
the developer can refactor the choreography architecture and analyze again with the same
scalability tests to verify whether the desired scalability was achieved. Another possibility is to
implement new tests, considering other variables.

Development Scenarios

Depending on the development stage, business needs, and even industry cultural aspects, the
previous phase can be conducted differently. In the next sections, we present the development
scenarios addressed by the proposed methodology.

Scenario 1: Design and implementation of choreography roles

In the first proposed scenario (S1), the developer is responsible for defining a new role (see
Section I) or a set of roles for an existing choreography. In this case, the developer also acts as
a choreography architect or designer. Table 3 presents internal activities that the developer may
apply, for each methodology phase, when facing this scenario.

Following the methodology phases, the developer starts by defining a new choreography role,
based on the software requirements, and the role dependencies (other choreography roles). Then,
he or she develops a service, or a set of services, to implement the new role. At this point, the
developer may apply a test-driven approach using the Rehearsal framework to guide the service
interface design and implementation via unit tests. Since the tests invoke the service interface
(WSDL file), after making all tests pass, the developer will have created the service WSDL. Later
on, the developer may create integration tests to validate the role’s internal message exchange. In
these tests, external dependencies, such as other choreography roles, are emulated (mocked). In
Phase 3, a similar integration test approach may be conducted. However, in this case, the messages

23

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Scenario 1 (S1)

Phase 1
- test-driven approach
- unit testing

(service interface)

Phase 2
- service mocking
- integration testing

(internal message exchange)

Phase 3
- role mocking
- integration testing

(external message exchange)

Phase 4
- choreography testing
- scalability assessment

Table 3: Activities belonging to Scenario 1

exchanged with other roles (dependencies) are the messages that must be monitored and validated.
Finally, in Phase 4, if applicable, the functional and scalability behavior of the entire choreography
(with the new role(s) integrated) are assessed.

Scenario 2: Implementation of choreography roles

In the second scenario (S2), the role interface had already been defined and the developer is only
in charge of developing one, or a set of, web services to implement this role. Table 4 presents
some activities that the developer may apply to implement the required services.

Scenario 2 (S2)

Phase 1
- traditional approach
- unit testing

(service interface)

Phase 2

- service mocking
- integration testing

(internal message exchange)
- compliance testing

Phase 3
- role mocking
- integration testing

(external message exchange)

Phase 4
- choreography testing
- scalability assessment

Table 4: Activities belonging to Scenario 2

Similar to the previous scenario, the developer may use TDD to design and implement the
choreography role. However, in this case, the developer focus on creating or adapting existing
services to implement the choreography role requirements. Differently from the previous scenario,
in Phase 2, the choreography role contract may be validated through compliance testing. In such
tests, the developer can use the contract as an oracle and then validate his/her implementation.
The idea is that the role implemented must have the same interface and behavior of the oracle.
Rehearsal provides a feature for applying compliance tests that aim at verifying whether a service
is playing the role properly based on the interface of this oracle contract.

Compliance tests assure that the implemented service plays the choreography role properly.
Thus, these tests give confidence and encourage the developer: (1) to integrate the new role into
the production choreography; (2) to refactor the code; and (3) to adapt the software in case of
changes in the requirements. In the next phases, the activities belonging to this scenario are the
same of scenario S1.

24

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Scenario 3: Design and implementation of a new choreography

In the third scenario (S3), a partner (e.g., an organization) is beginning to develop a new choreog-
raphy. Similar to scenario S1, the developer may also act as a choreography architect or designer.
Each internal activity of this scenario, and its correlation with the presented phases, is presented
in Table 5.

Scenario 3 (S3)

Phase 1
- test-driven approach
- unit testing

(service interface)

Phase 2
- service mocking
- integration testing

(internal message exchange)

Phase 3
- integration testing

(external message exchange)

Phase 4
- choreography testing
- scalability assessment

Table 5: Activities belonging to Scenario 3

In this scenario, the roles do not exist at first. Thus, the developer can apply all the proposed
activities, similarly to the scenario S1, to build the roles, and the respective service, iteratively.
During this process, since the services are under the developer control, the real services can
be used in the integration assessment. However, due to resource constraints, such as available
memory and CPU, may not be feasible to run the entire choreography in the developer machine.
In such cases, mocks can be used to emulate choreography roles that have already been validated.

VII. Exploratory Study

To assess Rehearsal and the TDD methodology proposal, we have conducted an exploratory study
in two phases with advanced Computer Science students at the Institute of Mathematics and
Statistics at the University of São Paulo, where our research was mostly carried out. The first
phase was conducted with eight Masters and PhD students, which had more than five years of
experience with software development. All students had a very good knowledge of web service
compositions and Test-Driven Development (TDD) that were acquired either on university courses
or in professional jobs in large companies and startups. The first phase focused on assessing the
efficacy and adequacy of Rehearsal and the proposed methodology in the context of web service
choreography development. To achieve this goal, the following research questions were defined:

Phase 1
Research Question 1 (RQ1): Does the Rehearsal features aid in the application of
the proposed methodology steps?
Research Question 2 (RQ2): Does the proposed methodology provide adequate
guidelines for developing a choreography?

After the first validation phase, Rehearsal and the methodology was refined based on the
feedback received. Then, in the second phase, a similar exploratory study was conducted. In
this second phase, the goal was to assess the Rehearsal and the TDD methodology effectiveness
when they are used by non-expert developers. To achieve this, the subjects of this phase were
eight undergraduate students, three masters, and one PhD student. They were also from the same
Institute and most of them had less than five years of experience with software development,

25

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

mostly in university projects and in a few professional jobs such as internships. All students
had basic or no knowledge of SOA. For the second phase, the following research questions were
defined:

Phase 2
Research Question 1 (RQ1): How easy is to use the Rehearsal features to apply the
methodology steps?
Research Question 2 (RQ2): How easy is to follow the methodology steps to develop
a choreography?

I. Organization

Both phases were designed following the guidelines of similar scientific studies (Seaman, 1999;
Kitchenham, 1996). Since Rehearsal and the proposed methodology introduced novel concepts in
our research theme, we decided to apply an exploratory study to identify benefits and problems in
the use of both artifacts. The major part of our results is qualitative data, which, in our case, we
consider more adequate to identify these benefits and problems from the developer perspective.

Before each phase of our study, we developed a systematic protocol that defined the study
steps depicted in Figure 22. This protocol as well as all elements (questionnaires, produced code,
interview audio) belonging to both phases are organized in a study package12, enabling the
replication of the study by other groups. In the training part, the participants received a practical
course of TDD, web service compositions, Rehearsal, and related topics. In the development part,
the participants worked in pairs (teams of two) to develop a choreography in four development
tasks. Each task corresponded to each TDD methodology step. Finally, we collected the results
through questionnaires. These results are presented in the next section.

Figure 22: Exploratory study steps

We now present a detailed description of the results we obtained. The reader that is not
interested in the details obtained in the result may jump to Section V where we summarize the
study conclusions.

II. Qualitative Results

Our qualitative results have been presented in box plots using a percentile function to extract
the numbers of the positions representing 25% and 75% of the ordered data set. These charts
also contain the Whisker points (Easton and McColl, 1997) that represent the minimum and the
maximum values present in the sample (data set). This way, we can easily visualize the highest
and lowest answers as well as how dispersed they are. As defined in the study protocols, we
proposed to analyze groups of similarity in isolation. For each group, we present, in a table,
the corresponding studied questions and charts. In these questions, QRx means “Questions to
evaluate Rehearsal”, while QMx means “Questions to evaluate the methodology”.

12Study package: http://ccsl.ime.usp.br/baile/VandV/rehearsal-study/

26

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://ccsl.ime.usp.br/baile/VandV/rehearsal-study/


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

II.1 Dynamic generation of web service clients

ID Questions

Phase 1

QR1 It was easy to learn how to use the WSClient feature.
QM3 The use of the WSClient feature is useful in Task 1.
QM13 The use of the WSClient feature is useful in Task 4.

Phase 2

QR1 It was easy to learn how to use the WSClient feature.
QM3 It was easy to use the WSClient feature in Task 1.
QM13 It was easy to use the WSClient feature is useful in Task 4.

Table 6: Questions to study WSClient feature

Figure 23: WSClient - Phase 1 Figure 24: WSClient - Phase 2

In the first phase, as can be seen in Figure 23, all answers were positive (options 4 or 5).
According to the box plot depicted in Figure 23, all subjects strongly agreed that the WSClient is
a useful tool for applying the Phase 1 (QM3 question), and almost all of them, strongly agreed
that it is also efficient in the acceptance testing, which is presented in the fourth phase of our
methodology (QM13 question). As can be seen in Figure 24, for Phase 2, we had similar results.
Although we had some answers for option 3 (“indifferent”), most part of the answers were the
options 4 and 5.

II.2 Web service mocking

ID Question

Phase 1

QR2 It was easy to learn how to use the WSMock feature.
QM6 The use of the WSMock feature is useful in Task 2.

Phase 2

QR2 It was easy to learn how to use the WSMock feature.
QM6 It was easy to use the WSMock feature in Task 2.

Table 7: Questions to study the web service mocking feature

27

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 25: WSMock - Phase 1 Figure 26: WSMock - Phase 2

In the first phase, even though almost all of the subjects strongly agreed that this feature is
useful for applying the Task 2 (QM6 question), they apparently had problems to learn this feature.
As can be seen in Figure 25, the median for the QR2 question was 4, which means that learning
this feature was not so easy for the most part of the subjects. In the second phase, half of students
had no problems in learning how to use and applying this feature in the Task 2. According to the
students, in the interviews, learning the feature for its own is not a problem but to use it in real
situations is not trivial.

II.3 Message interceptor

ID Question

Phase 1

QR3 It was easy to learn how to use the Message Interceptor feature.
QM7 The use of the Message Interceptor feature is useful in Task 2.
QM10 The use of the Message Interceptor feature is useful in Task 3.

Phase 2

QR3 It was easy to learn how to use the Message Interceptor feature.
QM7 It was easy to use the Message Interceptor feature in Task 2.
QM10 It was easy to use the Message Interceptor feature in Task 3.

Table 8: Questions to study the message interceptor feature

According to the box plot presented in Figure 27, all of the subjects strongly agreed that the
message interceptor is useful for validating messages exchanged among the choreography roles
(QM10 question). Almost all of them strongly agreed that this feature is also useful for validating
the messages exchanged inside the role, which was applied in the Task 2 of our study (QM7
question). Regarding the QR3 question, we had similar results to those we had for the WSMock
feature. In the second phase, we had also good results. Although we had some bad results (answer
2 for all questions), more than 75% of the students strongly agreed or agreed that it was easy to
use the Message Interceptor.

28

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 27: Message Interceptor - Phase 1 Figure 28: Message Interceptor - Phase 2

ID Question

Phases 1 and 2

QR4 It was easy to learn how to use the Abstraction Choreography feature.
QR5 The Abstraction Choreography feature helped me to use other Rehearsal features.
QR6 The Abstraction Choreography feature helped me to write the test cases.

Table 9: Questions to study the abstraction of choreography feature

Figure 29: Abstraction of Choreography - Phase 1 Figure 30: Abstraction of Choreography - Phase 2

II.4 Abstraction of choreography

In both study phases, for this feature, we had negative results. In the first phase (Figure 29), some
of the subjects had problems in learning how to use this feature (QR4 question). Although this
feature has not always helped to use the other Rehearsal features (QR5 question), it has helped
the subjects to write the tests in almost all cases (QR6 question). For this last question, the median
was 4 in the second phase, and around 4 in the first phase; we had as the lowest value the option 3
(“indifferent”), but we had no negative results. Thus, although somewhat difficult to learn and use,
we can conclude that the abstraction of choreography is useful for choreography development.

29

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

II.5 Methodology and Rehearsal acceptance

We had good results for questions related to the adequacy and easiness in following the methodol-
ogy steps. In the rest phase of the study, we investigated the methodology acceptance in terms of
its suitability for SOA projects. The questions related to this topic are presented in Figure 10. The
answers obtained for these questions are presented in Figure 31.

ID Question

Phase 1

QM14 I think the use of the methodology and Rehearsal would be useful for projects I have
participated.

QM15 I would use the methodology and Rehearsal in future projects I may participate.

Table 10: Questions to study the acceptance of the proposed methodology

Figure 31: Answers obtained for the questions of Table 10

According to the data depicted in Figure 31, we had only positive results. Even though only
one subject strongly agreed to the QM15 statement, the most part of subjects would use the
methodology hereafter. In the case of QM14 question, we had similar results which means that
Rehearsal and methodology steps can be adequate to solve problems that the developers have
been faced.

III. Quantitative Results

Besides the qualitative results presented above, we calculated the linear correlation between two
variables: time spent by each team to complete all development tasks (v2) and the team experience
in traditional software development (v1). In Table 11, we present the time and experience of the
teams selected for this analysis.

Given the low number of samples, we applied a non-parametric test, which is recommended
in these cases. In this kind of test, there are no presumptions about the population distribution. In
this linear correlation, we applied the Kendall’s methodology to the vectors x = c(3, 3, 2, 1, 1, 1),
classes of Table 11, and y = c(140, 155, 221, 274, 275, 334), that represents the time spent by each
team. Then, the result was -0.700649 with p-value 0.10. In this case, we can say that there exists a
strong linear correlation between the studied variables (v1 and v2), and this correlation is inverse.
The higher the experience, the less time taken to complete the tasks.

30

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Team Experience (in years) Class Time (in minutes)

Phase 1

team 1 more than 5 3 140
team 2 more than 5 3 155

Phase 2

team 2 3-5 2 221
team 3 1-3 1 274
team 4 1-3 1 275
team 5 1-3 1 334

Table 11: Experience and time needed for the development

This analysis is not complete and its goal consists of supporting the qualitative analysis
conducted in the study. Given the novelty of this research topic, we first explored the benefits of
using TDD for the development of web service choreographies. As future work, a more complete
quantitative analysis must be conducted including, for example, experiments comparing the use
of TDD versus traditional methodologies.

IV. Threats to Validity

In the first phase, the proposed study may have limitations in its sample since the subjects of this
study are Masters and PhD students in Computer Science and some of them have little experience
in the industry. However, at the time of the study, the subjects worked with the development
of web service choreographies and had good experience contributing to open source projects.
Moreover, almost all of them have attended an “eXtreme Programming (XP) Laboratory” course.
In this one-semester course, the students had the opportunity to try the concepts of eXtreme
Programming (XP) such as pair programming, TDD, and automated testing in a real software
project. In this phase, the most relevant result was the feedback about the usefulness of the tool
and methodology, which was used to refine them, leading to the design of its subsequent version.
Thus, since the feedback obtained was useful, we do not consider that the limitations of subjects
sample impose a very relevant threat for the first phase.

In the second phase of the study, however, our sample included 12 subjects, all of them students
in the same institute of the University of São Paulo, which hosts one of the best Computer Science
programs in the country, thus the diversity of the set of subjects might be compromised. The
results could be different if the subjects were students from other institutions or if they were
professional programmers from the industry. In addition, the study participants knew personally
the researchers involved in the project and this might have biased their answers. To mitigate this
problem, we conducted the experiment in a way that only the first author of this paper, a graduate
student, would have contact with the participants during the study; in addition, we asked them to
be as honest as possible and do not hesitate in criticizing the work if needed. Finally, the study
was not carried out as part of a course, so there were no grading involved that could also bias the
results.

V. Study conclusions

In both phases, the participants completed all development tasks correctly. In terms of the
functional code, all teams developed the choreography correctly. In terms of the test cases, a
few errors were detected. In the first phase, only 4 out of the 44 test cases (11 for each team)

31

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

were implemented incorrectly. In the second phase, only 3 of the 55 test cases were implemented
incorrectly.

Regarding the questionnaire results, except for the choreography abstraction functionality, we
had very positive results for all Rehearsal features. As a future work, the choreography abstraction
will be improved to make the process of describing a choreography easier. In the case of the
proposed TDD methodology for choreography development, we can conclude that we had good
results in terms of its efficacy and adequacy.

VIII. Industrial validation

To validate the use of Rehearsal in an industrial setting, the framework was used for Verification
& Validation in two use-cases of the CHOReOS project, carried out by an industrial-academic
consortium supported by the European Commission. The framework was used in two large-scale
choreographies whose development were led by two industrial partners of the project:

• Adaptive Costumer Relationship Booster (ACRB) – a system for planning and executing
marketing strategies, composed of a large number of services of different types including
personal assistants, in-store totems, smart carts, back-end marketing management system,
and external services provided by business partners (Mazza et al., 2012).

• DynaRoute – a system for managing the interaction among a fleet of taxis, their users, and
other businesses to provide adaptive itineraries to citizens when traveling (Veranis et al.,
2012).

A questionnaire was administrated to people who worked with Rehearsal to evaluate quali-
tatively its usage with relation to supporting the development of large scale choreographies for
the Future Internet (Autili and Ruscio, 2011). In the following, we list the challenges identified as
being addressed by Rehearsal, as well as how it contributes to overcoming them, as described in
the CHOReOS final technical assessment report (Mazza et al., 2013):

• Compositionality & Incrementality – ultra-large systems could hardly be implemented
in a traditional (waterfall) fashion that requires the overall picture of the system before
implementation. Those systems demand incremental implementation and compositionality
at runtime. The proposed TDD-based methodology enables the incremental development of
web services and choreographies; Service Mocks and Message Interceptors provide support
for assessing the compositionality of the choreography by testing service integration in a
continuous development scenario.

• The Future Internet scale – in the Future Internet scenario, the focus is on the ultra-
large size of distributed systems handling very to ultra-large workload. The Rehearsal
Scalability Explorer enables automated experiments with very large workloads and analysis
of measurements made during execution, supporting the assessment of system behavior in
that condition before its deployment.

• Adaptation – large-scale systems need to evolve continuously, due to requirement and
context changes. Despite taking no part at runtime adaptation, Rehearsal can provide
assistance through functional tests, to verify whether a service can play a certain role in the
choreography, and scalability tests, to identify how the system should be adapted when the
workload changes.

32

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Figure 32: Rehearsal’s level of achievement of objectives

• QoS Awareness – manual intervention for dealing with failures and performance issues in
ultra-large systems is not a viable solution. Thus, Future Internet systems must incorporate
QoS Awareness and support self-adaptation. Using the Rehearsal Scalability Explorer, one
can identify the scalability profile of the choreography, pointing how to scale it to maintain
QoS parameters within acceptable ranges as the workload changes.

• Decentralization – the scale and dynamics envisioned in the Future Internet hinders central-
ized coordination. Rehearsal support identification of bottlenecks caused by centralization
through automated tests.

The level of achievement of these objectives, according to the opinion of the developers
involved in the validation, is shown in Figure 32. As can be seen, Rehearsal is considered to
provide good (3) to very good (4) support to issues concerning design and development of large-
scale choreographies and, although used mostly at development time, it provides insights about
how to deal with questions related to the self-adaptation of the compositions at runtime. The
respondents considered that Rehearsal does not help much with matters related to Decentralization
and QoS Awareness.

Additionally, the use-case teams performed their own evaluation of the usage of Rehearsal
during their development process (Coletti et al., 2013; Parathyras et al., 2013). Both teams remark
the usefulness of the framework, but identify a difficulty: the fact that the usage of a Message
Interceptor requires the instrumentation of the choreography so that services invoke the proxy,
instead of the actual service, could require some additional work to use the framework.

This industrial validation can be seen as an evidence that the results described in the ex-
ploratory study presented in Section VII could also be valid in an industrial setting. However, as
the industrial developers involved in the validation were members of the consortium responsible
for the development of Rehearsal, we cannot consider this as a scientific, unbiased result. Un-
fortunately, such a completely unbiased industrial study is not yet possible as the development
of large-scale choreographies is not yet common in the industry so the costs for setting up an
unbiased experiment would be very high. However, with the development of the technologies
related to the Future Internet, we believe that this kind of systems will become increasingly more
frequent within the next decade.

33

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

IX. Conclusions

The activities involved in choreography development do not form yet a well-understood, solid
process. Rehearsal and the development methodology proposed in this paper aim at providing
mechanisms to enable a more robust and disciplined approach for developing choreographies.
Based on the exploratory study results, we conclude that Rehearsal and the proposed methodology
have a good potential to facilitate and bring more quality to choreography development. Besides,
both artifacts are not coupled to specific choreography languages, which facilitates the adoption
of Rehearsal and the methodology.

The set of features and architecture of the proposed tool and the steps of the proposed method-
ology were the result of a three-year careful research, which involved a comprehensive study of
the literature and existing tools, interactions with tens of developers, and the implementation of
several preliminary versions of the framework, which were incrementally assessed and refined.
The research findings point out the effectiveness of the proposed tool and the methodology in
helping developers to build complex decentralized systems based on collections of web services.

As future work, the Rehearsal features can be improved to be more flexible. In particular,
message intercepting and service mocking could be adapted to include non-functional aspects. The
scalability explorer component is currently being enhanced to cover more robustness scalability
metrics and operation modes. Finally, the TDD methodology can be improved with its application
to more large-scale practical case studies as well as its extension to cover other choreography
life-cycle activities, such as requirement elicitation and choreography modeling.

Nevertheless, the feedback from users and the open source community, the personal experience
of our research group members and of collaborators in other universities, research centers and
companies, and the results we obtained with the scientific exploratory study are very encouraging.
These results show that Rehearsal can be used in a variety of situations to support the effective
testing of complex web service compositions.

X. Acknowledgments

This research has received funding from HP Brasil under the Baile Project and from the European
Community’s

References

Arikan, S., Kabzeva, A., GÃűtze, J., MÃijller, P., 2012. A generic testing framework for the internet
of services. In: The Seventh International Conference on Internet and Web Applications and
Services. ICIW. Stuttgart, Germany.

Astels, D., July 2003. Test-Driven Development: A Practical Guide. Prentice Hall PTR.

Autili, M., Ruscio, D. D., 2011. CHOReOS Perspective on the FI and initial conceptual model
(D 1.2). Available at http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS%
2DPerspectiveontheFIandinitialconceptualmodel%2DVA.0.pdf.

Barker, A., Besana, P., Robertson, D., Weissman, J. B., 2009. The benefits of service choreography
for data-intensive computing. In: Proceedings of the 7th International Workshop on Challenges
of large applications in distributed environments. CLADE ’09. ACM, pp. 1–10.

Bartolini, C., Bertolino, A., Elbaum, S., Marchetti, E., 2009a. Whitening SOA testing. In: Proceedings
of the the 7th joint meeting of the European software engineering conference and the ACM

34

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS%2DPerspectiveontheFIandinitialconceptualmodel%2DVA.0.pdf
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS%2DPerspectiveontheFIandinitialconceptualmodel%2DVA.0.pdf


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

SIGSOFT Symposium on The foundations of software engineering. ESEC/FSE ’09. ACM, New
York, NY, USA, pp. 161–170.

Bartolini, C., Bertolino, A., Elbaum, S., Marchetti, E., 2011. Bringing white-box testing to service
oriented architectures through a service oriented approach. Journal of Systems and Software
84 (4), 655–668.

Bartolini, C., Bertolino, A., Marchetti, E., Polini, A., 2009b. WS-TAXI: A WSDL-based Testing Tool
for Web Services. International Conference on Software Testing, Verification, and Validation,
326–335.

Beck, K., 2003. Test-driven development: by example. Addison-Wesley, Boston.

Beck, K., November 2004. Extreme Programming Explained : Embrace Change (2nd Edition).
Addison-Wesley Professional.

Bertolino, A., Angelis, G. D., Polini, A., 2011. (role)CAST: A Framework for On-line Service
Testing. In: 7th Internation Conference on Web Information Systems and Technologies. WEBIST.
Noordwijkerhout, Netherlands.

Bhat, T., Nagappan, N., 2006. Evaluating the efficacy of test-driven development: Industrial case
studies. In: ISESE’06 - Proceedings of the 5th ACM-IEEE International Symposium on Empirical
Software Engineering. pp. 356–363.

Bucchiarone, A., Melgratti, H., Severoni, F., 2007. Testing Service Composition. In: 8th Argentine
Symposium on Software Engineering (ASSE’07). Mar del Plata, Argentina.

Canfora, G., Penta, M. D., 2009. Service-Oriented Architectures Testing: A Survey. In: Software
Engineering. Vol. 5413 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp.
78–105.

Casella, G., Berger, R., 2002. Statistical Inference, 2nd Edition. The Wadsworth & Brooks/Cole
Statistics/Probability series. Wadsworth & Brooks/Cole Advanced Books & Software.

Chakrabarti, S. K., Kumar, P., nov. 2009. Test-the-REST: An Approach to Testing RESTful Web-
Services. In: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns,
2009. Computation World. pp. 302–308.

Coletti, L., Lavazza, L., Mazza, R., et al., 2013. “adaptive customer relationship booster - acrbÂt’Ât’
use case assessment and demonstration (D 7.5). http://choreos.eu/bin/Download/Deliverables.

Easton, V. J., McColl, J. H., 1997. Statistics glossary v1.1. Available at
http://www.stats.gla.ac.uk/steps/glossary.

Eler, M. M., Delamaro, M. E., Maldonado, J. C., Masiero, P. C., 2010. Built-In Structural Testing of
Web Services. In: Proceedings of the 2010 Brazilian Symposium on Software Engineering. SBES
’10. IEEE Computer Society, pp. 70–79.

Endo, A. T., Simão, A. d. S., Souza, S. d. R. S. d., Souza, P. S. L. d., 2008. Web Services Composition
Testing: A Strategy Based on Structural Testing of Parallel Programs. In: Proceedings of the
Testing: Academic and Industrial Conference - Practice and Research Techniques. TAIC-PART
’08. IEEE Computer Society, pp. 1–12.

35

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Erdogmus, H., Morisio, M., Torchiano, M., March 2005. On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31 (3), 226–237.

Erl, T., 2007. SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Eviware, 2010. SoapUI, Web Services Functional Testing Tool. Available at http://www.soapui.org.

Fowler, M., 2011. Test-Driven Development. Available on:
http://www.martinfowler.com/bliki/TestDrivenDevelopment.html.

Freeman, S., Pryce, N., 2009. Growing Object-Oriented Software, Guided by Tests, 1st Edition.
Addison-Wesley Professional.

Gamma, E., Helm, R., Johnson, R. E., Vlissides, J., 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Greiler, M., Gross, H.-G., van Deursen, A., 2010. Evaluation of online testing for services: a
case study. In: Proceedings of the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems. PESOS ’10. ACM, pp. 36–42.

Guimaraes, F. P., Kuroda, E. H., Batista, D. M., 2012. Performance Evaluation of Choreographies
and Orchestrations with a New Simulator for Service Compositions. In: The International
Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and
Networks. CAMAD. IEEE.

Hwang, S.-Y., Hsieh, W.-F., Lee, C.-H., 2011. Verifying web services in a choreography environment.
In: International Conference on Service-Oriented Computing and Application (SOCA). IEEE,
pp. 1–4.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadis, P., Autili, M., Gerosa, M. A.,
Ben Hamida, A., 2011. Service-oriented Middleware for the Future Internet: State of the Art and
Research Directions. Journal of Internet Services and Applications 2 (1), 23–45.

Jeffries, R., 2011. What is extreme programming ? Available on:
http://xprogramming.com/xpmag/whatisXP#test.

Kitchenham, B., 1996. Desmet: A method for evaluating software engineering methods and tools.
Technical Report TR96-09, University of Keele - Department of Computer Science.

Laranjeiro, N., Vieira, M., Madeira, H., 2012. A Robustness Testing Approach for Soap Web
Services. Journal of Internet Services and Applications 4, 215–232.

Law, D. R., dec 1998. Scalable means more than more: a unifying definition of simulation scalability.
In: Winter Simulation Conference Proceedings. Vol. 1. pp. 781 –788.

Leite, L., Moreira, C. E., Cordeiro, D., Gerosa, M. A., Kon, F., 2014. Deploying large-scale service
compositions on the cloud with the choreos enactment engine. In: 13th IEEE International
Symposium on Network Computing and Applications.

Madurai, B. K., 2009. Getting serious about enterprise architecture (whitepa-
per on alignment between testable architectures and TOGAF). Available on:
http://docs.jboss.org/savara/whitepapers.

36

http://www.sciencedirect.com/science/article/pii/S016412121400209X


Journal of Systems and Software • October 2014 •
http://www.sciencedirect.com/science/article/pii/S016412121400209X

Mayer, P., Lübke, D., 2006. Towards a BPEL unit testing framework. In: Proceedings of the 2006
workshop on Testing, analysis, and verification of web services and applications. ACM, New
York, NY, USA, pp. 33–42.

Mazza, R., Lavazza, L., et al., 2013. CHOReOS final technical assessment report (D 10.3).
http://choreos.eu/bin/Download/Deliverables.

Mazza, R., et al., 2012. Mobile-enabled coordination of people âĂŞ requirements, spec-
ification and use case definition (D 7.1). http://www.choreos.eu/bin/download/
Share/Deliverables/CHOReOS_WP07D7.1Mobile%2Denabled_coordination_of_people_
requirements_specification_and_use_case_definitionVB.pdf.

Mega, G., Kon, F., 2004. Debugging distributed object applications with the eclipse platform. In:
Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology eXchange. ACM, pp. 42–46.

Parathyras, T., et al., 2013. Assessment of the “dynarouteÂt’Ât’ pilot deployment and demonstra-
tion (D 8.4). http://choreos.eu/bin/Download/Deliverables.

Peltz, C., October 2003. Web Services Orchestration and Choreography. Journal Computer 36,
46–52.

Pi4 Technologies Foundation, 2010. Pi4soa - pi calculus for SOA. Available on:
http://sourceforge.net/projects/pi4soa/.

Seaman, C. B., July 1999. Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Trans. Softw. Eng. 25, 557–572.

Tselentis, G., Galis, A adb Gavras, A., Krco, S., Lotz, V., Simperl, E., Stiller, B., Zahariadis, T.
(Eds.), 2010. Towards the Future Internet - Emerging Trends from European Research. IOS Press,
Amsterdam.

Veranis, G., Lockerbie, J., Parathyras, T., Papadakis-Pesaresi, A., 2012. “DynarouteÂt’Ât’ scenario
specification and requirements analysis (D 8.1). http://www.choreos.eu/bin/download/Share/
Deliverables/CHOReOSWP08D8.1DynaroutescenariospecificationandrequirementsVA.pdf.

Wang, Z., Zhou, L., Zhao, Y., Ping, J., Xiao, H., Pu, G., Zhu, H., 2010. Web Services Choreography
Validation. Service Oriented Computing Applications 4, 291–305.

Zhang, J., 2011. A Mobile Agent-Based Tool Supporting Web Services Testing. Wireless Personal
Communications 56, 147–172.

37

http://www.sciencedirect.com/science/article/pii/S016412121400209X
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS_WP07D7.1Mobile%2Denabled_coordination_of_people_requirements_specification_and_use_case_definitionVB.pdf
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS_WP07D7.1Mobile%2Denabled_coordination_of_people_requirements_specification_and_use_case_definitionVB.pdf
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS_WP07D7.1Mobile%2Denabled_coordination_of_people_requirements_specification_and_use_case_definitionVB.pdf
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOSWP08D8.1DynaroutescenariospecificationandrequirementsVA.pdf
http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOSWP08D8.1DynaroutescenariospecificationandrequirementsVA.pdf

	jss-rehearsal

