
Continuous Delivery:
Building Trust in a Large-scale, Complex

Government Organization

Authors

Rodrigo Siqueira is a Computer Science MSc student at the Institute of Mathematics and
Statistics of the University of São Paulo (IME-USP). His research interests include Software
Engineering, Operating System, and Computer Architecture. He worked for two years with the
SPB project as a coach and developer. Contact him at siqueira@ime.usp.br.

Diego Camarinha is a Computer Science MSc masters student at IME-USP. His research
interests include Software Engineering, Computer Networks, and Source Code Metrics. He worked
for two years with the SPB project as a senior developer. Contact him at diegoamc@ime.usp.br.

Melissa Wen is a Bachelor of Computer Science from Federal University of Bahia (UFBA).
She worked on the SPB project as a senior developer and was core developer of Noosfero social
networking platform at Colivre. Her areas of interest include Software Engineering and Free
Software Development. Contact her at melissa.srw@gmail.com.

Paulo Meirelles is a Professor of Software Engineering at the University of Brasilia (UnB)
and researcher at the Free/Libre/Open Source Software Competence Center (CCSL) at IME-
USP. He was the head of the new SPB portal development. His research interests include Free
Software development, Agile Software Development, and Source code metrics. Contact him at
paulormm@unb.br.

Fabio Kon is a Full Professor of Computer Science at IME-USP, co-founder of the CCSL at
IME-USP, and Editor-in-Chief of the SpringerOpen Journal of Internet Services and Applications.
His research interests include Agile Software Development, Smart Cities, and Distributed Systems.
Contact him at fabio.kon@ime.usp.br.

Abstract

For many software development teams, the first aspects that come to mind regarding Continuous
Delivery (CD) are the operational challenges and the competitive benefits. In our experience, CD
was much more: it was a survival technique. This article presents how and why we applied CD in
a large governmental project for the development of a Collaborative Development Environment.
We share the challenges we faced and the strategies we used to overcome them. The article
concludes with a set of lessons learned that can be valuable for readers in a variety of situations.

1

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

Introduction

From 2014 to 2016, we worked on a thirty-month-long Brazilian government project to modernize
the Brazilian Public Software (SPB) portal (www.softwarepublico.gov.br) [1]. This project was
a partnership between the Ministry of Planning, Budget, and Management (MPOG) and two
public universities: University of Brasília and University of São Paulo.

During this time, the SPB portal evolved into a Collaborative Development Environment (CDE),
which brought significant benefits for the government and the society. The government could
minimize bureaucracy and software development costs, by reusing the same set of applications
across different government Agencies. Society could more transparently follow government
expenses and contribute to software project communities.

In this article, we discuss the use of Continuous Delivery (CD) during our experience as the
academic partner in this project. We show how we implemented CD in a large institution with
traditional, waterfall-like values and how CD helped to build trust between the government and
the university team. CD enabled us to show our progress and to earn the government’s confidence
that we could adequately fulfill their requests, becoming an essential aspect of our interaction.
According to this experience, the use of CD as a tool to build trust relationships is yet another of
its benefits [2,3].

Context

SPB is a governmental program created to foster sharing and collaboration on Open Source
Software (OSS) development for the Brazilian public administration. The government managed
both software requirements and server infrastructure. However, its hierarchical and traditional
processes made them unfamiliar with new software development techniques, such as CD. All
our requests had to pass through layers of bureaucracy before being answered; accessing their
infrastructure to deploy software was not different. The difficulties were aggravated because the
new SPB portal is an unprecedented platform in the Brazilian government, with a complicated
deployment process [4].

The project suffered significant interference from the Board of Directors throughout time because
the portal represents an interface between government and society. In light of political interests,
directors continually imposed changes to the platform while ignoring our technical advice. In
2015, the Board of Directors was changed and, with it, the vision of the project. New directors
had different political agendas, which affected the project’s requirements previously approved.

In this context, we overcame two distinct challenges: (1) deconstructing the widespread belief
among government staff that any project in partnership with a University is doomed to fail, and
(2) dealing with bureaucracies involved in the government deployment process.

First, our development team was not the typical one, consisting mainly of undergraduate
interns supported by senior developers and designers, all coordinated by two professors. Our
unconventional team structure and organization was considered as “unprofessional” by government
standards with regard to time and resource allocation, accountability, and team continuity. On
the government side, the SPB portal evolution was the first software development collaboration
involving universities and the MPOG staff, raising disbelief.

Second, our team approached software deployment differently from the government. We believed
frequent delivery is better for the project’s success. In contrast, the MPOG is used to the idea

2

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

of a single deployment at the end of the project, and neither their bureaucratic structure nor
their technical expertise was conducive to this style of work. That was hampering the benefits
of the tool and preventing us from showing off the fruits of the project to those responsible for
evaluating it.

These challenges made our relationship with their staff strained, in particular during the first
year, and alerted us to the fact that they could cancel the project at any time. The deployment
limitation was the substantial technical issue we could tackle in the short term. Thus, we
worked to deploy the software into our infrastructure and showed it to the government evaluators.
This strategy proved them we could efficiently provide new features, fulfill their requirement
delivery expectations, and incited them to demand that the latest version be deployed in their
infrastructure. Our CD approach generated more pressure on the IT department responsible for
the deployment routines. With each CD cycle, we gradually built a new relationship among all
parties and, by the end of the project, we became active participants in the deploy operations
delivering quality software very frequently.

Our Continuous Delivery Pipeline

The SPB portal is an open CDE with additional social features, having 83 software communities
and 6,460 user accounts, mostly from government employees. We built a system-of-systems
[5] adapting and integrating five existing OSS projects: Colab (www.github.com/colab), Noos-
fero (www.noosfero.org), Gitlab (www.gitlab.com), Mezuro (www.mezuro.org), and Mailman
(www.list.org). Colab orchestrates these multiple systems using a plugin architecture and allowed
us to smoothly provide a unified interface to final users, including single sign-on and global
searches [1]. All these integrated systems involve a total of 106,253 commits and 1,347,421 lines
of code.

Figure 1: The SPB Deployment Pipeline.

Portal deployment follows a typical CD pipeline [6], adapted to our technical and organizational
context and the use of OSS best practices. As depicted in Figure 1, it begins when a new feature
is ready for deployment and ends when it reaches production.

3

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

Automated Tests

Each integrated system is a Colab plugin and had to be tested with its own test suite. In addition,
we also had to test the platform as a whole. Since the plugins have their own test suites, they
also assume a double role as both plugin tests and as integration tests. If any test suite failed, by
either a test error or coverage reduction below a certain threshold, the process stopped. Only
when all tests passed, the pipeline proceeded to the next step.

Preparing a New Release

A separate Git repository hosted each system. New software component releases were
tagged referencing a specific new feature or bug fix. SPB had its own Git repository
(www.softwarepublico.gov.br/gitlab/softwarepublico). An SPB portal release was an aggregate
of all its systems. When a new component release passed all of the SPB integration tests, we
manually created a corresponding new tag in its repository. At the end of this process, we started
packaging.

Packaging

After creating a new tag, our DevOps team started the packaging process. Packaging brings
portability, simplifies deployment, and enables configuration and permission control. Our approach
involved building separate packages for each system, in three fully automated steps: generating
scripts for the specific environment, building the package, and uploading it to a package repository.
When all ran successfully, the new packages would be ready and available for our deployment
scripts.

Validation Environment

The Validation Environment (VE) is a replica of the Production Environment (PE) with
anonymised data, and access restricted to MPOG staff and our DevOps team. To config-
ure this environment, we used Chef (www.chef.io) and Chake, a serverless configuration tool
created by our team (www.github.com/terceiro/chake) to maintain environment consistency,
simplifying the deployment process.

Acceptance Tests

After a new SPB portal VE deployment, we used the environment to verify the integrity of the
entire portal. MPOG staff also checked the new features, required changes, and bug fixes. If they
identified a problem, they would notify developers via comments on the SPB portal issue tracker,
prompting the team to fix it and restart the pipeline. Otherwise, we could move forward.

Production Environment Deployment

After the VE check, we could finally begin the deployment in production, with the same
configuration management tool, scripts, and package versions as in the VE. After the deploy was

4

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

completed, both VE and PE were identical, making new features and bug fixes available to end
users.

Benefits

Figure 2: The evolution of SPB releases and the development team members distribution.

CD brings many advantages such as accelerated time to market, building the right product,
productivity and efficiency improvements, stable releases, and better customer satisfaction [2,3].
The charts presented in Figure 2 show these benefits in our project and associates them with the
creation of a DevOps team. Over 30 months, we deployed 84 versions. Over 64% of the releases
happened in the last 12 months, after the creation of the DevOps team. Besides these results,
working with the government we noticed the following additional benefits.

Strengthening Trust in the Relationship with the Government

CD helped strengthen trust between developers and the MPOG staff. Before using CD, they
could validate features developed only at the end of the release cycle, usually every four months.
With the implementation of CD, intermediate and candidate versions became available, allowing
them to perform small validations over time. Constant monitoring of the development work
brought greater assurance to the MPOG leaders and improved the interactions with our team.

Responsiveness to Change

Responsiveness was one of the direct benefits of adopting the CD pipeline. Political forces may
change requirements and priorities at any time. The ability to react quickly to changes requested
by the government was vital to the project survival for 30 months. We noticed that if we took
too long to meet their demands, they could reduce financial support and even cancel the project.

CD helped us keep the PE up-to-date, even with partial versions of a feature. Therefore, we
always had new results to present on meetings, easing their concerns about expected final delivery.
For our team, CD made developers always confident that the project would last a little longer.

5

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

Shared Responsibility

According to the conventional MPOG process, the development team could not track what
happened to the code after its delivery, since their employees were the only ones responsible for
deployment. The implementation of CD made our development team feel equally responsible for
what was getting into production and take ownership of the project [4].

Interestingly, the CD pipeline had the same effect on the MPOG staff. They became more
engaged in the whole process, opening and discussing issues during the evolution of the platform.
Additionally, developers worked to improve the CD pipeline and speed up the process of making
new features available in the production environment.

Synchronization Between Government and Development

The CD pipeline performance depended on the synchronization between our development team
and the MPOG staff: each party had to be prepared to take action as soon as the other concluded
a given task. Initially, the MPOG staff did not contemplate this in their schedule which, combined
with the bureaucracy in providing access to the PE (up to 3 days), resulted in significant delays
in the validation of new features. The use of an explicit CD pipeline helped us to identify critical
points of delay, and increase our productivity.

Lessons Learned

Due to the successful building of the CD pipeline, we not only overcame the challenges we
described above but also improved the MPOG deployment process and kept the project alive
until its successful conclusion. We now look at the lessons we learned, which can be leveraged by
readers in other situations.

Build CD From Scratch

Taking on the responsibility for implementing CD impacted the whole team. Most of our team
members did not have CD know-how, and we had few working hours available to build the initial
version of the pipeline. The construction and maintenance of the CD process were made possible
by the key decisions to:

1. Select the most experienced senior developers and some advanced interns to work on a
specific DevOps team. These senior developers used their experience in OSS projects to
craft an initial proposal for the deployment process. The solution enabled us to automate
the deployment, even though the process was, initially, still rudimentary.

2. Interchange team members and encourage teammates to migrate to the DevOps team. The
benefits were twofold: mitigating the difficulty in sharing knowledge between DevOps
developers and feature developers, and evolving the process on-the-fly.

Overcoming Mistrust

Adopting an unfamiliar approach requires trust. The government staff, traditionally, expected
and were prepared to validate and deploy a single deliverable. However, the steady growth of SPB

6

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

complexity made large deliveries unsustainable. The CD approach was necessary [4]. Therefore,
we developed the following line of action to enable this new dynamics:

1. Demonstrate actual results, instead of simply reporting them. Initially, we did not have
access to the government infrastructure, so we created our own validation environment.
Thus, we were able to follow the CD pipeline until production deployment, when we faced
two problems. First, our pace of intermediate deliveries was faster than the deployment to
production by the MPOG staff. Second, specific issues of the governmental infrastructure
made some validated features not work as expected in the PE. That situation gave us
arguments to negotiate access to the PE.

2. Make project management transparent and collaborative for government staff. Allowing
the MPOG staff to track our development process showed them we were fulfilling our
commitments. They started to interact more actively in the generation of versions and
became involved in the CD. After understanding it, the government staff helped us negotiate
access to a VE with the MPOG leaders, creating an isolated replica of the PE.

3. Gain the confidence of government staff. With the PE replica, we were able to run the
entire pipeline and win the trust of the MPOG staff involved in the process. They saw the
mobilization and responsiveness of our team to generate each new version package. They
also recognized the quality of our work and deployment process. In the end, the government
staff realized that it would be beneficial for the project if they granted us access to the
infrastructure, both VE and PE.

In summary, we encourage the use of a well-thought CD pipeline as a means to gain trust in
software development projects with government and large organizations as well.

References

1. P. Meirelles, M. Wen, A. Terceiro, R. Siqueira, L. Kanashiro, and H. Neri, “Brazilian Public
Software Portal: an integrated platform for collaborative development”, OpenSym, 2017.

2. L. Chen, “Continuous Delivery: Huge Benefits, but Challenges Too”, IEEE Software, 32 (2)
2015.

3. T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck and M. Stumm, “Continuous
Deployment at Facebook and OANDA”, ICSE, 2016.

4. M. Shahin, M. A. Babar, and L. Zhu. “The Intersection of Continuous Deployment and
Architecting Process: Practitioners’ Perspectives”. ESEM, 2016.

5. C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska, “Systems of Systems
Engineering: Basic Concepts, Model-Based Techniques, and Research Directions”, ACM
Comput. Surv. 48, 2, 2015.

6. J. Humble and D. Farley, “Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation”, Addison-Wesley, 2010.

7

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2018.111095426 0740-7459/$26.00 2018 IEEE

