
A Detailed Description of MaxAnnealingFernando IazzettaCenter for New Music and Audio TechnologiesUniversity of California at Berkeley1750 Arch St. { Berkeley, CA - 94709also fromPUC-SP { Communication and Semiotic Programfernando@CNMAT.berkeley.eduFabio KonDepartment of Computer ScienceInstitute of Mathematics and StatisticsUniversity of S~ao PauloCx. Postal 66281 { 05389-97005389-970 { S~ao Paulo (SP) Brazilkon@ime.usp.brAbstractMusical composition can be roughly viewed as a search for the best solution among a �nite -although huge - universe of possibilities. Some of the algorithmic compositional techniques try tosimulate the act of composing doing this search automatically. However, this approach has two majorproblems. The �rst one is the hardness of depicting aesthetic concepts through mathematical rules.The second problem is the low e�ciency of the exhaustive search among all possible solutions.The \Simulated Annealing" algorithm - �rst proposed in [1] - presents very good results on �ndingthe optimal solution for many combinatorial problems e�ciently (in polynomial time). In this paperwe present an adaptation of this algorithm to the problem of algorithmic composition. We thendiscuss some possibilities regarding goal functions to this algorithm and describe MaxAnnealing, atool designed to help composers and musicologists study the possibility of de�ning aesthetic conceptsthrough mathematical rules. The system is implemented in the MAX programming environment.1 IntroductionMusical composition involves many interrelated parameters which interact with each other creating acomplex structure of musical possibilities and constraints. As Minsk has said \the problem of creatinga good piece of music is a problem of �nding a structure that satis�es a lot of di�erent constraints" [2].To deal with this complexity the composer uses di�erent strategies, some of which are very well de�nedand can easily be formalized while others remain so exible and context dependent that resist to anykind of formalization. These strategies include intuition, chance, adaptation, and trial and error basedchoices. However when the compositional task is transferred to a computer, these strategies are notalways available since they are hard to implement as a computer program.Usually, the compositional task consists of de�ning a musical goal to be reached by a compositionalproject. In most cases, not only the compositional project is determined by the goal, but also the latter issensitive to the constraints imposed by the former. Thus, music arises from the balance of the composer'sintentions (goal) and the compelling processes of organizing musical ideas (project). In other words,composition is a constant exercise of adaptation and interaction between project and goal.However, in the case of computer generated compositions, sometimes it is hard to come up with ane�cient project which can be translated into a compositional algorithm. Although the composer can have

a clear idea of his musical intentions, he may be incapable of formalizing these ideas in order to build aprogram. Actually, for certain kinds of musical problems it is hard, or even impossible, to delineate analgorithm to solve them using the contemporary Computer Science tools. Usually, it can be due to thediversity of elements involved in the problem, to the complexity of parameters that a�ect the problem,or even to the lack of knowledge about some aspects of the system.In his piece Protocol for solo piano, Charles Ames [3] proposes a compositional method that goesbeyond the traditional processes strictly based on random selection or rigid determinism used in previouscomputer music programs. Ames formalizes his ideas in a \protocol" which is a \collection of tests whereeach test has been ranked according to one's preferences [...] Then by having the computer evaluatea substantial repertory of alternatives, one can direct it to search for the alternative best �tting thesecriteria. If there is a choice passing all tests, then systematic evaluation must �nd it; otherwise, the searchwill provide the best of imperfect choices" [3, p. 215]. The caveat of this method is that the computermust evaluate all in an enormous range of possible musical con�gurations to �nd the best one.Another problem involving an extensive search of compositional solutions is presented by Schottstaedtin his \Automatic Counterpoint" [4]. Schottstaedt implements a program that generates �ve species ofcounterpoint based on the rules exposed by J.J. Fux in the Gradus ad Parnassum (1725). Although therules which govern the counterpoint are very clear and well de�ned, there are many di�erent solutions forthe same counterpoint problem and the computational time to check each possible solution becomes asigni�cant constraint. \If we make an exhaustive search of every possible branch of a short (10-note) �rst-species problem, we have 16 raised to the 10th power possible solutions (there are 16 ways to move fromthe current note to the next note). Even if we could check each branch in a nanosecond, an exhaustivesearch in this extremely simple case would take 1,000 sec (about 20 minutes)" [4, p. 203]. The solutionSchottstaedt presented to this case was to start with the best �rst result found for each interval, thatis, the one to which the program assigns the smallest penalty. But as Schottstaedt recognizes, \the �rstsuch solution may not be very good. By accepting the smallest local penalty we risk falling into a badoverall pathway" [4, p. 203].Some computational tools have been applied in music in order to solve this kind of problem where it isnecessary to �nd the best con�guration in a large space of possibilities. Examples are the back-propagationtraining algorithms used to weight the connections in a neural network, or the genetic algorithms which,inspired in the selective processes that occur in a natural environment, apply successive transformationsto a system that evolves toward its environmental �tness. Those tools are based on the search of the bestsolution of a problem through iterative processes. In these processes, a possible solution is generated andevaluated by a particular function. Then, the program generates a new possible answer which again isevaluated. The results of these successive \guesses" are compared in order to direct the search for thebest result. After doing a number of these iterations the system can reach a solution which is su�cientlyclose to the optimal.2 The Simulated Annealing AlgorithmSimulated annealing (SA) is a probabilistic algorithm used in the search for optimum solution �rstdescribed in [1]. It has been developed after the analogy with a Condensed Matter Physics thermalprocess named annealing and can be used to �nd near optimal con�gurations in very large and complexsystems.The annealing process consists on heating a piece of metal until it reaches a temperature slightly aboveits critical homogenization temperature and then carefully decreasing the temperature until the moleculesare arranged in a way so that the metal reaches its thermodynamic equilibrium. The thermodynamicequilibrium is the state in which the molecules form a structure strictly organized and the energy of thesystem is minimal. If the heating and cooling processes are not correctly done, the metal does not reachthe thermodynamic equilibrium.As a combinatorial optimization process, the purpose of the SA is to �nd the minimum or maximumvalues of a cost function for a speci�c system. The cost function or goal function measures how gooda speci�c con�guration is. The SA starts with an initial structure S which can be randomly generatedand has a method for modifying this structure generating a neighbor structure. For each step in thisprocess, the quality of the new structure is determined and, if the neighbor solution S' is better than the2

current solution, then S' becomes the current solution. But if the new solution does not represent animprovement in the goal function, it still can be accepted with probabilityeQuality(S0)�Quality(S)T :This condition, known as Metropolis criterion, helps the SA algorithm to escape from local minima.Unlike traditional local search algorithms, SA can make occasional moves in the search space whichcan decrease the value given by the goal function Quality(). The probability of acceptance of the newstructure is greater if the di�erence between the cost of S and S' is small, even if it would represent adecrease in quality. Also, the probability of acceptance of a structure that decreases quality gets smalleras the temperature T decreases providing that the algorithm gets stabilized under a certain temperature.It is possible to demonstrate that if the goal function and temperature lowering functions meet someconstraints, the SA ends its running in polynomial time and �nds the optimal solution with probabilityalmost one [6].3 Applying SA to Musical CompositionFigure 1 presents a version of the algorithm applied to the musical composition problem.Procedure Simulated AnnealingBeginS random initial songT 1 /* initial temperature*/While (Quality is increasing) doRepeat 1000 timesS0 Neighbor(S)If Quality(S0) > Quality(S) Then S S0Else S S0 with probability eQuality(S0)�Quality(S)TT T � 0:9 /* decreases the temperature */X S, the �nal song given by the algorithmEnd. Figure 1: Simulated Annealing Algorithm3.1 Basic Data StructureEach con�guration of the solution space is called a \song" and its structure is de�ned by the following Clanguage declarations.typedef struct { char pitch, velocity, start; } note;typedef note song[MaxVoices][MaxTimeUnit];Thus, we see a song as an array of MaxVoices rows and MaxTimeUnit columns where each entry isa triple (pitch, velocity, start). Pitch may contain either a MIDI pitch value (from 0 to 127) or a rest(represented by -1). Velocity contains a MIDI velocity value (from 0 to 127). Start may contain either 0or 1 representing that there is a note or rest starting at that time unit (1) or not (0).3

3.2 Neighbor FunctionThe job of the neighbor function in the SA algorithm is to receive a con�guration in the solution spaceand to return another con�guration in the same space being slightly di�erent from the �rst one.Our implementation of this function returns a song identical to the one it receives except for one notewhich is randomly added.3.3 Goal FunctionThe purpose of our work is to develop an algorithmic tool to be used by composers and musicologists.Our idea is to o�er a simple way for composers or musicologists with programming experience write theirown goal functions in C, link them to our system, and then use the resource created as a MAX externalobject. Any goal function which receives a song as described above and returns an evaluation for itsquality can be linked to our basic system.For those with no programming experience, we have written a goal function which can have someof its parameters de�ned through the cells and tables of a friendly MAX patch. In the next section wedescribe the implementation of this goal function which can be taken as an example by other peopleinterested on using our system with their own goal functions.4 Implementation of MaxAnnealingWe have created a program called MaxAnnealing which uses the SA algorithm in order to �nd theoptimal solution for a compositional problem. The program was implemented in the OPCODE's MAX2.5.2 environment [5] since MAX o�ers a series of handful tools for manipulating all the music and graphicdata needed by the program. An external MAX object called annealingwhich performs the optimizationwas created using the ThinkC 5.0.3 compiler.The program has three basic modules: 1) the parameters interface, which allows the user to set theparameters that will be used for the song evaluations ; 2) the simulated annealing object, which performsthe search for the optimal solution; 3) the player, which receives the song produced by the annealingalgorithm and plays it through a MIDI output.The current implementation of MaxAnnealing generates a song of sixteen bars, each bar consistingof four beats, each of which having up to four subdivisions, which we call \time units". The piece isdistributed by four di�erent tracks or voices which can be assigned to four di�erent MIDI channels. Allthese values can be changed through modifying the annealing object source code. The printout of thesource code can be found in appendix B.4.1 The Parameters InterfaceThe program starts with the user providing tree general parameters for the piece. The �rst one is a tensioncurve which determines the pitch tension at each time unit of the piece. The pitch tension measures howdissonant are the simultaneous intervals that occur at each point of the music. This parameter is setby drawing a curve where each point represents the tension for each time unit in the piece as shown inFigure 2.A second curve determines the density parameter. In this case, each point in the curve correspondsto the number of notes that should sound at each moment.Finally, the user assigns weights to every pitch class of the chromatic scale. Here, a weight 0 meansthat the note should seldom occur. This brings a generic character in the pitch domain since the user candetermine which scales he wish to use and create a pitch hierarchy by assigning high weights to certainpitches and low weights to others.4.2 The Simulated Annealing ObjectAll data set by the user is then given to the simulated annealing module which starts the optimizationprocess. It begins with a piece of music composed by just one arbitrary four-note chord where the voicesare distributed from the highest to the lowest note through the tracks one to four (any other initial song4

Figure 2: The MaxAnnealing Patchwould �t here). This is the �rst song evaluated by the algorithm. Given a song, its quality is evaluatedby the goal function which is the weighted average of the �ve following criteria.1. For each time unit, it calculates the tension among the intervals generated according to a previouslyestablished table of dissonance. To calculate the tension, MIDI notes are transformed in pitch classesand then the algorithm veri�es all intervals that occur among the four voices for each time unit.These intervals are translated into previously established values which represent a dissonance level.The pitch tension for each time unit is calculated by adding these values.The closer is the pitch tension to the tension determined by the user for that time unit, the higheris its evaluation. The �nal evaluation for the whole song is the average of its time unit evaluations.2. Scanning the song notes, it veri�es if the density in each moment of the piece is compatible withthe density curve drawn by the user. Besides, Lower pitches receive higher evaluation if they havelonger durations than higher pitches. This would lead to a music structure in which lower pitcheswill be associated to long durations and higher pitches will be associated to short durations.3. For each of the four voices, it evaluates the leaps between each note and its antecedent. Leaps closeto a minor third receive higher evaluation than bigger and smaller ones. This will assure that themelodic contour of each voice will not have too many large leaps nor too many small intervals.4. The more crossings between voices a song has, the lower is its evaluation. By doing so we try toavoid too many voice crossings.5. It scans every song note adding their pitch class weights - given by the weight table set by the user.The higher is the sum of the weights, the higher is the song evaluation.5

As we have seen in section 2 and 3 the value given by the goal function is compared with the qualityof a previous song. Then the program decides if it takes the new song as the new temporary solution, orif it keeps the last value.4.3 The PlayerThis is a simple module which receives the best result obtained by the simulated annealing and translatesthis data so it can be played as a four-channel MIDI sequence. It presents some standard control buttonsincluding play, pause, stop, metro, and save and load sequence.5 ResultsWe have run MaxAnnealing for several times, using di�erent parameters to test its performance. Initially,we have set the program to search through an average of 9,200 pieces of music for each new parametercon�guration. This process took about 30 seconds in a shared SUN SPARCserver 1000 and one minute ina Macintosh Performa 630. Further tests have shown that, in some cases, MaxAnnealing was able to �ndvery good solutions after a search through only 2,000 songs, which lowers considerably the necessary timeto run the program. It is worth noting that even searching through 9,200 di�erent songs, the algorithmruns almost 2,000 times faster than that which searches through all the 224 possible solutions for ourparticular problem.For each test we have set di�erent parameters in order to generate speci�c kinds of musical output.By assigning certain weights to the notes in the pitch table we were able to generate pieces of musicbased on di�erent modes and scales. The curves also provided an easy method of control over thetension and density of events which happened at each point of the song. After only a few experimentswith these controls we could make satisfactory predictions about the general characteristics of the musicMaxAnnealing was going to generate as the best solution.Although our intention was only to demonstrate the validity of using the SA technique in the solutionof musical problems, and despite the simplicity of the compositional rules applied, MaxAnnealing hasproduced some interesting musical results. Appendix A presents the score of a composition produced byour system.6 Conclusion and Further WorkWe have introduced the use of simulated annealing algorithm as a powerful tool in the �elds of musicalcomposition and musicology. The Simulated Annealing has shown to be very e�ective in the search fora satisfactory solution for problems involving a large number of possible musical con�gurations in a veryreduced time span.With modi�cations in its objective function, the system would be very useful for �nding the solutionof many other compositional problems. Moreover, one can conceive the utilization of the SA as a practicaltool in the �eld of musicology, which would enable the veri�cation of relations between the formal ruleswhich govern a piece of music and the actual e�ects - in terms of auditory experience - those rulesgenerate.As a further step on this work, we intend to test the use of other objective functions and developthe MaxAnnealing user interface to allow the generation of more complex compositional systems, which,we believe, will lead to more interesting musical results. These developments include new con�gurationoptions to be set by the user and the introduction of more elaborated compositional constraints in theprogram functions.The MaxAnnealing source code and binaries are available by anonymous FTP at ftp.ime.usp.br,directory pub/macintosh/MaxAnnealing . 6

7 AcknowledgmentsThe authors gratefully acknowledge the help provided by Robson Feichas Vieira (IME/USP) throughoutthe development of the computational system. Alvaro L. S. Nunes provided us with his implementationof the Simulated Annealing Algorithm to a Graph Theory problem.This work was supported by CNPq (process # 200124/94-3), FAPESP (process # 93/0603-1), andCNMAT.A A Musical Example
&

&
?

?

c

c

c

c

1 ˙ ˙b

1

œb œ ˙
1 œb œb ˙
1

˙# ˙

˙ ˙b

œ œb ˙
w

œ œ ˙

œ œ ˙

˙ . œ
˙ . œ

˙ ˙

˙b œ œ

w
w

w

˙ œ œb

˙ œ œ
w

w

&

&
?

?

6 ˙ . œ
6

w
6

w
6

w

wb

œ œb ˙
˙ œ œ

w

˙ .# œ

w
w

w

˙ .# œ

˙ œ œ
w

w

˙ .b œ

w
w

w

&

&
?

?

11 w
11

w#
11

w
11

œ œ ˙

˙ ˙b

œb œ ˙
w

w

˙ ˙b

w
œ œb ˙

w

˙ œ œ

œ œ ˙
w

w

˙ ˙

œ œ ˙
w

w

-1-

MaxAnnealing
Example 1

7

&

&
?

?

16

˙ .b œb
16

˙ . œb
16

w
16

w

˙ .
œb

w
wb

w

˙ ˙

w
w

w

w

œ œ ˙
w

w

˙ ˙

˙ . œb
œ œ ˙

w

&

&
?

?

21 ˙ ˙
21

œ œ ˙
21

w
21

w

w

w
w

w

˙ ˙

œ œ ˙
w

w

˙ . œb

w
œ œ ˙

w

w

w
w

w

&

&
?

?

26
w

26

œ œb ˙
26

w
26

˙ . œ

w

˙ . œ

w

w

w

w

w

w

w

w

w

w

œ œ ˙

˙ . œ

œ œ ˙

w
&

&
?

?

31

w

31

w
31

w
31

w

w#

w
w

˙ . œ

w

w
w

w

w#

w
w

w

œ œ ˙

w
w

w

-2-8

&

&
?

?

36

w

36

w
36

w
36

w

˙ .
œ

w

w

w

w

˙ . œb
w

w

˙ ˙

w
w

w

w

w
w

w

&

&
?

?

41

w
41

w
41

w
41

w

œ œb ˙

w
w

w

˙ ˙

œ œ ˙
w

w

w

w
w

w

˙ ˙b

w
w

w

&

&
?

?

46

w
46

w
46

w
46

w

w

œ œb ˙
˙ . œ

w

w

œ œ ˙
w

w

˙ ˙b

w
w

w

w#

w
w

w

&

&
?

?

51 ˙b ˙
51

œ œ ˙
51

œ œ ˙
51

w

w

w
w

w

˙ ˙

w#
w

w

˙ ˙

w
w

w

w

w
w

w
-3-9

&

&
?

?

56 w

56

w56

˙ . œ
56

w

œ œ ˙

˙ . œ
w

w

w

˙ . œ
w

w

˙ . œb

w
w

w

w

w
w

w
&

&
?

?

61 ˙ œ œ
61

w61

œ œ ˙
61

w

˙ ˙

w
w

w

˙ ˙

œ œ ˙
w

w

wb

w
w

w

-4-10

B MaxAnnealing Source Code/*********************** File: maxannea.h ***************************//* We are sorry but this is a bilingual code. */#include "ext.h"#include "typedefs.h"#include "SetUpA4.h"#define True 1#define False 0#define MaxIt 1000#define MaxVozes 4#define MaxSemiColcheias 255#define REST -1#define RAND_MAX 32767#define MaxCruzamentos 6#define MaxTensao 66typedef struct _nota Nota;struct _nota { int pitch, velocity, start; };typedef Nota Partitura[MaxVozes][MaxSemiColcheias];/* pitch and velocity are the MIDI values, start is a boolean variable thattells whether the note start at this moment or not. */extern int P1, P2, P3, P4, P5;extern int TENSAO_USUARIO[MaxSemiColcheias];extern int qualidade(Partitura *X);extern int DURACAO_ADEQUADA[MaxVozes][MaxSemiColcheias];extern int pesos_das_notas[];extern int tensao(Nota *n1, Nota *n2, Nota *n3, Nota *n4);extern int cruzamento(Nota *n1, Nota *n2, Nota *n3, Nota *n4);extern int aponta_escala[13];extern fptr *FNS;void inicializa(Partitura *);void copia(Partitura *, Partitura *);void vizinho(Partitura *, Partitura *);typedef struct esqueleto {struct object e_ob;Atom e_av[MaxSemiColcheias];int e_ac;void *e_out;} Esqueleto;/******************* File: maxannealing.c ***************************/#include "maxannea.h"extern Partitura X;fptr *FNS;void *esqueleto_new(), *MostraList();void *class;void out(Esqueleto *x, Partitura *score);main(fptr f){ RememberA0();SetUpA4();FNS = f;setup (&class, esqueleto_new, 0L,(short) sizeof(struct esqueleto),0L, A_DEFLONG, 0);addmess(MostraList,"list", A_GIMME, 0); 11

finder_addclass ("Lists","maxannealing");post("Maxannealing Installed");RestoreA4();}void *esqueleto_new(){ Esqueleto *x;SetUpA4();x = (Esqueleto *)newobject(class);x->e_out = listout(x);RestoreA4();return (x);}void *MostraList(register Esqueleto *x, Symbol *s,int ac, Atom *av){ register int i,k;long n;SetUpA4();if(ac == 12)for (i=0; i < 12; i++) {if (av[i].a_type==A_LONG)pesos_das_notas[i] = (int) av[i].a_w.w_long;else post("annealing object: wrong list element type");}else if(ac == 5)if (av[i].a_type==A_LONG) {P1 = (int) av[0].a_w.w_long;P2 = (int) av[1].a_w.w_long;P3 = (int) av[2].a_w.w_long;P4 = (int) av[3].a_w.w_long;P5 = (int) av[4].a_w.w_long;} else post("annealing object: wrong list element type");else if(ac == 255)for (i=0; i < 255; i++) {if (av[i].a_type==A_LONG)TENSAO_USUARIO[i] = (int) av[i].a_w.w_long;else post("wrong list element type");}else if(ac==64){for (k=0,i=0; i < 64; i++)if (av[i].a_type==A_LONG) {DURACAO_ADEQUADA[MaxVozes-1][k++] = DURACAO_ADEQUADA[MaxVozes-1][k++] =DURACAO_ADEQUADA[MaxVozes-1][k++] = DURACAO_ADEQUADA[MaxVozes-1][k++] =(int) 8 - av[i].a_w.w_long;} else post("wrong list element type");inicializa(&X);find_best_song(x);out(x,&X);}else post("list of wrong length");RestoreA4();}void out(Esqueleto *x, Partitura *score){int register k = 0, i, j;for(i=0;i<MaxVozes;i++)for(j=0;j<MaxSemiColcheias;j++) 12

{SETLONG(&x->e_av[0],(long)(*score)[i][j].pitch);SETLONG(&x->e_av[1],(long)(*score)[i][j].velocity);SETLONG(&x->e_av[2],(long)(*score)[i][j].start);if (!outlet_list(x->e_out, 0L, (int) 3, x->e_av))post("error while sending data to outlet");}post("Song created");}/*********************** File: principal.c ***************************/#include "maxannea.h"extern fptr *FNS;int P1, P2, P3, P4, P5;Partitura X;float myexp(float x);int myrand();float Esfria(float Temperature){ return(Temperature*0.9);}int Aceita(float Temperature, float Variation){ float aux,P,Q;if (Temperature != 0.0)aux = Variation/Temperature;elseaux = 0;P = 1.0/myexp(-aux);Q = (float)myrand();Q = Q/32767.0;return (Q < P);}Partitura Xmax, Xnovo;int find_best_song(x)Esqueleto *x;{ long Qualidade_max, Qualidade_Atual,Qualidade_Nova, Variacao;float Temperature;int Cont, Iteracoes, Aumentou, i;P1 = P4 = 2; /* Initial weights for the 5 criteria */P5 = 3;P3 = 1;P2 = 1;inicializa(&X); /* Generate initial song */Qualidade_Atual = qualidade(&X);copia(&Xmax,&X);Qualidade_max = Qualidade_Atual;Aumentou = True;Iteracoes = 0;Temperature = 100.0;while (Aumentou) /* While the quality is increasing... */{Cont = MaxIt;Aumentou = False;for(Cont = MaxIt; Cont > 0; Cont--){Iteracoes++; 13

vizinho(&Xnovo, &X); /* Pick a new song in the neighborhood */Qualidade_Nova = qualidade(&Xnovo);Variacao = Qualidade_Nova - Qualidade_Atual;if (Variacao > 0){copia(&X,&Xnovo);Qualidade_Atual = Qualidade_Nova;if (Qualidade_Nova > Qualidade_max){copia(&Xmax, &Xnovo);Qualidade_max = Qualidade_Nova;}Aumentou = True;}else{if (Aceita(Temperature,Variacao)){copia(&X, &Xnovo);Qualidade_Atual = Qualidade_Nova;}}}/* for */Temperature = Esfria(Temperature);}}long semente = 1234567;/* Since the ANSI library used to create external objects does nothave the rand and the exp functions, we had to write our own. */int myrand(){ semente =((semente*1103515245+12345)>>1)&2147483647;return (int) semente&32767;}float myexp(float x){ /* Uses the Taylor Series in order to give a good aproximation ofexp(x) if x is something between 0 and 5. We are using thefollowing expression: (1+x+x*x/2+x*x*x/6+x*x*x*x/24+x*x*x*x*x/120+X^6/720 +X^7/5040 +X^8/40320 +X^9/362880+X^10/3628800);*/return (1.0+x*(1.0+x*(0.5+x*(0.16666667+x*(0.0416667+x*(1.0/120+x*(1.0/720+x*(1.0/5040+x*(1.0/40320+x*(1.0/362880+x*(x/3628800)))))))))));}/*********************** File: quali.c ***************************/#include <stdlib.h>#include "maxannea.h"int TENSAO_USUARIO[MaxSemiColcheias];int tensao(Nota *n1, Nota *n2, Nota *n3, Nota *n4){ static int tensao_intervalar[12] = {0, 10, 7, 6, 5, 2, 9, 1, 4, 3, 8, 11};int t=0;if(n1->pitch != REST){ if(n2->pitch != REST) t+=tensao_intervalar[abs((*n1).pitch - (*n2).pitch)%12];if(n3->pitch != REST) t+=tensao_intervalar[abs((*n1).pitch - (*n3).pitch)%12];if(n4->pitch != REST) t+=tensao_intervalar[abs((*n1).pitch - (*n4).pitch)%12];}if(n2->pitch != REST){ 14

if(n3->pitch != REST) t+=tensao_intervalar[abs((*n2).pitch - (*n3).pitch)%12];if(n4->pitch != REST) t+=tensao_intervalar[abs((*n2).pitch - (*n4).pitch)%12];}if(n3->pitch != REST && n4->pitch != REST)t+=tensao_intervalar[abs((*n3).pitch - (*n4).pitch)%12];return (t);}int cruzamento(Nota *n1, Nota *n2, Nota *n3, Nota *n4){int j=0;if(n1->pitch != REST){ if((*n1).pitch > (*n2).pitch && n2->pitch != REST) j+=n1->pitch - n2->pitch;if((*n1).pitch > (*n3).pitch && n3->pitch != REST) j+=n1->pitch - n3->pitch;if((*n1).pitch > (*n4).pitch && n4->pitch != REST) j+=n1->pitch - n4->pitch;}if(n2->pitch != REST){ if((*n2).pitch > (*n3).pitch && n3->pitch != REST) j+=n2->pitch - n3->pitch;if((*n2).pitch > (*n4).pitch && n4->pitch != REST) j+=n2->pitch - n4->pitch;}if(n3->pitch != REST && n4->pitch != REST && n3->pitch > n4->pitch)j+=n3->pitch - n4->pitch ;return (j);}int salto(int n1, int n2){if(n1 == REST || n2 == REST) return(0);return(abs(n1-n2));}int qualidade(Partitura *X){ long tensao_da_musica = 0, duracao = 0,duracao_voz = 0, cruzamentos = 0,saltos = 0, soma_dos_pesos = 0;int nota_atual = 0, nota_seguinte = 0,semi, dur, voz, numero_de_notas = 0;/* Harmonic Analysis (vertical) */for (semi=0; semi < MaxSemiColcheias; semi++){ tensao_da_musica += abs(tensao(&(*X)[0][semi],&(*X)[1][semi],&(*X)[2][semi],&(*X)[3][semi])-TENSAO_USUARIO[semi]);/* This only works if the song has 4 voices. We must generalizethis in the future */cruzamentos += cruzamento(&(*X)[0][semi],&(*X)[1][semi],&(*X)[2][semi],&(*X)[3][semi]);}/* Horizontal Analysis */for (voz=0; voz < MaxVozes; voz++){semi = 0;duracao_voz = 0;while(semi<MaxSemiColcheias){nota_atual = (*X)[voz][semi].pitch;numero_de_notas++;dur = 1;semi++;while ((*X)[voz][semi].start == 0 && semi<MaxSemiColcheias){ 15

dur++;semi++;}duracao_voz += abs(dur-DURACAO_ADEQUADA[voz][semi-1]);soma_dos_pesos += dur*pesos_das_notas[(nota_atual%12)+1];if(semi<MaxSemiColcheias){nota_seguinte = (*X)[voz][semi].pitch;saltos += salto(nota_atual, nota_seguinte);}}duracao += duracao_voz*(voz+1);}soma_dos_pesos *=10;soma_dos_pesos /= 1024; /* between 0 and 100 */tensao_da_musica *=100;tensao_da_musica /=(MaxSemiColcheias*MaxTensao); /* between 0 and 100 */cruzamentos *=100;cruzamentos /=(MaxSemiColcheias); /* between 0 and 100 */saltos *=10;saltos /= (numero_de_notas); /* between 0 and 100 */duracao *=100;duracao /= (2*MaxVozes*MaxSemiColcheias); /* between 0 and 100 */return ((int)(P1*(100-tensao_da_musica)+P2*(100-cruzamentos)+P3*(30-labs(saltos-30))*33/10+ /* Incentivamos saltos proximosda terca menor */P4*(100-duracao)+P5*soma_dos_pesos));}/*********************** File: buro.c ***************************/#include <stdlib.h>#include <string.h>#include "maxannea.h"int DURACAO_ADEQUADA[MaxVozes][MaxSemiColcheias];int pesos_das_notas[13];int melhor_nota=0;void inicializa (Partitura *X){int i,voz,semi;for (i=0;i<12;i++)if (pesos_das_notas[i] > pesos_das_notas[melhor_nota]) melhor_nota = i;for (voz=0; voz<MaxVozes; voz++)for (semi=0; semi<MaxSemiColcheias; semi++) {if (semi%16==0) {(*X)[voz][semi].pitch = melhor_nota+(voz+3)*12;(*X)[voz][semi].velocity = 100;(*X)[voz][semi].start = 1;}else {(*X)[voz][semi].pitch = melhor_nota+(voz+3)*12;(*X)[voz][semi].velocity = 100;(*X)[voz][semi].start = 0;}}for (semi=0; semi<MaxSemiColcheias; semi++) {DURACAO_ADEQUADA[2][semi] = DURACAO_ADEQUADA[3][semi]<<1;DURACAO_ADEQUADA[1][semi] = DURACAO_ADEQUADA[2][semi]<<1;DURACAO_ADEQUADA[0][semi] = DURACAO_ADEQUADA[1][semi]<<1;} 16

}void copia(Partitura *X, Partitura *Y){ memcpy(X, Y, sizeof(Partitura));}void vizinho (Partitura *Y, Partitura *X)/* Returns in Y, a neighbor of X */{int pitch, duracao, voz, semi, oitava, k, l, i, temp = 1;voz = (int) myrand()&3;semi = (int) myrand()&255;pitch = (int) myrand()%12;temp = (DURACAO_ADEQUADA[voz][semi]<<1)+1;duracao = (int) myrand()%temp;copia(Y, X);if (pitch != REST) {if (semi == 0) i = (*Y)[voz][semi].pitch;else i = (*Y)[voz][semi-1].pitch; /* i is the previous note */if (i == REST) i = melhor_nota+(voz+3)*12;oitava = (int) i/12 -1; /* We choose a pitch near the pitch of i */pitch += oitava*12; /* preserving the selected pitch class. */while (abs(i-pitch) > 6)if (i > pitch) pitch += 12;else pitch-= 12;while(pitch < 36) pitch +=12;while(pitch > 96) pitch -=12;}(*Y)[voz][semi].pitch = pitch;(*Y)[voz][semi].velocity = 100;(*Y)[voz][semi].start = 1;for(k=1; k<duracao && semi+k<MaxSemiColcheias; k++) {(*Y)[voz][semi+k].pitch = pitch;(*Y)[voz][semi+k].velocity = 100;(*Y)[voz][semi+k].start=0;}if (semi+duracao<MaxSemiColcheias && !(*Y)[voz][semi+duracao].start)(*Y)[voz][semi+duracao].start = 1;}References[1] Kirkpatrick S., C.D. Gelatt Jr. and M.P. Vecchi. \Optimization by simulated annealing", Science,220, pp. 671-680, 1983.[2] Roads, Curtis, \Interview with Marvin Minsk", Computer Music Journal, 4 (3), 1980.[3] Ames, Charles, \Protocol: Motivation, Design, and Production of a Composition for Solo Piano",Interface, 11, pp. 213-238, 1982.[4] Schottstaedt, W. \Automatic Counterpoint", Currents Directions in Computer Music Research, MaxMathews and John Pierce (Eds.). Cambridge: The MIT Press, 1989.[5] Puckett, M., D. Zicarelli,MAX - An Interactive Graphic Programming Environment, Opcode Systems,Menlo Park, CA, 1990.[6] Mitra, D., Romeo, F., Sangiovanni-Vicentinelli, Alberto, \Convergence and Finite-Time Behavior ofSimulated Annealing", Advanced Applied Probability, 18, pp. 747-771, 1986.17

