
 1

TTHHEE NNAAVVIIGGAATTIIOONN PPLLAANN DDEEFFIINNIITTIIOONN LLAANNGGUUAAGGEE ((NNPPDDLL)) SSYYNNTTAAXX

TECHNICAL REPORT

Kelly Rosa Braghetto1, Osvaldo K. Takai1, João Eduardo Ferreira1, Calton Pu2

1 Department of Computer Science,

University of São Paulo
Rua do Matão, 1010 - Cidade Universitária

05508-090 São Paulo - SP – Brasil
e-mail: {kellyrb, takai, jef}@ime.usp.br

2College of Computing,
Georgia Institute of Technology

801 Atlantic Drive, Atlanta GA 30332-0280 – USA
e-mail: calton@cc.gatech.edu

1. Introduction

The Navigation Plan Definition Language uses the main concepts of RiverFish

Architecture [2][3] and Process Algebra [4] to represent processes. According to Process

Algebra, the behavior of a system can be modeled as algebraic expressions. These

expressions are formed by atomic actions composed by operators that indicate the

execution order of these actions. RiverFish Architecture proposes a relational structure to

maintain processes, processes instances and execution log data.

The NPDL language defines commands to create, delete and update processes in a

relational database. As in Process Algebra, in NPDL processes are defined by algebraic

expressions involving mainly actions and operators. NPDL implements the most important

operators of Process Algebra. NPDL defines also other operators that model frequent

behaviors in workflow processes that are difficult do map only with Process Algebra

operators.

 2

2. NPDL Syntax

Consider that the grammar of NPDL language is represented by (N, T, P, S), where

N is the set of variable (non terminal) symbols; T is the set of terminal symbols; P is the set

of grammar production rules and S is the starting variable from N.

The NPDL obeys the following properties:

1) S ∈ N

2) N = { action-description, add-action-execution-call, add-function-execution-call,

add-process-service-description, add-rule-execution-call, choice-operator-sign,

command, condition, deadlock-symbol, delete-action, delete-function, delete-

process, delete-rule, discriminator-operator-sign, execution-call, factor, function-

description, function-limited-repetition, interleaved-parallel-operator-sign, left-

parentheses, limited-repetition, list-actions, list-functions, list-navigation-plan, list-

processes, list-rules, multi-merge-sign, new-action, new-function, new-process,

new-rule, parallel-operator-sign, process, process-description, process-expression,

right-parentheses, S, service-description, sequential-operator-sign, term, rule-

description, unlimited-repetition}

3) T = {ACTION, ACTIONS, ADD, CALL, CREATE, DESCRIPTION, DROP,

EXECUTION, FROM, FUNCTION, FUNCTIONS, NAVIGATION, PLAN,

PROCESS, PROCESSES, RULE, RULES, SELECT, SERVICE, SET, \n, (,) , = ,

. , +, ^, || , |*, #, *, ?, &, %, %!}

4) The set P is generated through the production rules described in BNF (Backus-

Naur Form) format in Table 1.

Table 1: NPDL Production Rules

<S> ::= (<command>? \n)+

<command> ::= <new-action>

| <new-function>

| <new-process>

| <new-rule>

| <add-action-execution-call>

| <add-function-execution-call>

 3

| <add-process-service-description>

| <add-rule-execution-call>

| <delete-action>

| <delete-function>

| <delete-process>

| <delete-rule>

| <process-expression>

 | <list-actions>

| <list-functions>

 | <list-rules>

| <list-processes>

 | <list-navigation-plan>

<new-process> ::= CREATE PROCESS <process-description>

 [<service-description>]

<new-action> ::= CREATE ACTION <action-description>

 [<execution-call>]

<new-function> ::= CREATE FUNCTION <function-description>

 [<execution-call>]

<new-rule> ::= CREATE RULE <rule-description>

 [<execution-call>]

<add-process-service-description> ::= ADD <process-description>

 SERVICE DESCRIPTION <service-description>

<add-action-execution-call> ::= ADD <action-description>

 EXECUTION CALL <execution-call>

<add-function-execution-call> ::= ADD <function-description>

 EXECUTION CALL <execution-call>

<add-rule-execution-call> ::= ADD <rule-description>

 EXECUTION CALL <execution-call>

<process-expression> ::= SET <process-description> = <process>

<delete-process> ::= DROP PROCESS <process-description>

<delete-action> ::= DROP ACTION <action-description>

<delete-function> ::= DROP FUNCTION <function-description>

<delete-rule> ::= DROP RULE <rule-description>

<list-processes> ::= SELECT PROCESSES

<list-actions> ::= SELECT ACTIONS

<list-functions> ::= SELECT FUNCTIONS

<list-rules> ::= SELECT RULES

<list-navigation-plan> ::= SELECT NAVIGATION PLAN FROM PROCESS

 4

 <process-description>

<left-parentheses> ::= (

<right-parentheses> ::=)

<choice-operator-sign> ::= +

<sequential-operator-sign> ::= .

<parallel-operator-sign> ::= ||

<interleaved-parallel-operator-sign> ::= |*

<multi-merge-operator-sign> ::= &

<discriminator-operator-sign> ::= ^

<deadlock-symbol> ::= #

<unlimited-repetition> := ?*

<limited-repetition> := ? <unsigned_integer>
1

<function-limited-repetition> := ? <function>

<condition> := % <rule>

<not-condition> := %! <rule>

<process> ::= <term>

 | <process> <choice-operator-sign> <term>

<term> ::= <subterm>

 | <term> <interleaved-parallel-operator-sign> <s ubterm>

<subterm> ::= <prefactor>

 | <subterm> <parallel-operator-sign> <prefactor>

<prefactor> ::= <factor>

 | <prefactor> <sequential-operator-sign> <factor>

<factor> ::= <subfactor>

 | <factor> <multi-merge-operator-sign> <subfacto r>

 | <factor> <discriminator-operator-sign> <subfact or>

<subfactor> ::= <action>

 | <process-description>

 | <process>

 | <deadlock-symbol>

 | <left-parentheses> <process> <right-parentheses >

 | <subfactor><unlimited-repetition>

 | <subfactor><limited-repetition>

 | <subfactor><function-limited-repetition>

 | <condition><subfactor>

1 <unsigned_integer> is defined in ANSI SQL92 BNF spec ification.

 5

 | <not-condition><subfactor>

<action> ::= <action-description>

<rule> ::= <rule-description>

<function> ::= <function-description>

<action-description> ::= <identifier> 2

<rule-description> ::= <identifier>

<process-description> ::= <identifier>

<service-description> ::= <character_string_literal> 3

<execution-call> ::= <character_string_literal>

The draft version of NPDL was presented in [1] and had only three composition

operators: sequential composition (•), alternative composition (+) and parallel composition

(||). With these operators it is possible specify only basic control-flow structures. The BNF

presented in this document corresponds to final version of NPDL, which was extended with

additional operators that enable NPDL to specify frequent behaviors of control-flows.

Examples of NPDL commands:

CREATE RULE R1 ‘VerifyPurchasingForm’;
CREATE ACTION A1 ‘ProcessPurchasing’;
CREATE ACTION A2 ‘ApplyDiscount’;
CREATE ACTION A3 ‘PrintReceipt’;
CREATE PROCESS P1 ‘Purchasing Control Process’;
SET P1 = %R1 A1 . (A2.A3 + A2);

2 <identifier> is defined in ANSI SQL92 BNF specific ation.
3 <character_string_literal> is defined in ANSI SQL92 BNF specification.

 6

References

[1] K. R. Braghetto, O. K. Takai, J.E, Ferreira, C.PU. NavigationPlanTool: Uma

Ferramenta para o Controle de Processos no Modelo de Dados Relacional. Accepted for

DEMO section in SBBD2005.

http://www.sbbd-sbes2005.ufu.br/arquivos/NavPlanTool.pdf

[2] J. E. Ferreira, O. K. Takai, C. Pu. Integration of Business Processes with Autonomous

Information Systems: A Case Study in Government Services. In: 7th International IEEE

[3] J.E. Ferreira; O.K. Takai; C. Pu. Integration of Collaborative Information System in

Internet Applications using RiverFish Architecture. Accepted for International

Conference on Collaborative Computing: Networking, Applications and Work sharing,

2005, San Jose. USA.

[4] W.J. Fokkink, Introduction o Process Algebra. Texts in Theoretical Computer Science.

Springer-Verlag, Berlin, 2000.

