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In this paper epistemological, ontological and sociological questions concerning the statistical
significance of sharp hypotheses in scientific research are investigated within the framework
provided by Cognitive Constructivism and the FBST (Full Bayesian Significance Test). The
constructivist framework is contrasted with the traditional epistemological settings for orthodox
Bayesian and frequentist statistics provided by Decision Theory and Falsificationism. 
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1 Introduction

 

In this paper, a few epistemological, ontological and sociological questions
concerning the statistical significance of sharp hypotheses in the scientific context are
investigated within the framework provided by cognitive constructivism, or the
constructivist theory as presented in Maturana and Varela (1980), Foerster (2003) and
Luhmann (1989, 1990a, 1990b, 1995). Several conclusions of the study, however,
remain valid, mutatis mutandis, within various other organizations and systems, see
for example Bakken and Hernes (2002), Christis (2001), Mingers (2000), and Rasch
(1998).

The author’s interest in this research topic emerged from his involvement in the
development of the Full Bayesian Significance Test (FBST), a novel Bayesian solution
to the statistical problem of measuring the support of sharp hypotheses, first presented
in Pereira and Stern (1999). The problem of measuring the support of sharp
hypotheses poses several conceptual and methodological difficulties for traditional
statistical analysis under both the frequentist (classical) and the orthodox Bayesian
approaches. The solution provided by the FBST has significant advantages over
traditional alternatives, in terms of its statistical and logical properties. Since these
properties have already been thoroughly analyzed in previous papers (see references),
the focus herein is directed exclusively to epistemological and ontological questions.
Despite the fact that the FBST is fully compatible with decision theory, as shown in
Madruga, Esteves, & Wechsler (2001), which, in turn, provides a strong and coherent
epistemological framework to orthodox Bayesian Statistics, its logical properties open
the possibility of using and benefiting from alternative epistemological settings. In this
article, the epistemological framework of constructivist theory is counterpoised to that
of decision theory. The contrast, however, is limited in scope by our interest in
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statistics and is carried out in a rather exploratory an non exhaustive form. The
epistemological framework of constructivist theory is also counterpoised to that of
falsificationism, the epistemological framework within which classical frequentist
statistical test of hypotheses are often presented, as shown in Boyd (1991) and Popper
(1959, 1963). 

In section 2, the fundamental notions of autopoiesis and eigen-solutions in
autopoietic systems are reviewed. In section 3, the same is done with the notions of
social systems and functional differentiation and in section 4, a constructivist theory
view of science is presented. In section 5, the material presented in sections 2, 3 and 4
is related to the statistical significance of sharp scientific hypotheses and the findings
therein are counterpoised to traditional interpretations such as those of decision
theory. In section 6, a few sociological analyses for differentiation phenomena are
reviewed. In sections 7 and 8, the final conclusions are established. 

In sections 2, 3, 4, and 6, well established concepts of the constructivist theory are
presented. However, in order to overcome an unfortunately common scenario, an
attempt is made to make them accessible to a scientist or statistician who is somewhat
familiar with traditional frequentist, and decision-theoretic statistical interpretations,
but unfamiliar with the constructivist approach to epistemology. Rephrasing these
concepts (once again) is also avoided. Instead, quoting the primary sources is
preferred whenever it can be clearly (in our context) and synthetically done. The
contributions in sections 5, 7 and 8, relate mostly to the analysis of the role of
quantitative methods specifically designed to measure the statistical support of sharp
hypotheses. A short review of the FBST is presented in Appendix A. 

 

2 Autopoiesis and Eigen-Solutions

 

The concept of autopoiesis tries to capture an essential characteristic of living
organisms (auto=self, poiesis=production). Its purpose and definition are stated by
Maturana and Varela: 

 

Our aim was to propose the characterization of living systems that explains the generation of all the
phenomena proper to them. We have done this by pointing at Autopoiesis in the physical space as a
necessary and sufficient condition for a system to be a living one. (Maturana & Varela, 1980, p. 84). 
 
An autopoietic system is organized (defined as a unity) as a network of processes of production
(transformation and destruction) of components that produces the components which: (i) through
their interactions and transformations continuously regenerate and realize the network of processes
(relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in the space in
which they (the components) exist by specifying the topological domain of its realization as such a
network. (Maturana & Varela, 1980, pp. 78-79). 

 

Autopoietic systems are non-equilibrium (dissipative) dynamical systems
exhibiting (meta) stable structures, whose organization remains invariant over (long
periods of) time, despite the frequent substitution of their components. Moreover,
these components are produced by the same structures they regenerate. For example,
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the macromolecular population of a single cell can be renewed thousands of times
during its lifetime, see Bertalanffy (1969). The investigation of these regeneration
processes in the autopoietic system production network leads to the definition of
cognitive domain, as stated in Maturana and Varela (1980, p. 10): 

 

The circularity of their organization continuously brings them back to the same internal state (same
with respect to the cyclic process). Each internal state requires that certain conditions (interactions
with the environment) be satisfied in order to proceed to the next state. Thus the circular
organization implies the prediction that an interaction that took place once will take place again. If
this does not happen the system maintains its integrity (identity with respect to the observer) and
enters into a new prediction. In a continuously changing environment these predictions can only be
successful if the environment does no change in that which is predicted. Accordingly, the predictions
implied in the organization of the living system are not predictions of particular events, but of
classes of inter-actions. Every interaction is a particular interaction, but every prediction is a
prediction of a class of interactions that is defined by those features of its elements that will allow
the living system to retain its circular organization after the interaction, and thus, to interact again.
This makes living systems inferential systems, and their domain of interactions a cognitive domain. 

 

The characteristics of this circular (cyclic or recursive) regenerative processes and
their eigen (auto, equilibrium, fixed, homeostatic, invariant, recurrent, recursive)
-states, both in concrete and abstract autopoietic systems, are further investigated in
Foerster (2003) and Segal (2001): 

 

The meaning of recursion is to run through one’s own path again. One of its results is that under
certain conditions there exist indeed solutions which, when reentered into the formalism, produce
again the same solution. These are called “eigen-values,” “eigen-functions,” “eigen-behaviors,” etc.,
depending on which domain this formation is applied – in the domain of numbers, in functions, in
behaviors, etc. (Segal, 2001, p. 145). 

 

The concept of eigen-solution for an autopoietic system is the key to distinguish
specific objects in a cognitive domain. Von Foerster also establishes several essential
properties of eigen-solutions that will support the analyses conducted in this paper and
conclusions established herein: 

 

Objects are tokens for eigen-behaviors. Tokens stand for something else. In exchange for money (a
token itself for gold held by one’s government, but unfortunately no longer redeemable), tokens are
used to gain admittance to the subway or to play pinball machines. In the cognitive realm, objects
are the token names we give to our eigen-behavior. This is the constructivist’s insight into what takes
place when we talk about our experience with objects. (Segal, 2001, p. 127). 

Eigenvalues have been found ontologically to be discrete, stable, separable and composable, while
ontogenetically to arise as equilibria that determine themselves through circular processes.
Ontologically, Eigenvalues and objects, and likewise, ontogenetically, stable behavior and the
manifestation of a subject’s “grasp” of an object cannot be distinguished. (Foerster, 2003, p. 266). 

 

The arguments used in this study rely heavily on two qualitative properties of eigen-
solutions, referred by von Foerster by the terms 

 

discrete

 

 and 

 

equilibria

 

. In what
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follows, the meaning of these qualifiers, as they are understood by von Foerster and
used herein, are examined: 

a.  Discrete (or sharp): 

 

There is an additional point I want to make, an important point. Out of an infinite continuum of
possibilities, recursive operations carve out a precise set of discrete solutions. Eigen-behavior
generates discrete, identifiable entities. Producing discreteness out of infinite variety has incredibly
important consequences. It permits us to begin naming things. Language is the possibility of carving
out of an infinite number of possible experiences those experiences which allow stable interactions
of your-self with yourself. (Segal, 2001, p. 128). 

 

It is important to realize that, in the sequel, the term 

 

discrete

 

, used by von Foerster
to qualify eigen-solutions in general, should be replaced, depending on the specific
context, by terms such as lower-dimensional, precise, sharp, singular etc. Even in the
familiar case of linear algebra, if we define the eigen-vectors corresponding to a
singular eigen-value 

 

c 

 

of a linear transformation 

 

T

 

( ) only by its essential property of
directional invariance, 

 

T

 

 (

 

x

 

) = 

 

cx

 

, we obtain one dimensional sub-manifolds which, in
this case, are subspaces or lines trough the origin. Only if we add the usual (but non
essential) normalization condition, ||

 

x

 

|| = 1, do we get discrete eigen-vectors. 

b.  Equilibria (or stable): 
A stable eigen-solution of the operator 

 

Op

 

( ), defined by the fixed-point or
invariance equation, 

 

x

 

inv 

 

= 

 

Op

 

(

 

x

 

inv

 

), can be found, built or computed as the limit, 

 

x

 

∞

 

,
of the sequence {

 

x

 

n

 

}, defined by recursive application of the operator, 

 

x

 

n

 

+1 

 

= 

 

Op

 

(

 

x

 

n

 

).
Under appropriate conditions, such as within a domain of attraction, the process
convergence and its limit eigen-solution will not depend on the starting point, 

 

x

 

0

 

. In
the linear algebra example, using almost any staring point, the sequence generated by
the recursive relation 

 

x

 

n

 

+1 

 

= 

 

T

 

(

 

x

 

n

 

)/||

 

T

 

(

 

x

 

n

 

)|| that is the application of 

 

T

 

 followed by
normalization, converges to the unitary eigen-vector corresponding to the largest
eigen-value. 

In sections 4 and 5 it is shown, for statistical analysis in a scientific context, how
the property of sharpness indicates that many, and perhaps some of the most relevant,
scientific hypotheses are sharp, and how the property of stability, indicates that
considering these hypotheses is natural and reasonable. The statistical consequences
of these findings will be discussed in sections 7 and 8. Before that, however, a few
other constructivist theory concepts must be introduced in sections 3 and 6.

Autopoiesis found its name in the work of Maturana and Varela (1980), together
with a simple, powerful and elegant formulation using the modern language of
system’s theory. Nevertheless, some of the basic theoretical concepts, such as those of
self-organization and autonomy of living organisms, have long historical grounds that
some authors trace back to Kant. As seen in Kant (1790, sec. 65) for example, an

 

organism

 

 is characterized as one in which, 
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every part is thought as ‘owing’ its presence to the ‘agency’ of all the remaining parts, and also as
existing ‘for the sake of the others’ and of the whole, that is as an instrument, or organ. 

Its parts must in their collective unity reciprocally produce one another alike as to form and
combination, and thus by their own causality produce a whole, the conception of which,
conversely,—in a being possessing the causality according to conceptions that is adequate for such a
product—could in turn be the cause of the whole according to a principle, so that, consequently, the
nexus of ‘efficient causes’ (progressive causation, nexus effectivus) might be no less estimated as an
‘operation brought about by final causes’ (regressive causation, nexus finalis).

 

For further historical comments we refer the reader to Zeleny (1980). 

 

3 Functional Differentiation

 

In order to give appropriate answers to environmental complexities, autopoietic
systems can be hierarchically organized as Higher Order Autopoietic Systems. As in
Maturana and Varela (1980), this notion is defined via the concept of Coupling: 

 

Whenever the conduct of two or more units is such that there is a domain in which the conduct of
each one is a function of the conduct of the others, it is said that they are coupled in that domain.
(p. 107)

An autopoietic system whose autopoiesis entails the autopoiesis of the coupled autopoietic units
which realize it, is an autopoietic system of higher order. (p. 109)

 

A typical example of a hierarchical system is a 

 

beehive

 

, a third order autopoietic
system, formed by the coupling of 

 

individual bees

 

, the second order systems, which,
in turn, are formed by the coupling of 

 

individual cells

 

, the first order systems. 
The philosopher and sociologist Niklas Luhmann applied this notion to the study

of modern human societies and its systems. Luhmann’s basic abstraction is to look at
social systems only at its higher hierarchical level, in which it is seen as an autopoietic
communications network. In Luhmann’s terminology, a communication event consists
of: 

 

utterance

 

, the form of transmission; 

 

information

 

, the specific content; and

 

understanding

 

, the relation to future events in the network, such as the activation or
suppression of future communications. 

 

Social systems use communication as their particular mode of autopoietic (re)production. Their
elements are communications that are recursively produced and reproduced by a network of
communications that are not living units, they are not conscious units, they are not actions. Their
unity requires a synthesis of three selections, namely information, utterance and understanding
(including misunderstanding). (Luhmann, 1990b, p. 3). 

 

For Luhmann, society’s best strategy to deal with increasing complexity is the
same as one observes in most biological organisms, namely, differentiation. Biological
organisms differentiate in specialized systems, such as organs and tissues of a

 

pluricellular

 

 life form (non-autopoietic or allopoietic systems), or specialized
individuals in an insect colony (autopoietic system). In fact, societies and organisms
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can be characterized by the way in which they differentiate into systems. For
Luhmann, modern societies are characterized by a vertical differentiation into
autopoietic functional systems, where each system is characterized by its code,
program and (generalized) media. The code gives a bipolar reference to the system, of
what is positive, accepted, favored or valid, versus what is negative, rejected,
disfavored or invalid. The program gives a specific context where the code is applied,
and the media is the space in which the system operates.

Standard examples of social systems are: 

• Science: with a true/false code, working in a program set by a scientific 
theory, and having articles in journals and proceedings as its media; 

• Judicial: with a legal/illegal code, working in a program set by existing laws 
and regulations, and having certified legal documents as its media; 

• Religion: with a good/evil code, working in a program set by sacred and 
hermeneutic texts, and having study, prayer and good deeds as its media; 

• Economy: with a property/lack thereof code, working in a program set by 
economic planning scenarios and pricing methods, and having money and 
money-like financial assets as its media. 

Before ending this section, a notion related to the break-down of autopoiesis is
introduced: 

 

Dedifferentiation

 

 (Entdifferenzierung) is the degradation of the system’s
internal coherence, through adulteration, disruption, or dissolution of its own
autopoietic relations. One form of dedifferentiation (in either biological or social
systems) is the system’s penetration by external agents who try to use system’s
resources in a way that is not compatible with the system’s autonomy. In Luhmann’s
conception of modern society each system may be aware of events in other systems,
that is, be cognitively open, but is required to maintain its differentiation, that is, be
operationally closed. 

 

4. Eigen-Solutions and Scientific Hypotheses

 

The interpretation of scientific knowledge as an eigensolution of a research process is
part of a constructivistic approach to epistemology. Figure 1 presents an idealized
structure and dynamics of knowledge production. This diagram represents, on the
Experiment side (left column) the laboratory or field operations of an empirical
science, where experiments are designed and built, observable effects are generated
and measured, and the experimental data bank is assembled. On the Theory side (right
column), the diagram represents the theoretical work of statistical analysis,
interpretation and (hopefully) understanding according to accepted patterns. If
necessary, new hypotheses (including whole new theories) are formulated, motivating
the design of new experiments. Theory and experiment constitute a double feed-back
cycle making it clear that the design of experiments is guided by the existing theory
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and its interpretation, which, in turn, must be constantly checked, adapted or modified
in order to cope with the observed experiments. The whole system constitutes an
autopoietic unit, as seen in Krohn and Küppers: 

 

The idea of knowledge as an eigensolution of an operationally closed combination between
argumentative and experimental activities attempts to answer the initially posed question of how the
construction of knowledge binds itself to its construction in a new way. The coherence of an
eigensolution does not refer to an objectively given reality but follows from the operational closure
of the construction. Still, different decisions on the selection of couplings may lead to different,
equally valid eigen-solutions. Between such different solutions no reasonable choice is possible
unless a new operation of knowledge is constructed exactly upon the differences of the given
solutions. But again, this frame of reference for explicitly relating different solutions to each other
introduces new choices with respect to the coupling of operations and explanations. It does not
reduce but enhances the dependence of knowledge on decisions. On the other hand, the internal
restrictions imposed by each of the chosen couplings do not allow for any arbitrary construction of
results. Only few are suitable to mutually serve as inputs in a circular operation of knowledge.
(1990, p. 214)

 

Figure 1: Scientific Production Diagram. 

 

5. Sharp Statistical Hypotheses

 

Statistical science is concerned with inference and application of probabilistic models.
From what has been presented in the preceding sections, it becomes clear what the
role of statistics in scientific research is, at least in the constructivist theory view of
scientific research: Statistics has a dual task, to be performed both in the Theory and
the Experiment sides of the diagram in Figure 1: 

• At the Experiment side of the diagram, the task of statistics is to make 
probabilistic statements about the occurrence of pertinent events, that is describe 

Experiment Theory

Experiment ⇐ Operation- ⇐ Hypotheses
design alization formulation

⇓ ⇑
Effects false / true Inter-

observation eigen-solution pretation
⇓ ⇑

Data Statistical
acquisition ⇒ Explanation ⇒ analysis

Sample space Parameter space
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probabilistic distributions for what, where, when or which events can occur. If the 
events are to occur in the future, these descriptions are called predictions, as is 
often the case in the natural sciences. It is also possible (more often in social 
sciences) to deal with observations related to past events, that may or may not be 
experimentally generated or repeated, imposing limitations to the quantity and/or 
quality of the available data. Even so, the habit of calling this type of statement 
“predictive probabilities” will be maintained. 

• At the Theory side of the diagram, the role of statistics is to measure the statistical 
support of hypotheses, that is to measure, quantitatively, the hypotheses 
plausibility or possibility in the theoretical framework where they were 
formulated, given the observed data. From the material presented in the preceding 
sections, it is also clear that, in this role, statistics is primarily concerned with 
measuring the statistical support of sharp hypotheses, for hypotheses sharpness 
(precision or discreteness) is an essential characteristic of eigen-solutions. 

Let us now examine how well the traditional statistical paradigms, and in contrast
the FBST, are able to take care of this dual task. In order to examine this question, the
first step is to distinguish what kind of probabilistic statements can be made. We make
use of tree statement categories: frequentist, epistemic and Bayesian: 

Frequentist probabilistic statements are made exclusively on the basis of the
frequency of occurrence of an event in a (potentially) infinite sequence of observations
generated by a random variable. 

Epistemic probabilistic statements are made on the basis of the epistemic status
(degree of belief, likelihood, truthfulness, validity) of an event from the possible
outcomes generated by a random variable. This generation may be actual or potential,
that is, may have been realized or not, may be observable or not, may be repeated an
infinite or finite number of times. Bayesian probabilistic statements are epistemic
probabilistic statements generated by the (in practice, always finite) recursive use of
Bayes formula: 

In standard models, the parameter 

 

θ

 

, a non observed random variable, and the
sample 

 

x

 

, an observed random variable, are related through their joint probability
distribution, 

 

p

 

(

 

x, 

 

θ

 

). The prior distribution, 

 

p

 

0

 

(

 

θ

 

), is the starting point for the
Bayesian recursion operation. It represents the initial available information about 

 

θ

 

. In
particular, the prior may represent no available information, like distributions obtained
via the maximum entropy principle, see Dugdale (1996) and Kapur (1989). The
posterior distribution, 

 

p

 

n

 

(

 

θ

 

), represents the available information on the parameter
after the n-th “learning step,” in which Bayes formula is used to incorporate the
information carried by observation 

 

x

 

n

 

. Because of the recursive nature of the
procedure, the posterior distribution in a given step is used as prior in the next step. 
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Frequentist statistics dogmatically demands that all probabilistic statements be
frequentist. Therefore, any direct probabilistic statement on the parameter space is
categorically forbidden. Scientific hypotheses are epistemic statements about the
parameters of a statistical model. Hence, frequentist statistics can not make any direct
statement about the statistical significance (truthfulness) of hypotheses. Strictly
speaking it can only make statements at the Experiment side of the diagram. The
frequentist way of dealing with questions on Theory side of the diagram, is to embed
them some how into the Experiment side. One way of doing this is by using a
construction in which the whole data acquisition process is viewed as a single
outcome of an imaginary infinite meta random process, and then make a frequentist
statement, on the meta process, about the frequency of unsatisfactory outcomes of
some incompatibility measure of the observed data bank with the hypothesis. This is
the classic (and often forgotten) rationale used when stating a p-value. So we should
always speak of the p-value of the data bank (not of the hypothesis). The resulting
conceptual confusion and frustration (for most working scientists) with this kind of
convoluted reasoning is captured by a wonderful parody of Galileo’s dialogues in
Rouanet et al. (1998). 

A p-value is the probability of getting a sample that is more extreme than the one
we got. We should therefore specify which criterion is used to define what we mean by
more extreme, that is, how do we order the sample space, and usually there are several
possible criteria to do that (e.g., Pereira & Wechsler, 1993). 

Figure 2: Independence Hypothesis, n=16 
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Figure 2 compares four statistics, namely, orthodox Bayesian posterior
probabilities, Neyman-Pearson-Wald (NPW) p-values, Chi-square approximate p-
values, and the FBST evidence value in favor of 

 

H

 

. In this example 

 

H

 

 is the
independence hypothesis in a 

 

2 x 2

 

 contingency table, for sample size 

 

n 

 

= 16, that is: 

The horizontal axes shows the “diagonal asymmetry” statistics (difference
between the diagonal products). The statistic 

 

D

 

 is an estimator of an unormalized
version of Pearson correlation coefficient, 

 

p

 

. For detailed explanations see Irony et al.
(1995, 2000), Stern and Zacks (2002), and Madruga, Pereira, and Stern (2003). 

Samples that are “perfectly compatible with the hypothesis,” that is, having no
asymmetry, are near the center of the plot, with increasingly incompatible samples to
the sides. The envelope curve for the resulting FBST e-values, to be commented later
in this section, is smooth (differentiable) and therefore level at its maximum, where it
reaches the value 1. In contrast the envelope curves for the p-values take the form of a
cusp, that is a pointed curve, that is broken (non differentiable) at its maximum, where
it also reaches the value one. The acuteness of the cusp also increases with increasing
sample size. In the case of NPW p-values we see, at the top of the cusp, a 

 

ladder

 

 or
spike, with several samples with no asymmetry, but having different outcome
probabilities, “competing” for the higher p-value. 

This is a typical collateral effect of the artifice that converts a question about the
significance of 

 

H

 

, asking for a probability in the parameter space as an answer, into a
question, conditional on 

 

H

 

 being truth, about the outcome probability of the observed
sample, offering a probability in the sample space as an answer. This qualitative
analysis of the p-value methodology gives us an insight on the frequent abuses of
expressions like “increase sample size to reject.” In the words of I. J. Good (1983,
p. 135): 

 

Very often the statistician doesn’t bother to make it quite clear whether his null hypothesis is
intended to be sharp or only approximately sharp. ... It is hardly surprising then that many Fisherians
(and Popperians) say that you can’t get (much) evidence in favor of the null hypothesis but can only
refute it. 
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In Bayesian statistics we are allowed to make probabilistic statements on the
parameter space, and also, of course, in the sample space. Thus it seems that Bayesian
statistics is the right tool for the job, and so it is! Nevertheless, we must first examine
the role played by decision theory in orthodox Bayesian statistics. Since the
pioneering work of de Finetti, Savage and many others, orthodox Bayesian Statistics
has developed strong and coherent foundations grounded on decision theory, where
many basic questions could be successfully analyzed and solved. 

This foundations can be stratified in two layers: 

• In the first layer, decision theory provides a coherence system for the use of 
probability statements, in the sense of Finetti (1974, 1981, 1991). In this context, 
the FBST use of probability theory is fully compatible with decision theory, as 
shown in Madruga et al. (2001). 

• In the second layer, decision theory provides an epistemological framework for 
the interpretation of statistical procedures. The FBST logical properties open the 
possibility of using and benefiting from alternative epistemological settings such 
as constructivist theory. Hence, decision theory does not have to be “the tool for 
all trades.” 

We claim that, in the specific case of statistical procedures for measuring the
support (significance tests) for sharp scientific hypotheses, constructivist theory
provides a more adequate epistemological framework than decision theory. This point
is as important as it is subtle. In order to understand it let us first remember the
orthodox paradigm, as it is concisely stated in Dubins and Savage (1965, 12.8). In a
second quote, from Savage (1954, 16.3) we find that sharp hypotheses, even if
important, make little sense in this paradigm, a position that is accepted throughout
decision theoretic Bayesian statistics, as can also be seen in Levi (1974) and Maher et
al. (1993). 

 

Gambling problems in which the distributions of various quantities are prominent in the description
of the gambler’s fortune seem to embrace the whole of theoretical statistics according to one view
(which might be called the decision-theoretic Bayesian view) of the subject. … From the point of
view of decision-theoretic statistics, the gambler in this problem is a person who must ultimately act
in one of two ways (the two guesses), one of which would be appropriate under one hypothesis (

 

H

 

0

 

)
and the other under its negation (

 

H

 

1

 

). … Many problems, of which this one is an instance, are
roughly of the following type. A person’s opinion about unknown parameters is described by a
probability distribution; he is allowed successively to purchase bits of information about the
parameters, at prices that may depend (perhaps randomly) upon the unknown parameters
themselves, until he finally chooses a terminal action for which he receives an award that depends
upon the action and parameters. (Durbins & Savage, 1965, sec.12.8, p.229-230)

I turn now to a different and, at least for me, delicate topic in connection with applications of the
theory of testing. Much attention is given in the literature of statistics to what purport to be tests of
hypotheses, in which the null hypothesis is such that it would not really be accepted by anyone. ...
extreme (sharp) hypotheses, as I shall call them... The unacceptability of extreme (sharp) null
hypotheses is perfectly well known; it is closely related to the often heard maxim that science
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disproves, but never proves, hypotheses, The role of extreme (sharp) hypotheses in science and other
statistical activities seems to be important but obscure. In particular, though I, like everyone who
practice statistics, have often “tested” extreme (sharp) hypotheses, I cannot give a very satisfactory
analysis of the process, nor say clearly how it is related to testing as defined in this chapter and other
theoretical discussions. (Savage, 1954, sec.16.3, p.254). 

 

As it is clearly seen, in the decision theory framework we speak about the betting
odds for “the hypothesis wining on a gamble taking place in the parameter space.” But
since sharp hypotheses are zero (Lebesgue) measure sets, our betting odds must be
null, that is sharp hypotheses must be (almost surely) false. If we accept the
constructivist theory view that an important class of hypotheses concern the
identification of eigen-solutions, and that those are ontologically sharp, we have a
paradox! 

From these considerations it is not surprising that frequentist and decision theory
orthodoxy consider sharp hypotheses, at best as anomalous crude approximations
used when the scientist is incapable of correctly specifying error bounds, cost, loss or
utility functions, etc., or then just consider them to be just plain silly. In the words of
D. Williams (2002, p. 234):

 

Bayesian significance of sharp hypothesis: a plea for sanity: … It astonishes me therefore that some
Bayesian now assign non-zero prior probability that a sharp hypothesis is exactly true to obtain
results which seem to support strongly null hypotheses which frequentists would very definitely
reject. (Of course, it is blindingly obvious that such results must follow). 

 

But no matter how many times statisticians reprehend scientist for their sloppiness
and incompetence, they keep formulating sharp hypotheses, as if they where
magnetically attracted to them. From the constructivist theory plus FBST perspective
they are, of course, just doing the right thing! 

Decision theoretic statistics has also developed methods to deal with sharp
hypotheses, posting sometimes a scary caveat emptor for those willing to use them.
The best known of such methods are Jeffreys’ tests, based on Bayes Factors, assigning
a positive prior probability mass on the sharp hypothesis. This positive prior mass is
supposed to work like a handicap system designed to balance the starting odds and
make the game “fair.” Out of that we only get new paradoxes, like the well
documented Lindley’s paradox. In opposition to its frequentist counterpart, this is an
“increase sample size to accept” effect, see Shafer (1982). 

The FBST e-value or evidence value supporting the hypothesis, ev(

 

H

 

), was
specially designed to effectively evaluate the support for a sharp hypothesis, 

 

H

 

. This
support function is based on the posterior probability measure of a set called the
tangential set, 

 

T

 

(

 

H

 

), which is a non zero measure set (so no null probability
paradoxes), see Pereira and Stern (1999), Madruga et al. (2003) and subsection A1 of
the appendix. 

Although ev(

 

H

 

) is a probability in the parameter space, it is also a possibilistic
support function. The word 

 

possibilistic

 

 carries a heavy load, implying that ev(

 

H

 

)
complies with a very specific logic (or algebraic) structure, as seen in Darwishe and
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Ginsberg (1992), Stern (2003, 2004), and subsection A3 of the appendix. Furthermore
the e-value has many necessary or desirable properties for a statistical support
function, such as: 

1. Give an intuitive and simple measure of significance for the hypothesis in test, 
ideally, a 

 

probability

 

 defined directly in the original or 

 

natural parameter space

 

. 
2. Have an intrinsically geometric definition, independent of any non-geometric 

aspect, like the particular parameterization of the (manifold representing the) null 
hypothesis being tested, or the particular coordinate system chosen for the 
parameter space, that is, be an 

 

invariant

 

 procedure. 
3. Give a measure of significance that is smooth, that is 

 

continuous and 
differentiable

 

, on the hypothesis parameters and sample statistics, under 
appropriate regularity conditions of the model. 

4. Obey the 

 

likelihood principle

 

, that is, the information gathered from observations 
should be represented by, and only by, the likelihood function.

5. Require 

 

no ad hoc artifice

 

 like assigning a positive prior probability to zero 
measure sets, or setting an arbitrary initial belief ratio between hypotheses. 

6. Be a 

 

possibilistic

 

 support function. 
7. Be able to provide a 

 

consistent

 

 test for a given sharp hypothesis. 
8. Be able to provide 

 

compositionality

 

 operations in complex models. 
9. Be an 

 

exact

 

 procedure, not requiring the use of “large sample” asymptotic 
approximations. 

10. Allow the incorporation of previous experience or expert’s opinion via 
(subjective) 

 

prior distributions

 

. 

For a careful and detailed explanation of the FBST definition, its computational
implementation, statistical and logical properties, and several already developed
applications, the reader is invited to consult some of the articles in the reference list.
Appendix A provides a short review of the FBST, including its definition and main
properties. 

 

6. Semantic Degradation

 

In this section some constructivist analyses of dedifferentiation phenomena in social
systems are reviewed. If the conclusions in the last section are correct, it is surprising
how many times decision theory, sometimes with a very narrow pseudo-economic
interpretation, was misused in scientific statistical analysis. The difficulties of testing
sharp hypotheses in the traditional statistical paradigms are well documented, and
extensively discussed in the literature, see for example the articles in Harlow, Muliak,
and Steiger (1997). We hope the material in this section can help us understand these
difficulties as symptoms of problems with much deeper roots. By no means the author
is the first to point out the danger of analyses carried out by blind transplantation of
categories between heterogeneous systems. In particular, regarding the abuse of
economical analyses, Luhmann (1989) states: 
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In this sense, it is meaningless to speak of “non-economic” costs. This is only a metaphorical way of
speaking that transfers the specificity of the economic mode of thinking indiscriminately to other
social systems. (Luhmann, 1989, p. 164). 

 

For a sociological analysis of this phenomenon in the context of science, see for
example Fuchs (1996) and DiMaggio and Powell (1991): 

 

higher-status sciences may, more or less aggressively, colonize lower-status fields in an attempt at
reducing them to their own First Principles. For particle physics, all is quarks and the four forces.
For neurophysiology, consciousness is the aggregate outcome of the behavior of neural networks.
For sociobiology, philosophy is done by ants and rats with unusual large brains that utter
metaphysical nonsense according to acquired reflexes. In short, successful and credible chains or
reductionism usually move from the top to the bottom of disciplinary prestige hierarchies. (Fuchs,
1996, p. 310). 

This may explain the popularity of giving an “economical understanding” to processes in
functionally distinct areas even if (or perhaps because) this semantics is often hidden by statistical
theory and methods based on decision theoretic analysis. This also may explain why some areas, like
ecology, sociology or psychology, are (or where) far more prone to suffer this kind of
dedifferentiation by semantic degradation than others, like physics. (DiMaggio & Powell, 1991,
p. 63). 

 

Once the forces pushing towards systemic degradation are clearly exposed, we hope
one can understand the following corollary of von Foerster famous ethical and
aesthetical imperatives: 

• Theoretical imperative: Preserve systemic autopoiesis and semantic integrity, for 
de-differentiation is in-sanity itself. 

• Operational imperative: Choose the right tool for each job: “If you only have a 
hammer, everything looks like a nail.” 

 

7. Competing Sharp Hypotheses

 

In this section we examine the concept of competing sharp hypotheses. This concept
has several variants, but the basic idea is that a good scientist should never test a single
sharp hypothesis, for it would be an unfair faith of the poor sharp hypothesis standing
all alone against everything else in the world. Instead, a good scientist should always
confront a sharp hypothesis with a competing sharp hypotheses, making the test a fair
game. As seen in Good (1983): 

Since I regard refutation and corroboration as both valid criteria for this demarcation it is convenient
to use another term, Checkability, to embrace both processes. I regard checkability as a measure to
which a theory is scientific, where checking is to be taken in both its positive and negative senses,
confirming and disconfirming. (Good, 1983, p. 167)
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If by the truth of Newtonian mechanics we mean that it is approximately true in some appropriate
well defined sense we could obtain strong evidence that it is true; but if we mean by its truth that it is
exactly true then it has already been refuted. (Good, 1983, p. 135)

I think that the initial probability is positive for every self-consistent scientific theory with
consequences verifiable in a probabilistic sense. No contradiction can be inferred from this
assumption since the number of statable theories is at most countably infinite (enumerable). (Good,
1983, p. 126)

It is very difficult to decide on numerical values for the probabilities, but it is not quite so difficult to
judge the ratio of the subjective initial probabilities of two theories by comparing their complexities.
This is one reason why the history of science is scientifically important. (Good, 1983, p.126). 

The competing sharp hypotheses argument does not directly contradict the
epistemological framework presented in this article, and it may be appropriate under
certain circumstances. It may also mitigate or partially remediate the paradoxes
pointed out in the previous sections when testing sharp hypotheses in the traditional
frequentist or orthodox Bayesian settings. However, the author does not believe that
having competing sharp hypotheses is neither a necessary condition for good science
practice, nor an accurate description of science history.

Just to stay with Good’s example, let us quickly examine the very first major
incident in the tumultuous debacle of Newtonian mechanics. This incident was
Michelson’s experiment on the effect of “aethereal wind” over the speed of light, see
Michelson and Morley (1887) and Lorentz et al. (1952). A clear and lively historical
account to this experiment can be found in Jaffe (1960). Actually Michelson found no
such effect, that is he found the speed of light to be constant, invariant with the relative
speed of the observer. This result, a contradiction in Newtonian mechanics, is easily
explained by Einstein’s special theory of relativity. The fundamental difference
between the two theories is their symmetry or invariance groups: Galileo’s group for
Newtonian mechanics, Lorentz’ group for special relativity. A fundamental result of
physics, Noether’s Theorem, states that for every continuous symmetry in a physical
theory, there must exist an invariant quantity or conservation law. For detail the reader
is referred to Doncel, Hermann, Michel, and Pais (1987), Fleming (1979), Gruber and
Millman (1980), Gruber and Lenczewski (1986), Gruber and Iachello (1989), Gruber
and Yopp (1990), Houtappel, Dam, and Wigner (1965), French (1968), Landau and
Lifchitz (1966), Noether (1918), Wigner (1970), Weyl (1952). Conservation laws are
sharp hypotheses ideally suited for experimental checking. Hence, it seems that we are
exactly in the situation of competing sharp hypotheses, and so we are today, from a far
away historical perspective. But this is a post-mortem analysis of Newtonian
mechanics. At the time of the experiment there was no competing theory. Instead of
confirming an effect, specified only within an order of magnitude, Michelson found,
for his and everybody else’s astonishment, an, up to the experiment’s precision, null
effect. 

Complex experiments like Michelson’s require a careful analysis of experimental
errors, identifying all significant source of measurement noise and fluctuation. This
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kind of analysis is usual in experimental physics, and motivates a brief comment on a
secondary source of criticism on the use of sharp hypotheses. In the past, one often
had to work with over simplified statistical models. This situation was usually
imposed by limitations such as the lack of better or more realistic models, or the
unavailability of the necessary numerical algorithms or the computer power to use
them. Under these limitations, one often had to use minimalist statistical models or
approximation techniques, even when these models or techniques were not
recommended. These models or techniques were instrumental to provide feasible tools
for statistical analysis, but made it very difficult to work (or proved very ineffective)
with complex systems, scarce observations, very large data sets, and so forth. The
need to work with complex models, and other difficult situations requiring the use of
sophisticated statistical methods and techniques, is very common (and many times
inescapable) in research areas dealing with complex systems like biology, medicine,
social sciences, psychology, and many other fields, some of them distinguished with
the mysterious appellation of “soft” science. A colleague once put it to me like this: “It
seems that physics got all the easy problems ... .” 

If there is one area where the computational techniques of Bayesian statistics have
made dramatic contributions in the last decades, that is the analysis of complex
models. The development of advanced statistical computational techniques like
Markov Chain Monte Carlo (MCMC) methods, Bayesian and neural networks,
random fields models, and many others, make us hope that most of the problems
related to the use of over simplified models can now be overcome. Today good
statistical practice requires all statistically significant influences to be incorporated
into the model, and one seldom finds an acceptable excuse not to do so; see also
Pereira and Stern (2001). 

8 Final Remarks

It should once more be stressed that most of the material presented in sections 2, 3, 4,
and 6 is not new in constructivist theory. Unfortunately constructivist theory has had a
minor impact in statistics, and sometimes provoked a hostile reaction from the ill-
informed. One possible explanation of this state of affairs may be found in the
historical development of constructivist theory. The constructivist reaction to a
dogmatic (metaphysical) realism prevalent in hard sciences, specially in the XIX and
the beginning of the XX century, raised a very outspoken rhetoric intended to make
explicitly clear how naive and fragile the foundations of this over simplistic realism
were. This rhetoric was extremely successful, quickly awakening and forever
changing the minds of those directly interested in the fields of history and philosophy
of science, and spread rapidly into many other areas. Unfortunately the same rhetoric
could, in a superficial reading, make constructivist theory be perceived as either
hostile or intrinsically incompatible with the use of quantitative and statistical
methods, or leading to an extreme forms of subjectivism. 
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In constructivist theory, or (Objective) Idealism as presented in this article, neither
does one claim to have access to a “thing in itself” or “Ding an sich” in the external
environment,  as do dogmatic forms of realism, nor does one surrender to solipsism, as
do skeptic forms of subjectivism, including some representatives of the subjectivist
school of probability and statistics. For the use of some of these terms in Kantian
philosophy see Bonaccini (2000) and Caygill (1995), for subjectivism in statistics see
Finetti (1974, 1.11, 7.5.7). In fact, it is the role of the external constraints imposed by
the environment, together with the internal autopoietic relations of the system, to
guide the convergence of the learning process to precise eigen-solutions, these being
at the end, the ultimate or real objects of scientific knowledge. As stated by Luhmann
(1990b, 1995): 

constructivism maintains nothing more than the unapproachability of the external world “in itself”
and the closure of knowing - without yielding, at any rate, to the old skeptical or “solipsistic” doubt
that an external world exists at all. (Luhmann, 1990a, p. 65). 

at least in systems theory, they (statements) refer to the real world. Thus the concept of system refers
to something that in reality is a system and thereby incurs the responsibility of testing its statements
against reality. (Luhmann, 1995, p.12). 

both subjectivist and objectivist theories of knowledge have to be replaced by the system/
environment distinction, which then makes the distinction subject/object irrelevant. (Luhmann,
1990a, p. 66).   

The author hopes to have shown that constructivist theory not only gives a balanced
and effective view of the theoretical/experimental aspects of scientific research but
also that it is well suited (or even better suited) to give the necessary epistemological
foundations for the use of quantitative methods of statistical analysis needed in the
practice of science. It should also be stressed, according to author’s interpretation of
constructivist theory, the importance of measuring the statistical support for sharp
hypotheses. In this setting, the author believes that, due to its statistical and logical
characteristics, the FBST is the right tool for the job, and hopes to have motivated the
reader to find more about the FBST definition, theoretical properties, efficient
computational implementation, and several of the already developed applications, in
some of the articles in the reference list. This perspective opens interesting areas for
further research. Among them, we mention the following two. 

8.1 Noether and de Finetti Theorems

The first area for further research has to do with some similarities between Noether
theorems in physics, and de Finetti type theorems in statistics. Noether theorems
provide invariant physical quantities or conservation laws from symmetry
transformation groups of the physical theory, and conservation laws are sharp
hypotheses by excellence. In a similar way, de Finetti type theorems provide invariant
distributions from symmetry transformation groups of the statistical model. Those
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invariant distributions can in turn provide prototypical sharp hypotheses in many
application areas. Physics has its own heavy apparatus to deal with the all important
issues of invariance and symmetry. Statistics, via de Finetti theorems, can provide
such an apparatus for other areas, even in situations that are not naturally embedded in
a heavy mathematical formalism, see Feller (1971, ch.7) and also Diaconis (1987,
1988), Eaton (1989), Nachbin (1965) and Ressel (1987).

8.2 Compositionality

The second area for further research has to do with one of the properties of eigen-
solutions mentioned by von Foerster that has not been directly explored in this article,
namely that eigen-solutions are “composable,” see Borges and Stern (2005) and
section A4. Compositionality properties concern the relationship between the
credibility, or truth value, of a complex hypothesis, H, and those of its elementary
constituents, H j, j = 1 … k. Compositionality questions play a central role in
analytical philosophy (e.g., see Conde, 1988)

According to Wittgenstein (1961): 

Every complex statement can be analyzed from its elementary constituents…(sec. 2.0201)
   
Truth values of elementary statement are the results of those statements’ truth-functions
(Wahrheitsfunktionen). (sec. 5.0)

All truth-function are results of successive applications to elementary constituents of a finite number
of truth-operations (Wahrheitsoperationen). (sec. 5.32)

Compositionality questions also play a central role in far more concrete contexts,
like that of reliability engineering. Birnbaum, Esary, and Saunders state: 

One of the main purposes of a mathematical theory of reliability is to develop means by which one
can evaluate the reliability of a structure when the reliability of its components are known. The
present study will be concerned with this kind of mathematical development. It will be necessary for
this purpose to rephrase our intuitive concepts of structure, component, reliability, etc. in more
formal language, to restate carefully our assumptions, and to introduce an appropriate mathematical
apparatus. (1961, sec. 1.4)

In Luhmann we find the following remark on the evolution of science that directly
hints the importance of this property: 

After the (science) system worked for several centuries under these conditions it became clear where
it was leading. This is something that idealization, mathematization, abstraction, etc. do not describe
adequately. It concerns the increase in the capacity of decomposition and recombination, a new
formulation of knowledge as the product of analysis and synthesis. In this case analysis is what is
most important because the further decomposition of the visible world into still further
decomposable molecules and atoms, into genetic structures of life or even into the sequence human/
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role/action/ action-components as elementary units of systems uncovers an enormous potential for
recombination. (Luhmann, 1989, p.79)

In the author’s view, the composition (or re-combination) of scientific knowledge
and its use, so relevant in technology development and engineering, can give us a
different perspective (perhaps a, bottom-up, as opposed to the top-down perspective in
this article) on the importance of sharp hypotheses in science and technology practice.
It can also provide some insight on the valid forms of iteration of science with other
social systems or, in Luhmann’s terminology, how science does (or should) “resonate”
in human society. 
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Appendix A:  FBST Review

(A) man's logical method should be loved and reverenced as
   his bride, whom he has chosen from all the world. He need not

   condemn the others; on the contrary, he may honor them deeply,
   and in doing so he honors her more. But she is the one that he has

chosen, and he knows that he was right in making that choice.
   (C.S. Peirce, The Fixation of Belief, 1877).

The objective of this appendix is to provide a very short review of the Full Bayesian
Significance Test (FBST), show a simple concrete example, and summarize the most
important logical properties of the FBST support function. Several applications of the
FBST, details of its efficient numerical and computational implementation,
demonstrations of theoretical properties, comparison with other statistical tests for
sharp hypotheses, and an extensive list of references can be found in the author’s
previous papers. 

A.1 The Epistemic e-values

Let  be a vector parameter of interest, and L(θ |x) be the likelihood
associated to the observed data x, a standard statistical model. Under the Bayesian
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paradigm the posterior density, pn(θ), is proportional to the product of the likelihood
and a prior density, 

The (null) hypothesis H states that the parameter lies in the null set, defined by
inequality and equality constraints given by vector functions g and h in the parameter
space. 

From now on, we use a relaxed notation, writing H instead of . We are
particularly interested in sharp (precise) hypotheses, those in which

, that is there is at least one equality constraint. 
The FBST defines ev(H), actually ev (H; pn, r), the e-value or evidence value

supporting (in favor of) the hypothesis H, and its complement, ev(H), the evidence
value against H, as 

The function s(θ ) is known as the posterior surprise relative to a given reference
density, r(θ). W(v) is the cumulative surprise distribution. The surprise function was
used, among other statisticians, by Good (1983), Evans (1997) and Royall (1997). Its
role in the FBST is to make ev(H) implicitly invariant under suitable transformations
on the coordinate system of the parameter space, see next subsection. 

The tangential (to the hypothesis) set T = T (s*), is a Highest Relative Surprise Set
(HRSS). It contains the points of the parameter space with higher surprise, relative to
the reference density, than any point in the null set of H. When r(θ)∝ 1, the possibly
improper uniform density, T is the Posterior’s Highest Density Probability Set (HDPS)
tangential to the null set of H. Small values of ev(H) indicate that the hypothesis
traverses high density regions, favoring the hypothesis. 
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Figure A1: H-W Hypothesis and Tangential Set

The evidence value, defined above, has a simple and intuitive geometric
characterization. Figure A1 shows the null set of H, the tangential HRSS T, and the
points of constrained and unconstrained maxima,  and , for testing Hardy-
Weinberg equilibrium law in a population genetics problem, as discussed in (Pereira
and Stern 1999). In this biological application n is the sample size, x1 and x3 are the
two homozygote sample counts and x2 = n - x1 - x3 is heterozygote sample count.
θ = [θ1 , θ 2, θ3] is the parameter vector. The posterior and maximum entropy
reference densities for this trinomial model, the parameter space and the null set are: 

In orthodox decision theoretic Bayesian statistics, a significance test is legitimate
if and only if it can be characterized as an Acceptance (A) or Rejection (R) decision
procedure defined by the minimization of the posterior expectation of a loss function,
Λ. Madruga et al. (2001) gives the following family of loss functions characterizing
the FBST. This loss function is based on indicator functions of θ being or not in the
tangential set T: 
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Note that this loss function is dependent on the observed sample (via the
likelihood function), on the prior, and on the reference density, stressing the important
point of non-separability of utility and probability, see Kadane and Winkler (1987)
and Rubin (1987). 

Finally, consider the situation where the hypothesis constraint,
H : h (θ) = h (δ) = 0, θ =[δ , λ ] is not a function of some of the parameters, λ . This
situation is described by Basu and Ghosh: 

If the inference problem at hand relates only to δ , and if information gained on λ
is of no direct relevance to the problem, then we classify λ as the Nuisance
Parameter. The big question in statistics is: How can we eliminate the nuisance
parameter from the argument? (1988, p. 115)

Basu and Ghosh list at least 10 categories of procedures to achieve this goal, like
using maxλ or ∫ dλ, the maximization or integration operators, in order to obtain a
projected profile or marginal posterior function, ƒ(δ |x). The FBST does not follow
the nuisance parameters elimination paradigm. In fact, staying in the original
parameter space, in its full dimension, explains the intrinsic regularization property of
the FBST, when it is used for model selection, see Pereira and Stern (2001). 

A.2 Reference and Consistency

In the FBST the role of the reference density, r(θ) is to make ev (H) implicitly
invariant under suitable transformations of the coordinate system. Invariance, as used
in statistics, is a metric concept. The reference density can be interpreted as a compact
and interpretable representation for the reference metric in the original parameter
space. This metric is given by the geodesic distance on the density surface. The natural
choice of reference density is an uninformative prior, interpreted as a representation of
no information in the parameter space, or the limit prior for no observations, or the
neutral ground state for the Bayesian operation.

Standard (possibly improper) uninformative priors include the uniform and
maximum entropy densities, for a detailed discussion the reader is referred to Dugdale
(1996) and Kapur (1989). In the H-W example, using the notation above, the uniform
density can be represented by y = [0,0,0] observation counts, and the standard
maximum entropy density can be represented by y = [-1, -1, -1] observation counts. 

Let us consider the cumulative distribution of the evidence value against the
hypothesis, the confidence level function, V (c) = Pr (ev ≤ c), given θ 0, the true value
of the parameter. Under appropriate regularity conditions, for increasing sample size,
n → ∞, we can say the following: 

• If H is false, θ0 ∉ H, then ev converges (in probability) to 1, that is, 
V (0 ≤ c < 1) → 0. 

• If H is true, θ0 ∉ H, then V (c), converges (in distribution) to 
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, h = dim (H) and Q (k, x) is the cumulative chi-square distribution with k
degrees of freedom. Figure A2 portrays the function QQ (t, h, c) for t = 2…4 and      h
= 0…t – 1. 

Figure A2: Test τc critical level vs. confidence level 

Under the same regularity conditions, an appropriate choice of threshold or
critical level, c(n), provides a consistent test,τc, that rejects the hypothesis if
ev(H) > c. The empirical power analysis developed in Stern and Zacks (2002) and
Lauretto, Pereira, Stern, and Zacks (2003), provides critical levels that are consistent
and also effective for small samples. 

Stern (2004) presents an alternative approach, based on sensitivity analysis in the
context of paraconsistent logic and bilattice structures, see also Costa, Abe, Murolo,
Silva, and Casemiro (1999). This analysis in based on the inconsistency induced by a
set of alternative reference densities, r, r’, r”…, or a set of alternative priors,

 or a set of alternative likelihood power or “sample size” perturbation
parameters, Lγ, 1=γ > γ’ > γ”… > 0. 

A.3 Belief Calculi and Support Structures

Many standard Belief Calculi can be formalized in the context of Abstract Belief
Calculus, ABC, see Darwiche and Ginsberg (1992), Darwiche (1993) and Stern
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(2003). In a Support Structure, , the first element is a Support Function, Φ,
on a universe of statements, u. Null and full support values are represented by 0 and 1.
The second element is a support Summation operator, , and the third is a support
Scaling or Conditionalization operator, . A Partial Support Structure, , lacks
the scaling operation. 

The Support Summation operator, , gives the support value of the disjunction
of any two logically disjoint statements from their individual support values, that is, 

The Support Scaling operator, , gives the conditional support value of B given 
from the unconditional support values of A and the conjunction C = A Λ Β, that is, 

Support structures for some standard belief calculi are given in Table A1, where
the support value of two statements their conjunction are given by a = Φ (Α),
b = Φ (Β), c = Φ (C = Α Λ Β). 

 

In Table A1, the relation a ≤ b indicates that the value a represents a stronger support
than the value b. Darwiche and Ginsberg (1992) also gives a set of axioms defining the
essential functional properties of a (partial) support function. Stern (2003) shows that
the support Φ (H) = ev(H) complies with all Darwiche and Ginsberg axioms. 

In the FBST, the support values, Φ (H) = ev(H), are computed using standard
probability calculus on θ which has an intrinsic conditionalization operator. The
computed e-values, on the other hand, have a possibilistic summation, that is, the
evidence value in favor of a composite hypothesis (H) = A V B, is the most favorable
evidence value in favor of each of its terms, that is, ev(H) = max {ev(A), ev(B)}. It is
impossible however to define a simple scaling operator for this possibilistic support
function that is compatible with the FBST’s e-value, ev(  ), as it is defined. 

Hence, two belief calculi are in simultaneous use in the Full Bayesian
Significance Test setup: ev( ) constitutes a possibilistic partial support structure

 

 
  

 

 

 

 

Table A1: Support structures for some belief calculi, c = Φ(C = A ∧ B).

Φ(U) a ⊕ b 0 1 a � b c � a Calculus
{0, 1} max(a, b) 0 1 a ≤ b min(c, a) Classical Logic
[0, 1] a + b 0 1 a ≤ b c/a Probability
[0, 1] max(a, b) 0 1 a ≤ b c/a Possibility

{0 . . .∞} min(a, b) ∞ 0 b ≤ a c − a Disbelief
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coexisting in harmony with the probabilistic support structure given by the posterior
probability measure in the parameter space. 

Stern (2003) comments the interpretation of this results in the juridical or legal
context. In this context, the possibilistic structure corresponds to the Onus Probandi
juridical principle, or the In Dubito pro Reo rule. These are “benefit of the doubt” type
norms, requiring the statement presented by the defendant to be considered in most
favorable manner, as seen in Gaskins (1992). 

A4. Complex Models and Compositionality

The relationship between the credibility of a complex hypothesis, H, and those of its
constituent elementary hypothesis, H (i, j ), in the independent setup, can be analyzed
under the FBST, see Borges and Stern (2005) for precise definitions, and detailed
interpretation. 

Let us consider elementary hypotheses, H (i, j ), in k independent constituent
models, M j, and the complex or composite hypothesis H, equivalent to a
(homogeneous) logical composition (disjunction of conjunctions) of elementary
hypotheses, in the composite product model, M. The following result can be
established, see Borges and Stern (2005, proposition 5.1): 

If H is expressed in HDNF or Homogeneous Disjunctive Normal Form, 

then the e-value supporting H is 

where the cumulative surprise distribution of the composite model, W(v), is given by
the Mellin convolution operation, see Springer (1979) and Williamson (1989), defined
as 
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The probability distribution of the product of two independent positive random
variables is the Mellin convolution of each of their distributions. From this
interpretation, we immediately see that  is a commutative and associative operator.

Mirroring Wittgenstein, in the FBST context, we can call the e-value, ev(H), the
cumulative surprise distribution, W(v), and the Mellin convolution operation, ,
respectively, truth value, truth function, and truth operation. 

Finally, we observe that, in the extreme case of null-or-full support, that is, when,
for 1 ≤ i ≤ q and 1 ≤ j ≤ k, , the evidence values (or, in this
context, truth values) of the constituent elementary hypotheses are either 0 or 1, and
the conjunction and disjunction composition rules of classical logic hold.

.

Barrett, K. (n.d.). Beldam. 71 x 61 cm,  acrylic on canvas.
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