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Abstract. The Generalized Poisson Distribution (GPD) adds an extra parameter to the usual Pois-
son distribution. This parameter induces a loss of homogeneity in the stochastic processes modeled
by the distribution. Thus, the generalized distribution becomes an useful model for counting pro-
cesses where the occurrence of events is not homogeneous. This model creates the need for an
inferential procedure, to test for the value of this extra parameter. The FBST (Full Bayesian Signif-
icance Test) is a Bayesian hypotheses test procedure, capable of providing an evidence measure on
sharp hypotheses (where the dimension of the parametric space under the null hypotheses is smaller
than that of the full parametric space). The goal of this work is study the empirical properties of the
FBST for testing the nullity of extra parameter of the generalized Poisson distribution. Numerical
experiments show a better performance of FBST with respect to the classical likelihood ratio test,
and suggest that FBST is an efficient and robust tool for this application.
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INTRODUCTION

The Poisson distribution is applied to models resulting in counting processes. The
distribution depends on a single parameter, α , which represents the occurrence rate for
the events being counted. The parameter α is also both the mean and the variance of this
distribution.

The model implicitly assumes an homogeneous occurrence rate for the process. There
are, however, a variety of situations where such assumption fails to be fulfilled; one
example is the distribution of the number of organisms in a colony of bacteria, where
the birth rates for any site in space or time are dependent upon the previous number of
organisms near the site in question (due to the availability of food, temperature, social
behavior, etc).

A variety of Generalized Poisson Distributions (GPDs) have been proposed; in par-
ticular, the works of Consul and Jain [6,7,8] brought forth a distribution with two pa-
rameters, α and λ , that generalizes the usual Poisson distribution in a flexible manner.
Changing λ , it is possible to induce an increase or decrease in the occurrence rate being
modeled.

GPDs arise in several discrete models where the probabilities depend either on the
previous number of occurrences or on the average number of events in any given range.
Some urn models, where the probability distributions depend on the total number of
balls in several urns, also lead to a GPD. There is also the Generalized Poisson Process,



a point process where the occurrence probabilities in any small range depend on the
previous state of the process, as well as on the particular time and length of the range.
Other models leading to a Generalized Poisson Distribution are: The Negative Binomial
distribution, that converges in probability to a GPD when the number of trials goes
to infinity in such a way that n× p = θ ; The Quasi-binomial distribution, in similar
conditions, when n→ ∞, ρ → 0 and φ → 0; see [4, 5].

Since the flexibility of the generalized distribution depends heavily upon the value of
λ , the need for an inference procedure on the hypothesis H0 : λ = 0 is clear: ultimately, it
is a test of homogeneity for the stochastic processes generating the data under analysis.

The Full Bayesian Significance Test, FBST, is an inference procedure well-suited for
testing sharp hypotheses. Since the hypothesis H0 : λ = 0 defined above is sharp, in the
sense of Stern [20], FBST is a natural candidate to be used as inference tool.

The goal of this work is study the empirical properties of the FBST for testing the
nullity of extra parameter of the generalized Poisson distribution. Firstly, we introduce
the generalized Poisson distribution and the Full Bayesian Significance Test in the
present context. Then, we discuss the numerical experiments performed in order to
compare performances of FBST and Likelihood Ratio test.

THE GENERALIZED POISSON DISTRIBUTION (GPD)

Let X be a discrete random variable, taking only non-negative values. X follows a
generalized Poisson distribution if its probability distribution function is given by:

p(x|α,λ ) =
{

(1/x!)α(α + xλ )x−1e−α−xλ x = 0,1,2, . . .
0 if x > m , when λ < 0

(1)

where α > 0, max(−1,−α/m) < λ ≤ 1, and m(≥ 4) is the largest integer such that
α + mλ > 0 when λ < 0. This lower bound on λ is imposed in order to assure at least
five points in the sample space with positive probabilities when λ is negative. It can be
easily seen that the distribution reduces to the usual Poisson distribution when λ = 0.
As a consequence of the definition, when λ < 0, the distribution does not sum to unity
in [0,1, . . .], and must be normalized. For an analysis of this truncated distribution, and
an account for estimating its parameter using Bayesian methods, see Scollnik [14].

The mean and variance of X are given by

E(X) =
α

1−λ
Var(X) =

α

(1−λ )3 (2)

and when λ = 0, E(X) = Var(x) = α .
The probability distribution thus defined has some interesting properties, such as con-

volution (analog to the regular Poisson distribution) and unimodality [4]. Furthermore,
there exist a variety of probability models which lead to this distribution; a few examples
can be found in Consul [4].

Many applications for the generalized Poisson distribution can be found in the litera-
ture: Scollnik [14] mentions some applications in the analysis of actuarial data; Famoye
and Singh [10] build a regression model with the generalized Poisson distribution and



apply it to domestic violence data; and Sheth [16] uses it as the limit distribution on a
clustering model with Poisson initial conditions.

FULL BAYESIAN SIGNIFICANCE TEST

The Full Bayesian Significance Test (FBST) is presented by Pereira and Stern [12] as
a coherent Bayesian significance test. FBST is intuitive and has a geometric charac-
terization. In this article the parameter space, Θ, is a subset of Rn, and the hypothesis
is defined as a restricted subset defined by vector valued inequality and equality con-
straints: H : θ ∈ ΘH where ΘH = {θ ∈ Θ |g(θ) ≤ 0∧ h(θ) = 0}. For simplicity, we
often use H for ΘH . We are interested in precise hypotheses, with dim(H) < dim(Θ) .
fx(θ) is the posterior probability density function. In the present context of Generalized
Poisson Distribution, θ = [α,λ ]

The computation of the evidence measure used on the FBST is performed in two
steps:

• The optimization step consists of finding the maximum (supremum) of the posterior
under the null hypothesis, θ ∗ = argsupH fx(θ), f ∗ = fx(θ ∗).

• The integration step consists of integrating the posterior density over the Tangential
Set, T , where the posterior is higher than anywhere in the hypothesis, i.e.,

T = {θ ∈Θ : fx(θ) > f ∗}

Ev(H) = Pr(θ ∈ T |x) =
∫

T
fx(θ)dθ

Ev(H) is the evidence against H, and Ev(H) = 1−Ev(H) is the evidence supporting
(or in favor of) H. For a better understanding of this evidence measure, Figure 1
illustrates two examples of FBST application to the hypothesis H : λ = 0. The level
curves represent the posterior distributions for two simulated samples of size n = 50.
The first sample (left) was generated with parameters α = 3,λ =−0.02 and the second
sample (right) was generated with parameters α = 3,λ = −0.20. The vertical (dotted)
line crossing λ = 0 represents the space under hypothesis, ΘH . Marker ‘*’ represents
the point θ ∗ of maximum posterior density in ΘH , and the black level curve tangent to
θ ∗ corresponds to T frontier. Intuitively, if the hypothesis set is in a region of “righ”
posterior density (as in example 1), then T is a “small” set, and therefore Ev(H) is
“small” (' 0.131), meaning “weak” evidence against H. On the other hand, if the
hypothesis set is in a region of “low” posterior density (as in example 2), then T is
“heavy” and therefore Ev(H) is “large” (' 0.946), meaning “strong” evidence against
H.

For acceptance/rejection of H, critical levels for the evidence measure can be derived
as follows. Let us consider the cumulative distribution of the evidence value against
the hypothesis, V (τ) = Pr(Ev ≤ τ), given θ 0, the true value of the parameter. Under
appropriate regularity conditions, for increasing sample size, n→ ∞, we can state the
following [13]:

• If H is false, θ 0 /∈ H, then Ev converges (in probability) to one, that is, V (τ)→
δ (1).



• If H is true, θ 0 ∈ H, then V (τ), the confidence level, is approximated by the
function W (t,h,τ) = Chi2

(
t−h,Chi2−1 (t,c)

)
, where t = dim(Θ), h = dim(H)

and Chi2(k,x) is the cumulative chi-square distribution with k degrees of freedom.

Hence, to reject H with a significance level δ , one can set an asymptotic threshold
τ =W−1(t,h,1−δ ), i.e. set τ such that W (t,h,τ)= 1−δ . For the numerical experiments
performed in this work, we take the traditional significance level δ = 0.05.

Several FBST applications and examples, efficient computational implementation,
interpretations, and comparisons with other techniques for testing sharp hypotheses, can
be found in the authors’ papers in the reference list. For a FBST review see Pereira et al.
[13].

In this work, we consider an (improper) uniform distribution for θ = [α,λ ], and hence
the posterior distribution is proportional to the likelihood function:

fx(θ) = fx(α,λ ) ∝

n

∏
i=1

p(xi|α,λ ) =
n

∏
i=1

α(α + xiλ )xi−1e−α−xiλ

xi!

The evidence against H is computed as:

T = {θ ∈Θ : fx(θ) > fx(θ ∗,0)}

Ev(H) =
∫

T fx(θ)dθ∫
Θ

fx(θ)dθ

The point θ ∗ of maximum posteriori over H is easily obtained, since when λ = 0,
fx(θ) equals the Poisson density, and therefore θ ∗ = (x,0), where x denotes the sample
mean.

The numerical integration over the posterior measure is performed via Monte Carlo
method, by generating values for parameters α,λ of GPD. Since there are no conjugate
distributions for these parameters, we used the adaptive sampler HITRO [11].
HITRO combines the multivariate Ratio-of-Uniforms method with the Hit-and-Run

sampler. The Ratio-of-Uniforms transformation maps the region below the p.d.f f , i.e.
G( f ) = {(x,y) : 0 < y < f (x)} into the region

A( f ) = Ar,m( f ) =
{

(u,v) : 0 < v < f
( u

vr +m
)1/(rn+1)

}
by means of the transformation

(u,v) 7→ (x, y) =
( u

vr +m, vrn+1
)

.

The vector m must be a point near the mode (in our implementation, we set m as the
mode). The method relies on the theorem that, if (u,v) is uniformly distributed over
A( f ), then x = u/vr + m has probability density function f (x)/

∫
f (z)dz. The Hit-and-

run sampler is used for generating points (u,v) uniformly over A( f ).
The task of finding the unconstrained mode of GPD is performed numerically, via

the Algencan-Tango solver, which source code and detailed description are freely
distributed [1, 2] (see internet link at the reference).



RESULTS AND DISCUSSION

We run some numerical experiments based on simulated data in order to evaluate the
FBST performance on the present context.

As a benchmark, we used the Likelihood Ratio Test (LRT), which is vastly known in
statistics literature; it is based on the frequentist inference theory [3]. The test statistic is
defined by

q =−2ln
sup(α,λ )∈ΘH

L(α,λ |X)
sup(α,λ )∈Θ L(α,λ |X)

and q asymptotically follows a Chi-square distribution, with degrees of freedom given
by the difference between the dimension of the unconstrained parameter space and the
dimension of parameter space under H0; in the present context, q follows a Chi-square
distribution with 1 degree of freedom.

The parameter’s range in our empirical study is motivated by two applications: Car
accidents in non-life insurance, and default risk modeling in financial banking opera-
tions. In both applications the range of interest is on parameters θ = [α,λ ] that gener-
ate countings around 2 or 3. Hence, we choose to simulate samples with fixed means
E(X) ∈ {2,3} and λ ∈ {0.0,±0.01.± 0.02,±0.05,±0.1,±0.15,±0.2,±0.25,±0.3}.
Each value of E(X) and λ determines the corresponding value of α , according to the ex-
pectancy equation presented previously: α = E(X)(1−λ ). Figure 2 presents the values
of α computed from the values of E(x),λ .

For each pair [λ ,E(X)], we generated a total of 300 samples of size n = 15. Our
interest is to investigate the frequency of cases where FBST and LRT rejected the null
hypothesis λ = 0, using for both tests asymptotic significance δ = 0.05. Figure 3 shows
the rejection rates obtained by FBST and LRT, for samples generated with mean 2
(left) and 3 (right). The vertical (dotted) line corresponds to samples generated under
the hypothesis.

The graphics show that FBST is more capable than LRT to detect deviances from
hypothesis when λ < 0. When λ > 0, both methods present very similar results. For
λ = 0, the rejection rates are: for E(X) = 2, both FBST and LRT provide a rejection
rate of 6.4% (slightly above the theoretical significance of 5%). For E(X) = 3, FBST
and LRT provide a rejection rates of 5.3% and 4.7%, respectively, which are close to the
theoretical significance.
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Figure 1: Contour plots of posterior densities and evidence against H : λ = 0 for two
simulated samples of size n = 100 and parameters α = 3, λ ∈ {−0.02,−0.2}.
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Figure 2: Values of α computed from fixed values for E(X),λ .
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Figure 3: Rejection rates (%) obtained by FBST and LRT, with samples of size n = 15,
mean 2 (left) and 3 (right), and λ taking several values in the interval [−0.3,0.3].

CONCLUSION

The goal of this paper was to study the empirical properties of the FBST for testing
the nullity of extra parameter of the generalized Poisson distribution. Numerical exper-
iments have shown a better performance of FBST, compared to the classical likelihood
ratio test, and suggest that the FBST is an efficient and robust inference tool for this
application.

When comparing the performances of the two tests, FBST was more responsive
than that of the competing likelihood-ratio test: The FBST test rejection rate attains its
minimum when H0 is true, and increases rapidly when λ 6= 0. The rejection rate when
the hypothesis is false increases faster than that of the competing test, specially when λ

decreases, that is, when λ ≤ 0.
Bayesian methods for model selection, like [15,17], could be used as an alternative

approach to the problem at hand, and will be the subject of future research. We must
stress, however, that the correct interpretation of the answers generated by alternative
Bayesian methods may be quite different, as studied in [18,19,20].
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