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Abstract. We present a module based criterion, i.e. a sufficient condition based on the absolute

value of the matrix coefficients, for the convergence of Gauss–Seidel method (GSM) for a square

system of linear algebraic equations, the Generalized Line Criterion (GLC).

We prove GLC to be the “most general” module based criterion and derive, as GLC corollaries,

some previously know and also some new criteria for GSM convergence. Although far more

general than the previously known results, the proof of GLC is simpler. The results used here are

related to recent research in stability of dynamical systems and control of manufacturing systems.
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1 Introduction

We present a module based criterion, i.e. a sufficient condition based on the

absolute value of the matrix coefficients, for the convergence of Gauss–Seidel

method (GSM) for a square system of linear algebraic equations, the Generalized

Line Criterion (GLC).

We prove GLC to be the “most general” module based criterion and derive,

as GLC corollaries, some previously know and also some new criteria for GSM

convergence. Although far more general than the previously known results, the

proof of GLC is simpler. GLC is shown to be a necessary and sufficient condition

of the convergence for a class of matrices defined by its sign structure.
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The results here presented are analogous to important results in the stability

of manufacturing systems, where matrices with the sign structure of S(A) are

common. These matrices appear in the dynamics of systems operating under

generalized Round-Robin policies, either explicitly imposed, as in [5], or induced

by polyhedral cones [8], [3], [4].

It is quite natural that convergence and stability results are closely related,

as extremely well exploited in [6], [7]. In many instances the GLC, and the

associated linear algebra operations, like scaling and permutation, have natural

interpretations for system stabilization and control. Therefore, the major moti-

vation for the GLC is to present these results in a self contained form, that is

completely in the context of simple computational linear algebra. The simple

linear form of the GLC also facilitates the use of several related techniques like

optimization, sensitivity, and post-optimal analysis for manufacturing systems.

2 Problem setting

In this paper, the following notation is used, 1 is the vector [1, 1, . . . 1]t , the

diagonal operator D = diag(d) defines the diagonal matrix D whose diagonal

elements are given by vector d, whereas a = diag(A) defines vector a as the main

diagonal of matrix A, so D = diag(diag(A)) gives Di,i = Ai,i , Di,j = 0, i �= j .

The matrices |A| and S(A) associated to a given matrix, A, are defined next.

Matrices with the sign structure of S(A) appear naturally in the control theory

of manufacturing systems [5], [3].

|A|i,j = ∣∣Ai,j

∣∣ ; S(A)i,i = ∣∣Ai,i

∣∣ and S(A)i,j = − ∣∣Ai,j

∣∣ , i �= j

The problem in question is the solution of the linear system of equations Ax =
b, where A ∈ Rn×n, b ∈ Rn and the coefficient matrix has no null diagonal

elements, Ai,i �= 0, as usual in GSM. GSM, and several other iterative methods

can be written as stationary iterative methods:

xk+1 = Bxk + c

where B is called the method’s iteration matrix. Many of those methods are

obtained splitting the coefficient matrix A = M − N , M non-singular, and then
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writing

Mxk+1 = Nxk + b , or xk+1 = M−1Nxk + M−1b .

Splitting the coefficient matrix in its lower, upper triangular and diagonal parts:

A = L+D+U , i ≥ j ⇒ Li,j = 0, j ≥ i ⇒ Ui,j = 0 and D = diag(diag(A)),

GSM is the stationary iterative method with M = (D + L) and N = −U , or

B = (D + L)−1U and c = (D + L)−1b.

If the above iteration is performed “in parallel”, i.e., using at iteration k+1 only

xk and not the already available elements of xk+1, we have the Jacobi method,

JM, where M = D and N = −(L + U), or B = −D−1(L + U) and c = D−1b.

The method converges, for any initial point x0, iff ρ(B) ≡ max |eig(B)| < 1,

i.e. iff all eigenvalues of the iteration matrix lie inside the unit circle.

This general necessary and sufficient criterion is usually hard to use when

asserting convergence, because finding the largest eingenvalue of B is a hard non-

linear problem. However since, for any consistent matrix norm, ρ(B) ≤ ‖B‖, the

condition ‖B‖ < 1 is a sufficient convergence criterion. In particular, the infinite

norm ‖B‖∞ ≡ max‖x‖=1 ‖Bx‖ = maxi

∑
j

∣∣Bi,j

∣∣ provides strict diagonally

dominance as an easily verified sufficient criterion for JM and GSM convergence

[1]. This is known as the

Line Criterion (LC). A obbeys LC if S(A)1 > 0.

The following lemma will be needed:

Lemma 1. The convergence of the iterative method Mxk+1 = Nxk +b implies

that A = M − N is non-singular.

Proof. Assume by contradiction that for some h �= 0, Ah = 0, so h = M−1Nh.

Then B = M−1N has 1 as an eingenvalue, and the method can not be convergent

[2]. �

3 Generalized Line Criterion (GLC)

Scaling the equations and variables of a liner system Ax = b is the operation

of multiplying the coefficient matrix by left and right non-singular diagonal
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matrices obtaining the equivalent system EAWy = Eb. Scaling is widely used

in computational linear algebra for pre-conditioning, control floating point error

accumulation, etc. The GSM convergence has the interesting property of not

being affected by scaling the linear system:

Lemma 2. Let E and W be non-singular diagonal matrices. Then the GSM

converges on Ax = b iff it converges on EAWy = Eb.

Proof. Since the pre-multiplication of A by E does not affect the GSM formulas

and considering the bijection Wy = x, the result follows immediately. �
Let us now define the GLC convergence criterion for the GSM on Ax = b.

Generalized Line Criterion (GLC). A obeys GLC iff there is a vector w > 0

such that S(A)w > 0.

It is trivial that if A obeys LC then A obeys GLC with w = 1. Moreover,

using W = diag(w), if A obeys GLC then AW obeys the line criterion. This

observation and lemma 2 lead to:

Theorem 1. If A obeys the GLC then the GSM iteration applied to Ax = b

converges.

Although GLC is a sufficient condition for GSM convergence, it is not a nec-

essary condition as it can be seen by the example:

A = (L+D+U) =



2 1 1

1 2 −1

−1 1 2


, B = (D+L)−1U =




0 1/2 1/2

0 −1/4 −3/4

0 3/8 5/8


,

where the eigenvalues of B = (D +L)−1U all lie inside the unit circle although

the system does not satisfy GLC, because det(S(A)W) = det(S(A)) = 0. How-

ever, if A has a special sign structure, then GLC becomes also a necessary

condition:

Theorem 2. If A has a sign structure such that, in each line, the diagonal

element sign is opposite to the sign of all other elements, then GLC turns out to

be a necessary and sufficient condition for GSM convergence.
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Proof. Using the left scaling E = diag(diag(A))−1, we have S(A) = A, and

it suffices to prove the theorem for the case diag(A) = 1 and Ai,j ≤ 0, i �= j .

Since the sufficiency of GLC has already been established in Theorem 1, we

only have to show that if GSM converges for an A such that diag(A) = 1 and

Ai,j ≤ 0, i �= j , then A obeys GLC.

Splitting A = L + U , diag(L) = 1, and we can write L and T = L−1 in

product form, L = L1L2 . . . Ln−1 and T = T n−1T n−2 . . . T 1, where Lk and

T k = (Lk)−1, have the structure:

Lk =




1 0

0
. . .

1
...

... Lk+1,k

...
. . . 0

0 Ln,k 1




, T k =




1 0

0
. . .

1
...

... −Lk+1,k

...
. . . 0

0 −Ln,k 1




The factors in the product form perform elementary row operations, i.e. if

y = Lkx then yk+h = xk+h + Lk
k+hx

k. Let us now consider b = 1, x0 ≥ 0, and

the corresponding GSM iteration sequence

xk+1 = −L−1Uxk + L−11 = L−1(−U)xk + L−11

From the product form of T = L−1 and remembering that Li,j ≤ 0 and

Ui,j ≤ 0, it is easy to see that L−11 > 0 and −L−1U ≥ 0. From the GSM

iteration it follows that

∀x0 ≥ 0 , xk+1 ≥ L−11 > 0.

Assuming GSM convergence and x0 ≥ 0,

lim
k→∞ xk = z ≥ L−11 > 0 , and Az = 1 > 0

so A obeys GLC. �

From theorem 2 we see that GLC is the most general “module based” criterion

of convergence of GSM. Some small variations, including a minor generalization

of theorem 1 can be stated, for example:
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Corollary 1. If there is a w > 0 such that S(A) ≥ 0 with no more than one

coordinate of S(A)w equal to zero, then the GSM converges for A.

Proof. If S(A)w > 0 we are in the situation of theorem 1. Otherwise let h be

the unique null coordinate of S(A)w. Using S(A)h,h > 0 and the continuity of

S(A) : R
n �→ R

n, there is a sufficiently small ε > 0 such that S(A)w′ > 0 for

w′ = [w1, . . . wh + ε . . . wn] > 0. �

Corollary 2. If det(S(A)) �= 0 and if there is a w > 0 such that S(A)w ≥ 0

then the GSM converges to A.

Proof. Since S(A) in non singular let y = S(A)−11. By continuity of S(A) :
R

n �→ R
n, there is a sufficiently small ε > 0 such that w′ = w + εy > 0 and

S(A)w′ = S(A)w + ε1 > 0. �

From Theorem 2, any module based convergence criterion for GSM must also

assert GLC. The simplest such module based criterion is LC, that is GLC for

w = 1. Finally we consider the effect of permutation operations:

Lemma 3. (Permutations). Let p and q be permutations of [1, . . . n], with

the corresponding row and column permutation matrices, Pi,j = Ip(i),j and

Qi,j = Ii,q(j), so that the permuted matrix PAQ has no null diagonal elements.

GSM converges for A iff GSM converges for PAQ.

Proof. We only have to remember that any permutation matrix P is orthogonal,

i.e. PP t = I , so the 2-norm of any vector v is not changed by the rotation

w = Pv, and neither is the spectral radius of the permuted matrix PAQ. �

For symmetric permutations, PAP t , we have a simple permutation of diagonal

elements, i.e. diag(PAP t) = P diag(A). Again, this special case is of particular

interest in manufacturing systems as in [4] and [5].
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