
1

Enforcing Harmonicity and Smoothness in Bayesian
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Abstract—This article presents theoretical and experimen-
tal results about constrained non-negative matrix factorization
(NMF) in a Bayesian framework. A model of superimposed
Gaussian components including harmonicity is proposed, while
temporal continuity is enforced through an inverse-Gamma
Markov chain prior. We then exhibit a space-alternating gen-
eralized expectation-maximization (SAGE) algorithm to estimate
the parameters. Computational time is reduced by initializing
the system with an original variant of multiplicative harmonic
NMF, which is described as well. The algorithm is then applied to
perform polyphonic piano music transcription. It is compared to
other state-of-the-art algorithms, especially NMF-based. Conver-
gence issues are also discussed on a theoretical and experimental
point of view.

Bayesian NMF with harmonicity and temporal continuity
constraints is shown to outperform other standard NMF-based
transcription systems, providing a meaningful mid-level repre-
sentation of the data. However, temporal smoothness has its
drawbacks, as far as transients are concerned in particular, and
can be detrimental to transcription performance when it is the
only constraint used. Possible improvements of the temporal prior
are discussed.

Index Terms—Non-negative matrix factorization (NMF), music
transcription, audio source separation, unsupervised machine
learning, Bayesian regression.

I. I NTRODUCTION

NON-NEGATIVE matrix factorization (NMF) is a pow-
erful, unsupervised decomposition technique allowing

the representation of two-dimensional non-negative data as a
linear combination of meaningful elements in a basis.

NMF has been widely and successfully used to process
audio signals, including various tasks such as monaural sound
source separation [1], audio stream separation [2], audio-to-
score alignment [3], drum transcription [4]. In particular, it
has been efficiently used to separate notes in polyphonic music
[5], [6] and transcribe it in a symbolic format such as MIDI.
In this case, a time-frequency representation of the signalis
factored as the product between a basis (or dictionary) of
pseudo-spectra and a matrix (decomposition) of time-varying
gains. When obtained from harmonic instruments sounds, the
basis is shown to partially retain harmonic components, with
a pitched structure, that can be interpreted as musical notes,
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while the decomposition gives information about the onset and
offset times of the associated notes.

Meaningful is here a key word: we expect the basis to be
formed of interpretable elements, exhibiting certain semantics.
The non-negativity constraint is a first step towards this inter-
pretability, compared to other well-known techniques suchas
Singular Value Decomposition (SVD). For instance, the basis
learnt by NMF from an image database is expected to contain
meaningful images (the so-called “part-based representation”
[7]). This interpretability is often observed in practice,which
is certainly one of the reasons for NMF’s popularity; but it is
not always as satisfying as expected (see, for instance, facial
images in [8], that are expected to retain facial parts like eyes,
nose, mouth, but do not exactly). As some other desirable
characteristics of the decomposition, it is more observed as a
welcome side-effect, than enforced and controlled.

To alleviate this lack of control on the decomposition
properties, most authors have proposed constrained variants of
NMF, ensuring and enhancing those side-effects of baseline
NMF: sparsity, spatial localization, temporal continuityfor
instance. The typical approach for such constrained variants is
to add a penalty term to the usual cost function (reconstruction
error) and minimize their sum, seee.g. [1], [8], [9].

On the other hand, several authors have imported the idea
of a non-negative constraint in other frameworks than NMF,
in particular statistical framework. We can cite non-negative
variants of Independent Component Analysis (ICA) [10] and
non-negative sparse coding [11]. The Bayesian framework
offers both a strong theoretical framework, and the possibility
to manage constraints through models and priors.

In this paper, we focus on a Bayesian approach of NMF that
allows to enforce harmonicity of the dictionary components(a
desired property for music transcription task) and temporal
smoothness of the decomposition, preserving however the
adaptiveness of NMF, which is purely data-driven, and the
interest of the provided mid-level representation for other
potential applications. The paper is organised as follows.
Section II recalls the baseline NMF model and state-of-the-
art constrained NMF algorithms. In particular, constraints
of harmonicity and temporal continuity are discussed and
Bayesian approaches for NMF are presented. Our model, and
an EM-like algorithm for NMF with harmonicity and temporal
smoothness are proposed in section III, including a multiplica-
tive initialization phase that updates our previous work on
harmonic NMF. Section IV is devoted to experimental results
in the transcription task context. Conclusion and perspectives
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are drawn in section V.

II. CONSTRAINED NON-NEGATIVE MATRIX

FACTORIZATION

A. Notations

Matrices are denoted by straight bold letters, for instance,
V, W, H. Lowercase bold letters denote column vectors, such
as wk = (w1k . . . wFk)T , while lowercase plain letters with
a single index denote rows, such thatH = (hT

1 . . . hT
K)T . We

also define the matrix̂V = WH.
We use the binary operators, to denote definitions and

c
=

to denote equality up toan additiveconstant.
Calligraphic uppercase letters are used to denote probability

distributions:N , P, IG denote Gaussian, Poisson and inverse-
Gamma distributions. Their expressions are recalled in appen-
dix A.

B. Baseline model and algorithms

Out of any applicative context, the NMF problem is ex-
pressed as follows: given a matrixV of dimensionsF × N
with non-negative entries, NMF is the problem of finding a
factorization

V ≈WH = V̂ (1)

where W and H are non-negative matrices of dimensions
F × K and K × N , respectively.K is usually chosen such
that FK + KN ≪ FN , hence reducing the data dimension.
In typical audio applications, the matrixV is chosen as
a time-frequency representation (e.g. magnitude or power
spectrogram),f denoting the frequency bin andn the time
frame.

The factorization (1) is generally obtained by minimizing a
cost function defined by

D(V|V̂) =

F
∑

f=1

N
∑

n=1

d(vfn|v̂fn) (2)

whered(a|b) is a function of two scalar variables.d is typically
non-negative and takes value zero if and only if (iff)a = b.
The most popular cost functions for NMF are the Euclidean
(EUC) distance and the generalized Kullback-Leibler (KL) di-
vergence, which were particularly popularized (as NMF itself)
by Lee and Seung, see,e.g., [7]. They described multiplicative
update rules under whichD(V|WH) is shown to be non-
increasing, while ensuring non-negativity ofW and H. The
update rules are obtained by using a simple heuristics, which
can be seen as a gradient descent algorithm with an appropriate
choice of the descent step. By expressing the gradient of the
cost function∇D as the difference of two positive terms∇+D
and∇−D, the cost function is shown (in particular cases) or
observed to be nonincreasing under the rules:



















W←W ⊗
∇−

W
D(V|WH)

∇+
W

D(V|WH)

H← H⊗
∇−

H
D(V|WH)

∇+
H

D(V|WH)

(3)

Sparsity
∑K

k=1
1

√
N−1

(

√
N −

∑N

n=1
|hkn|/

√

∑N

n=1
h2

kn

)

[12]

Spatial localization λ1

∑K

k=1

∑K

k′=1

[

W
T
W

]

kk′

−λ2

∑K

k=1

[

HH
T
]

kk
[8]

Least correlation
∑K

k=1
log
[

HH
T
]

kk
− log |HH

T | [9]

Temporal continuity
∑K

k=1

∑N

n=1
|hkn − hk(n−1)|2 [1]

TABLE I
SOME STATE-OF-THE-ART CONSTRAINTSDc IN NMF PROBLEM.

For some choices ofd, like EUC or KL, monotonicity of the
criterion under these rules can be proven [7], but in the general
case, these updates do not guarantee any convergence.

C. Constrained approaches

1) Constraints imposed via penalty terms: In standard
NMF, the only constraint is the elementwise non-negativity
of all matrices. All other properties of the decomposition,as
satisfying as it is, come as uncontrolled side-effects and in a
way, the fact that the decomposition retains certain semantics
of the original signal, performs separation or provides mean-
ingful and interpretable components is just “good news”. It
sounds thus natural to try to improve this potential by adding
explicit constraints to the factorization problem, in order to
enhance and control desired properties.

Then, several constraints have been introduced to get NMF
solutions that better fit certain expectancies. Among other
proposed constraints, we can cite sparsity [12], spatial local-
ization [8], least correlation between sources [9] or temporal
continuity [1], [13].

The common point between those algorithms, whichever
constraint is considered, is the “penalty term approach”. Rather
than minimizing only a reconstruction error termDr (EUC or
KL, typically), the minimized cost function includes a term
Dc that quantifies the desired property. The constrained NMF
problem is then expressed as:

min
W,H

Dr(V|WH) + λDc(V|WH)

whereλ is a weight parameter. Table I gives a few examples
of literature penalty terms. Temporal smoothness is one of
these examples. In standard NMF and most of its variants,
time frames are considered as independent, non-related ob-
servations, which is obviously not true for real-world sounds
and in particular for music. In the case of musical notes,
the main part of the note (the sustain and decay parts, after
the attack) possesses a slowly time-varying spectrum. When
expressed as the product between a template spectrumwk

and a time-varying gainhk, according to NMF formulation,
it is equivalent to saying that the rowhk is smooth, or, in
other words, that the coefficienthkn is not that different from
hk(n−1). [1] and [13] thus introduce penalty terms in the NMF
cost function to take into account this temporal continuity. In
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[1] the term is directly linked to the differenceshkn−hk(n−1),
while [13] variant relies on a ratio between short-time and
long-time variance ofhk. Those terms are shown to favor
smoothness in lines ofH. Another possible approach is the
statistical approach from [14]. Temporal continuity is favored
through putting an appropriate prior onH. This solution will
be exposed with more details and adapted to our case in section
III-C.

It is interesting to notice that non-smoothness may also be
an objective (see for instance [15]), depending on the data
and the application. [15] points out that smoothness of one
of the NMF factors (i.e. W or H) may enhance sparsity
of the other one, thus establishing a link between those two
popular constraints. On the other hand, [1] combines sparsity
and temporal continuity constraints onH, but concludes to the
non-efficiency of the sparsity constraint in his particularcase.

The penalty approach has several drawbacks. First, a crite-
rion quantifying the desired property must be found. Second,
no general proof of convergence is available for the update
scheme (3). Moreover, the parameterλ has to be chosen empir-
ically. These reasons motivated our approach for harmonicity
constraint in previous and current work; this approach is
exposed in section II-C2.

2) Deterministic constraints: Musical notes, excluding
transients, are pseudo-periodic. Their spectra are then comb-
alike, with regularly spaced frequency peaks. As we wish to
use NMF to separate musical notes in a polyphonic recording,
we expect that elements in the basisW are as near as possible
from a harmonic distribution. This property is yet not easily
quantified by a penalty term.

In [16], we rather proposed an alternative model to baseline
NMF problem, enforcing the basis harmonicity. We impose the
basis components to be expressed as the linear combination of
narrow-band harmonic spectra (patterns), which are arbitrarily
fixed:

wfk =

M
∑

m=1

emkPkm(f) (4)

For a given component numberk, all the patternsPkm share
the same pitch (fundamental frequencyf0); they are defined by
summation of the spectra of a few adjacent individual partials
at harmonic frequencies off0, scaled by the spectral shape
of subbandk. This spectral envelope is chosen according to
perceptual modelling [16]. Figure 1 illustrates the patterns for
one note and the corresponding atomwk. Coefficientsemk

are learned by NMF as well as the decompositionH. Update
rules are obtained by minimizing the same cost function as
in baseline NMF, except that it is minimized with respect to
(wrt) E andH rather thanW andH.

3) Statistical constraints: Another way to induce properties
in the NMF is to switch to a statistical framework and
introduce adequate prior distributions. Let us consider the
following model, proposed in [17], [18]:∀n = 1, ..., N ,

xn =
K
∑

k=1

ckn ∈ C
F (5)
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Fig. 1. Example harmonic basis spectrumwk corresponding to the note
C4 (MIDI pitch 72), with underlying narrowband spectraPkm and spectral
envelope coefficientsemk (with M= 6).

where latent variablesckn are independent and follow a
multivariate Gaussian distribution

ckn ∼ N (0, hkndiag(wk)) (6)

In [14], the estimation of the parameterθ = {W,H}, in a
maximum likelihood (ML) sense is shown to be equivalent to
solving the NMF problemV ≈ WH, when observingV =
(|xfn|

2)fn and choosing the underlying cost functiond as the
Itakura-Saito divergence:

dIS(a|b) =
a

b
− log

a

b
− 1 (7)

Other authors, like [19], have proven similar equivalences
between NMF with KL cost and ML estimation in the model:

|xn| =
K
∑

k=1

|ckn| (8)

under the assumption|ckn(f)| ∼ P(wfkhkn), whereP(λ) is
the Poisson distribution.

In [20], the authors propose a model where the factorsW

andH are expressed as two functionsfh andfw (called “link-
functions”) of Gaussian latent variables. It can be seen as a
generalization of the previous model for appropriate choices
of fh andfw (relatively soft assumptions are put on them). It
is another example of the power of the statistical approach to
incorporate constraints or knowledge in the NMF problem.

One main advantage of this statistical approach is the
possibility to switch from ML estimation to maximum a
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posteriori (MAP) estimation, thanks to Bayes rule:

p(W,H|V) =
p(V|W,H)p(W)p(H)

p(V)
(9)

Thus, choosing adequate prior distributionsp(W) and p(H)
is a way to induce desired properties in the decomposition.
Furthermore, the statistical framework provides a strong theo-
retical basis and efficient algorithms with proven convergence,
like the expectation-maximization (EM) algorithm and its
variants, to estimate NMF factors.

In next section, we propose to combine this framework
and the previous model (4) to enforce both harmonicity in
columns of W and smoothness in rows ofH, which are
desired properties of the NMF of musical signals.

III. PROPOSED ALGORITHM

A. Probabilistic harmonic model

The direct usage of formulation (4) in the model (5) is
possible, but leads to computational issues. An equivalent
model is obtained by assuming:

xn =

K
∑

k=1

M
∑

m=1

dkmn (10)

with

xn ∈ C
F

dkmn ∼ N (0, hknemkdiag(Pkm))

Pkm = [Pkm(1)...Pkm(F )]
T

Assuming the equality ckn =
∑

m dkmn and the
independence ofdkmn, we can verify that ckn ∼
N (0, hkn

∑

m emkdiag(Pkm)).
From [14], we can establish the equivalence between ML

estimation in this generative model (10) and minimization of
dIS , which will offer a good coherence and comparability
between algorithms for our test. [14] also show that Itakura-
Saito divergence, whose expression is recalled in equation(7),
is well-suited to NMF decomposition of audio signals. Advan-
tages ofdIS also include: a good representation of residual
noise (if components are devoted to it, see future work sugges-
tions in section V), and a good fit between the representation
and the observation on a log scale (due to the shape ofdIS at
fixed energy scale, and the strong cost of representing a bin
by zero). This motivates our model and the choice of IS cost
(and not, for instance, the weighted Euclidean cost from [16])
in this work.

B. Maximum likelihood estimation

We now describe an EM-based algorithm for the estimation
of the parametersθ = {E,H}. This algorithm is adapted from
ML estimation proposed in [14] for the model (10). In ML
estimation, the criterion to be maximized is the log-likelihood
of the observations:

CML(θ) , log p(V|θ) (11)

We partition the set of all parameters into disjoint subsets
θk = {{emk}m, hk} so thatθ =

⋃K

k=1 θk. This partition, and

the additive form of the model (10) where the latent variables
are supposed independent, allow the usage of the Space
Alternating Generalized EM algorithm (SAGE), introduced
in [21], to estimate the parameters. The hidden data-space
associated with each subsetθk is Dk = [Dk1 . . .DkN ],
whereDkm = [dkm1 . . .dkmN ] ∈ C

F×N . The use of SAGE
implies maximizing the functionalQML

k (θk|θ
′) which is the

conditional expectation of the log likelihood ofDk:

QML
k (θk|θ

′) ,

∫

Dk

log p(Dk|θk)p(Dk|V,θ′)dDk (12)

whereθ′ contains the most up-to-date estimated values of all
parameters.

We can however notice thatQML
k can be expressed as the

sum (overm) of auxiliary functionalsQML
km expressed as:

QML
km (θkm|θ

′) ,

∫

Dkm

log p(Dkm|θkm)p(Dkm|V,θ′)dDkm

(13)
where we define subsetsθkm = {emk, hk}. The problem
reduces to maximizing eachQML

km (θkm|θ
′) wrt emk, and

the sumQML
k (θk|θ

′) wrt hkn iteratively. Maximizing these
functionals makes the criterionCML(θ) increase, according
to [21].

At each iteration and for eachk, the functionalsQML
km are

computed. The sum of the functionals overm is formed and
maximized by computing and zeroing its derivative wrthkn.
The derivative wrtemk of each functional is computed and
zeroed, resulting in an update rule for eachemk. Details of
the computations are available in appendix B. Updates rules
can be then expressed as follows:

h
(ℓ+1)
kn = h

(ℓ)
kn×



1 +
1

FM

∑

f

∑

m

h
(ℓ)
kne

(ℓ)
mkPkm(f)

v̂fn

(

vfn

v̂fn

− 1

)



 (14)

e
(ℓ+1)
mk = e

(ℓ)
mk×



1 +
1

FN

∑

n

∑

f

h
(ℓ+1)
kn e

(ℓ)
mkPkm(f)

v̂fn

(

vfn

v̂fn

− 1

)



 (15)

where the superscriptℓ denotes the value at iterationℓ and
where v̂fn is the current reconstruction ofvfn, i.e. v̂fn =
∑K

k=1

∑M

m=1 hknemkPkm(f) with the most up-to-date values
of the parameter, either(ℓ) or (ℓ + 1) depending on the
most recent available values.In SAGE formalism, we update
separately each rowhk, one after the other,but, during this
update, allhkn for n from 1 toN are updated simultaneously.1.

Using SAGE framework guarantees the monotonicity of the
criterion CML(θ). Moreover, [21] proves the existence of a
region of monotone convergence in norm, i.e.,θ converges
in norm to a local minimum, provided the algorithm was
initialized in an appropriate neighborhood of that minimum.

1With a more explicit notation, at iteration(ℓ + 1), the coefficienth(ℓ+1)
kn

is determined using allh(ℓ+1)
j

for all j < k andh
(ℓ)
kp

for all p.
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C. Enforcing temporal smoothness

In terms of computational cost, this maximum likelihood
estimation ofE and H has no practical interest, compared
to multiplicative gradient descent update rules: as observed
in [14] for a similar case (multiplicative vs. SAGE algorithm
for standard NMF with Itakura-Saito divergence), it iscom-
putationnallyslower and even more sensitive to local minima
than usual multiplicative algorithms. However, it has two main
advantages: first, the theoretical framework guarantees conver-
gence to a local minimum; second, it opens the possibility of
including priors on the parameters, possibly in a hierarchical
fashion, and then constraining NMF solutions in an elegant
way.

In [14], this framework is exploited to enforce temporal
smoothness over the rows ofH. We provide a priori informa-
tion on θ, expressed as a prior distributionp(θ). Thanks to
the Bayes rule, recalled in equation (9), we get a maximum
a posteriori (MAP) estimator by maximizing the following
criterion:

CMAP (θ) , log p(θ|V) (16)
c
= CML(θ) + log p(θ) (17)

We choose here to use the Markov chain prior structure
proposed in [14]:

p(hk) = p(hk1)

N
∏

n=2

p(hkn|hk(n−1)) (18)

wherep(hkn|hk(n−1)) reaches its maximum athk(n−1), thus
favoring a slow variation ofhk in time. We proposed for
instance the following choice:

p(hkn|hk(n−1)) = IG(hkn|αk, (αk + 1)hk(n−1)) (19)

whereIG(u|a, b) denotes the inverse-Gamma distribution with
shape parametera and scale parameterb, whose mode is
b/(a + 1); the initial distribution p(hk1) is Jeffrey’s non-
informative prior (see appendixC).

Several reasons motivated the choice of this prior. First, non-
negativity arises naturally from this modelling. Secondly, this
prior is conjugate with respect to the Gaussian observation
model, which brings computational simplicity. Moreover, it
seems appropriate to the modelling of temporal envelopes
in music signal, first for its favouring the smoothness by
the appropriate choice of the mode, secondly because its
assymmetry around the mode constraints more smoothness
on decrease parts (hkn ≤ hk(n−1)) than on increase parts
(hkn ≥ hk(n−1)). Thus, it favours smoothness in silence and
sustain/decay parts of the notes, but does not disfavour “too
much” the attacks.

Parametersαk are here arbitrarily fixed, depending on the
desired degree of smoothness (the higherαk, the smoother
hk), but we could consider in future work the possibility to
learn it as well.

As the prior respects the schemep(H) =
∏K

k=1 p(hk),
we can still use the SAGE formalism. The functional (12)
to minimize is now written:

QMAP
k (θk|θ

′)
c
=

M
∑

m=1

QML
km (emk, hk|θ

′) + log p(hk) (20)

QML
km being unchanged, we just have to incorporate the con-

tribution of the prior in the computation and zeroing of the
gradients. In Appendix C, this is shown to be proportional to
a second-order polynomial:

∇hkn
QMAP

k (emk, hk|θ
′) =

−FM

h2
kn

(p2 h2
kn + p1 hkn − p0)

(21)
The values of p0, p1, p2 are common for eachn ∈
[2 . . . N − 1] and take different values at the borders of the
Markov chain (n = 1 and n = N ). They obviously depend
on k, n and ℓ (though the notation doesn’t mention it, for
readability purpose). Their expressions are given in TableII
and the detailed computations are available in Appendix C.
The resulting update rule is given by the only non-negative
root of the polynomial:

h
(ℓ+1)
kn =

2p0
√

p2
1 + 4p2p0 + p1

(22)

(written here in a form avoiding possible division by zero) and
the ML update ofE (15) is unchanged.

n = 1 n = 2 . . . N − 1 n = N

p0 h̃k1 h̃kn +
αk+1
FM

hk(n−1) h̃kN +
(αk+1)

FM
hk(N−1)

p1 1 +
1−αk

FM
1 + 1

FM
1 +

1+αk

FM

p2
1

FM

αk+1
hk2

1
FM

αk+1
hk(n+1)

0

TABLE II
COEFFICIENTS OF THE ORDER2 POLYNOMIAL TO BE SOLVED IN ORDER

TO UPDATEhkn IN BAYESIAN HARMONIC NMF WITH AN

INVERSE-GAMMA MARKOV CHAIN PRIOR. h̃kn DENOTES THEML
UPDATE, GIVEN BY THE RIGHT MEMBER OF EQUATION(14).

In the following, we refer to this algorithm as “Harmonic
Smooth NMF” (or, in short form, “HS-NMF”).

We can also consider the current model of temporal smooth-
ness, but without harmonicity constraint, leading to the reg-
ularized NMF algorithm proposed in [14]. In the following,
this algorithm will be denoted as “S-NMF”.

D. Multiplicative initialization with harmonicity

Due to the slow convergence of EM-like algorithms, HS-
NMF needs to be efficiently initialized. Theoretical results
from [21] also suggest the interest of smart initialization
in terms of convergence of the algorithm. Harmonic mul-
tiplicative NMF could then be used to “bootstrap” SAGE
algorithm. However, the multiplicative algorithm of [22] was
originally designed for a perceptually weighted Euclidean
distance, which would not be coherent with HS-NMF criterion
(based on IS divergence (7)). For this reason, we wish to adapt
harmonic NMF with multiplicative update rules from [22] to
this distance. The criterion to be minimizedis written:

DIS(V|WH) =

F
∑

f=1

N
∑

n=1

dIS(vfn|
K
∑

k=1

M
∑

m=1

hknemkPkm(f))

(23)
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We compute its derivative wrthkn, which is expressed as the
difference of two positive terms:

∇hkn
DIS(V|WH) =

F
∑

f=1

wfk

v̂fn

−
F
∑

f=1

vfnwfk

v̂2
fn

(24)

where v̂fn =
∑K

k′=1 wfk′hk′n =
∑K

k′=1

∑M

m′=1 em′k′Pk′m′(f)hk′n. The derivative wrt
emk fits in the same scheme:

∇emk
DIS(V|WH) =

F
∑

f=1

N
∑

n=1

hknPkm(f)

v̂fn

−
F
∑

f=1

N
∑

n=1

vfnhknPkm(f)

v̂2
fn

(25)

The update rules are derived from the heuristics (3) and write:

hkn ← hkn ×

∑F
f=1 vfnwfk/v̂2

fn
∑F

f=1 wfk/v̂fn

(26)

emk ← emk ×

∑F

f=1

∑N

n=1 vfnhknPkm(f)/v̂2
fn

∑F

f=1

∑N

n=1 hknPkm(f)/v̂fn

(27)

In the following, this algorithm will be referred to as “H-
NMF/MU”.

IV. A PPLICATION TO MUSIC TRANSCRIPTION

Music transcription consists in converting a raw music
signal into a symbolic representation of the music within:
for instance a score, or a MIDI file. Here, we focus on
information strictly related to musical notes,i.e. musical pitch,
onset and offset time, discarding high level information usually
available in a full music sheet, such as bar lines or key
signature. Automatic transcription is a very active field of
research, known to be difficult, in particular because of note
overlapping in the time-frequency plane. Various methods have
been proposed to address the transcription issue, including
neural network modelling [23], parametric signal modelling
and HMM tracking [24] or Bayesian approaches [25]. We
propose here to assess the efficiency of Bayesian harmonic
and smooth NMF for this task.

A. Experimental setup

1) Database: To evaluate and quantify transcription perfor-
mance, we need a set of polyphonic music pieces with accurate
MIDI references. The two most simple ways to get such data
are either to record a MIDI instrument (the acquisition of
audio and MIDI being simultaneous), or to synthetize sound
from given MIDI files. For the sake of timbre realism and
ease of acquisition, the piano is an instrument of choice:
very high quality software synthetizers are available on sale,
and an acoustic piano can be equipped to play mechanically,
and produce a MIDI output, while retaining the timbre of a
real instrument. In his thesis [26], Valentin Emiya collected
such a database.MAPS (MIDI-Aligned Piano Sounds) includes
isolated notes, random and tonal chords, pieces from the
piano repertoire, recordings on an upright DisKlavier and

high quality software synthesis. From this very complete
database, we excerpted two subsets to evaluate our algorithms:
a synthetic subset, produced by Native Instruments’ Akoustik
Piano (“Bechstein Bach” preset, from samples recorded on
a Bechstein D280 piano), and a real audio subset, recorded
at TELECOM ParisTech on a Yamaha Mark III (upright
DisKlavier). Each subset is composed of 30 pieces of 30
seconds each (original pieces fromMAPS were truncated).The
piano was chosen for practical reasons, but it can be stressed
that nothing in the method constraints it to be applied only to
piano signals.

2) Structure of NMF-based transcription: All NMF-based
transcription systems used here follow the same workflow:

1) Computation of an adapted time-frequency representa-
tion of the signal,V;

2) FactorizationV ≈WH;
3) Attribution of a MIDI pitch to each basis spectrum

wk (either from original labelling of columns,when
the algorithm includes the harmonicity constraint, or by
performing a pitch estimation);

4) Onset/offset detection applied to each time envelopehk.

In [22], it is observed that using a nonlinear frequency
scale resulted in a representation of smaller size, with better
temporal resolution in the higher frequency range, than usual
Short-Time Fourier Transform (STFT), while preserving the
subsequent transcription performance. We then pass the signal
through a filterbank of 257 sinusoidally modulated Hanning
windows with frequencies linearly spaced between 5 Hz and
10.8 kHz on the Equivalent Rectangular Bandwidth (ERB)
scale. We then split each subband into disjoint 23 ms time
frames and compute the power within each frame.

Pitch estimation of basis spectra is superfluousin NMF
with harmonicity constraint, since each basis component can
be labelled from the beginning with the pitch of the patterns
Pkm used to initialize it.For NMF without this constraint,
pitch identification is performed on each column ofW by the
harmonic comb-based technique used in [16].

Note onsets and offsets are determined by a simple
threshold-based detection, followed by a minimum-duration
pruning, see [16]. The detection threshold is denoted byAdB

and expressed in dB underH maximum.

Abbr. Description Reference

NMF/MU Baseline NMF minimizing IS divergence [14]
Multiplicative update rules

S-NMF SAGE algorithm for NMF
With smoothness constraint onH [14]

Virtanen’07 Multiplicative NMF
With temporal continuity constraint [1]

Minimizing KL div. plus a penalty term
Vincent’08 Multiplicative NMF [16]

With weighted Euclidean distance
and harmonicity constraint

Marolt’04 Neural network based transcription [23]

TABLE III
REFERENCE ALGORITHMS.

3) Evaluation: Transcription performance is quantitatively
evaluated according to usual information retrieval scores[27].
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Precision rate (P) is the proportion of correct notes among
all transcribed notes (quantifying the number of notes thatare
transcribed, but should not).Recall rate (R) is the propor-
tion of notes from the MIDI reference which are correctly
transcribed (thus quantifying the number of notes that should
be transcribed, but are not).F-measure (F) aggregates the
two former criteria in one unique score and is defined as
F = 2PR/(P + R). A transcribed note is considered as
correct if its pitch is identical to the ground truth, and its
onset time is within 50ms of the ground truth, according to
community standards (see, for instance, the MIREX compe-
tition). Note offset detection is also evaluated through the
mean overlap ratio (MOR) defined in [28]. For a correctly
transcribed note, the overlap ratioonote between the original
note and its transcription is the ratio between the length ofthe
intersection and union of their temporal widths:

onote =
min(toff )−max(ton)

max(toff )−min(ton)
(28)

whereton andtoff are the vectors of onset times (respectively
offset times) of the original and corresponding transcribed
note.Mean Overlap Ratio (MOR) is the mean of overlap
ratios for all correct notes.

The original algorithms (H-NMF/MU and HS-NMF) previ-
ously proposed are compared to several state-of-the-art algo-
rithms listed in Table III.

H-NMF/MU, HS-NMF and S-NMF were implemented by
the authors for this work. Virtanen’07 and NMF/MU are run
from their author’s implementation, which they nicely shared,
and Marolt’04 is run from the SONIC software, distributed
by its author.Vincent’08 is tuned with the optimal parameters
determined in [16]. The orderK is set to 88(the number of
components, i.e. of columns inW, is naturally taken as the
number of keys on a piano)for all NMF-based algorithms.
For algorithms with harmonicity constraint, we take take one
component (fundamental frequency) per pitch. The maximum
number of patterns per note isM = 10. When a multiplicative
initialization is needed (HS-NMF and S-NMF), 10 iterations
of the associated multiplicative algorithm (H-NMF/MU and
NMF/MU respectively) are performed before switching to the
tested algorithm. Note detection thresholdsAdB are manually
tuned algorithm per algorithm (and reported in Tables IV and
V), by maximizing the averageF-measure on each dataset. The
minimum duration for a transcribed note is fixed to 50ms.

B. Results

1) Convergence: We monitor the values ofCMAP andDIS

at each iteration of HS-NMF, in order to evaluate its speed
and efficiency of convergence, and to assess the impact of
initializing HS-NMF by H-NMF/MU. Then, we compare the
evolution of the criteria between “pure” HS-NMF, and HS-
NMF preceded by 10 iterations of H-NMF/MU, on the same
example piece from the dataset and with the same random
initialization. Figure 2 presents this evolution in these two
cases.ThoughCMAP decreases sharply during the initializa-
tion (10 first iterations), the multiplicative initialization phase
allows the algorithm to reach a higher value of the criterion
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Fig. 2. Evolution of the criteriaCMAP andDIS wrt the iteration number.

for the same number of iterations, as well as a lower value
of the reconstruction error termDIS (which is equal to the
minus log-likelihood up to a constant). After a few hundreds
of iterations, the reconstruction error changes very little, while
the contribution from the prior still increases slowly, resulting
in very few changes in the transcription performance. More
decisive, on the presented excerpt (one 30s piece from the
real audio subset), HS-NMF with multiplicative initialization
reaches a good transcription performance (F=54.5%), while
its counterpart without HS-NMF/MU initialization is totally
inefficient in separating notes in the same time (F=0% after
500 iterations). An explanation for this is the relative weights
between the two terms inCMAP : the first goal is to reach
a good reconstruction, smoothness is a bonus; but if the
contribution from the prior takes the most part of the criterion,
reconstruction will be poor. Multiplicative initialization allows
to optimize first the reconstruction error term, then to focus
on the refinement that is the smoothness constraint.

Algorithm P R F MOR AdB

NMF/MU 63.4 56.1 54.9 51.2 -62
Vincent’08 60.7 60.0 58.4 54.8 -32

H-NMF/MU 58.7 59.1 52.4 46.0 -33
S-NMF 62.4 43.3 49.5 50.7 -51

Virtanen’07 55.9 56.4 53.6 52.1 -22
HS-NMF 65.8 64.5 60.7 44.3 -38
Marolt’04 83.5 70.1 75.8 53.5 -

TABLE IV
TRANSCRIPTION SCORES ON SYNTHETIC DATA.

2) Overall transcription performance: Tables IV and V
report the transcription performance of tested algorithmson
the synthetic and recorded datasets respectively. HS-NMF
outperforms other NMF-based algorithms in both cases, but
remains less performant than SONIC software. Smoothness
constraint used alone seems detrimental to transcription per-
formance, may it be implemented by a multiplicative algo-
rithm (Virtanen’07) or by a Bayesian algorithm (S-NMF), but
improves the performance of harmonically constrained NMF
(H-NMF vs. HS-NMF).
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Results are comparable to scores from [24] obtained on a
database including ours, and place our algorithm performance
at the state-of-the-art level.

Algorithm P R F MOR AdB

NMF/MU 43.3 43.4 40.8 47.7 -60
Vincent’08 38.7 37.4 36.1 50.0 -30

H-NMF/MU 43.0 42.7 41.3 44.6 -30
S-NMF 46.2 32.0 36.6 45.6 -49

Virtanen’07 34.2 34.8 33.6 47.1 -21
HS-NMF 46.6 45.3 45.0 43.2 -32
Marolt’04 63.7 53.6 58.0 50.0 -

TABLE V
TRANSCRIPTION SCORES ON REAL AUDIO DATA.

3) Harmonicity of the basis: On figure 3, we display bases
W after convergence, with columns sorted by increasing pitch.
We can see that non-harmonically constrained NMF exhibits a
dictionary that has a pitched structure but a rather noisy look,
whereas bases from harmonically constrained algorithms are
much cleaner. S-NMF produces a much less sparser dictionary
than unconstrained NMF, which is coherent with observations
from [15] and could explain its lower performance. Another
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Fig. 3. Example basis matricesW for algorithms without and with
harmonicity contraint. Columns are sorted by increasing pitch.

noticeable result is the pitch repartition in the basis. In NMF
without harmonicity constraint, as the basis is completely free,
pitch repartition in the basis follows the same trend as pitch
repartition in the original piece; NMF tends to use more

components to represent faithfully the most frequent notes,
while possibly neglecting rare passing tones. Moreover, some
components do not exhibit a pitched structure (5, in average).
On the contrary, NMFwith harmonicity constrainthave a fixed
number of components per pitch (one, in our case). This guar-
antees representation of all notes, including notes playedonly
a few times in the piece, but implies also useless computation
on components corresponding to absent notes in the piece,
and does not allow representation of non-harmonic parts of
the signal. This could be alleviated by adding unconstrained
components to the harmonic dictionary, updated separately
under usual multiplicative rules, for instance.
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Fig. 4. Temporal activation of noteC4 for four different algorithms
(NMF/MU, H-NMF/MU, S-NMF and HS-NMF from top to bottom)on the
same excerpt. The pianoroll of the corresponding excerpt is on top, withC4
in black and neighbour notes in gray.Regions of interest are framed with
dotted lines.

4) Smoothness of components: Temporal envelopeshk,
for k corresponding to the noteC4, obtained by NMF/MU
(without constraint), H-NMF, S-NMF and HS-NMF are dis-
played on Figure 4. The ground truth pianoroll (time-pitch
representation) is displayed as well. S-NMF and HS-NMF
produce indeed smoother envelopes, which can be noticed
in particular when the note is supposed to be off. We can
notice several spurious peaks in NMF/MU and H-NMF/MU,
for instance during the first 750 milliseconds (region (a)) or
aroundt = 10s (region (b)), whose amplitude is reduced or
zeroed by the associate smooth version (S-NMF and HS-NMF
respectively). Another noticeable result is that harmonicity
constraint seems to disfavour smoothness of the envelopes.
We also briefly investigated on the impact of the choice ofαk

on smoothness and performance; values ofαk between 5 and
15 resulted in a loss of less than 2 points in the F-measure
and a barely noticeable difference in the smoothness of rows.
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5) Detection threshold: In Tables IV and V, the optimal de-
tection threshold is manually determined to get the best mean
F-measure over the test database. Varying this threshold allows
to display Precision-Recall curves and have a deeper insight
on algorithms performance. Figure 5 presents these curves
for NMF/MU, H-NMF/MU, S-NMF and HS-NMF. The curve
confirms the good performance of HS-NMF. It reaches a better
trade-off between precision and recall and is more robust to
the choice of the threshold. Both multiplicative algorithms (H-
NMF/MU and NMF/MU) are comparable around the optimal
F-measure. S-NMF gives the poorest results at every threshold.
We can also notice that a 100% recall is never reached, even
at very low threshold, which points a limit of NMF-based
transcription algorithms.

These curves, as well as Tables IV and V, are obtained
by averaging the scores over the dataset, but it is important
to note an important variability between pieces, in terms of
performance and optimal threshold. At fixed thresholdAdB ,
F standard deviation is worth about 12% for all NMF-based
algorithms (from 9% for Virtanen’07, to 16% for HS-NMF).

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an original model for including
harmonicity and temporal smoothness constraints in non-
negative matrix factorization of time-frequency representa-
tions, in a unified framework. The resulting algorithm we
propose, HS-NMF, is derived from a Bayesian framework and
outperforms other benchmarked NMF approaches in a task of
polyphonic music transcription, evaluated on a realistic music
database. The Bayesian framework also offers theoretical
results about convergence, that are generally not available in
usual multiplicative approaches of NMF. We also proposed a
novel multiplicative NMF with harmonicity constraint, min-
imizing Itakura-Saito divergence, which has links with the
exposed statistical approach and was shown to suit well for
the representation of audio signals in this context [14]. Thus,
the contributions of this paper are theoretical, algorithmic and
experimental at a time, in the very active domains of music
transcription and NMF study.

NMF-based methods remain here less performant than other
finely tuned state-of-the-art methods, especially methodsim-
plying a training phase, the use of learning data and musi-
cologically inspired post-processing. However, NMF is totally
data-driven, it requires no training and then adapts itselfto the
data while avoiding the risk of a mismatch between training
and test data. It also provides a semantically meaningful mid-
level representation of the data. Its potential here assessed is
clear, letting the hope of very good performance with better
tuning and improvements.The temporal smoothness constraint
does not bring all improvements we could expect, in particular
in terms of robustness to the detection threshold and efficiency
of the note duration estimation. However, it seems useful to
compensate the tendency ofNMF with harmonicity constraint
to produce non-smooth decomposition, and lead therefore to
a better transcription performance when both constraints are
used. A limitation of our common NMF framework (NMF
core algorithm plus detection threshold based post-processing)
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Fig. 5. Precision-Recall curves for four different algorithms. The detection
threshold varies from 0 to -100 dB underH maximum. The couple (P ,R)
realizing theF maximum is represented with a star.

appears here, as a 100% recall rate is never reached, for any
value of the threshold or any tested algorithm.

Using a statistical model relies of course on the fact that
the ground truth actually follows this model. Performance ob-
tained here let hope it is more or less the case, but adequation
between the data and the model should be further investigated
on. In particular, the choice of the shape parameterα of the
inverse-Gamma prior put on temporal envelopes should be
discussed, and its learning, as well as NMF factors are learnt,
should be considered.

Possible improvements include a refinement of the temporal
prior, which suits for modelling the sustain and decay parts
of the note, but disfavour attacks and silences. An option
to alleviate this mismatch between the model and the data
could be the use of switching state models for the rows
of H, that would explicitly model the possibility forhkn

to vary quickly (attack) or to be strictly zero (absence of
the note). As far asW is concerned, transients are badly
represented in an entirely harmonic dictionary, but this could
be solved by adding a few unconstrained (non harmonic)
components in the representation, which would hopefully be
well captured thanks todIS scale-invariance. At last, as many
EM-based algorithms, HS-NMF remains very slow compared
to multiplicative gradient descent approaches; an alternative to
it could be the direct minimization of the criterion it optimizes
by the usual multiplicative heuristics (3), possibly losing the
proof of convergence but reducing computational time.

APPENDIX A
STANDARD DISTRIBUTIONS

Complex valued Gaussian N (u|µ,Σ) =
|π Σ|−1 exp−(u− µ)H

Σ
−1 (u− µ)

Poisson P(u|λ) = exp(−λ) λu

u!

Inverse-GammaIG(u|α, β) = βα

Γ(α) u−(α+1) exp(−β
u
), u ≥ 0

Jeffrey’s
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APPENDIX B
SAGE UPDATE RULES WITH HARMONICITY

In this appendix we detail the derivations leading to update
rules of equations (14) and (15). The functionalQML

km (θkm|θ
′)

defined in equation (13) may be processed in two steps. First,
we write the hidden data log-likelihood:

log p(Dkm|θkm) = log
N
∏

n=1

F
∏

f=1

p(dkmn(f)|θkm) (29)

As dkmn(f) ∼ N (0, hknemkPkm(f)), we have:

log p(Dkm|θkm)
c
= −

N
∑

n=1

F
∑

f=1

log(hknemkPkm(f))

+
|dkmn(f)|2

hknemkPkm(f)
(30)

The second term to be computed is the hidden data pos-
terior p(Dkm|V,θ′). It may be obtained by writingxn =
dkmn +

∑∑

(k′,m′) 6=(k,m) dk′m′n and using the Wiener filter-
ing method proposed in [17] for the separation of two sources.
According to it, the posterior mean and variance ofdkmn(f)
write respectively:

µpost
kmn(f) =

hknemkPkm(f)

v̂fn

xn(f) (31)

λpost
kmn(f)

=
hknemkPkm(f)

v̂fn

∑

(k′,m′) 6=

∑

(k,m)

hk′nek′m′Pk′m′(f) (32)

Then, by taking the expectation of the log-likelihood with
regard to the posterior, we get the functional expression:

QML
km (θkm|θ

′) = −
N
∑

n=1

F
∑

f=1

log(hknemkPkm(f))

+

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

hknemkPkm(f)
(33)

Zeroing the gradients ofQML
km wrt emk and the gradient of

their sum overm wrt hkn leads to the update rules:

h
(ℓ+1)
kn =

1

FM

∑

f

∑

m

∣

∣

∣µ
post′

kmn (f)
∣

∣

∣

2

+ λpost′

kmn (f)

e
(ℓ)
mkPkm(f)

(34)

e
(ℓ+1)
mk =

1

FN

∑

n

∑

f

∣

∣

∣µ
post′

kmn (f)
∣

∣

∣

2

+ λpost′

kmn (f)

h
(ℓ+1)
kn Pkm(f)

(35)

where the superscript′ indicates thatλpost′

kmn and µpost′

kmn are
computed with most up-to-date values ofE andH. This form
lets appear possible numeric errors ifhkn = 0 or emk = 0.
This can be avoided by replacingλpost

kmn and µpost
kmn by their

expressions (31) and (32). This leads to update rules proposed
in equations (14) and (15).

APPENDIX C
SAGE UPDATE RULES WITH HARMONICITY AND

TEMPORAL SMOOTHNESS

We write the functionalQMAP
k =

∑M

m=1 QML
km +log p(hk)

as the sum of the ML functional and contributions from the
prior. For n = 2 . . . N − 1:

∇hkn
QMAP

k (θk|θ
′) = ∇hkn

(

M
∑

m=1

QML
km (θkm|θ

′)

)

+∇hkn

(

log p(hk(n+1)|hkn) + log p(hkn|hk(n−1))
)

(36)

As log IG(u|α, β)
c
= α log β − (α + 1) log u− β/u, we have:

∇hkn
QMAP

k (θk|θ
′) = −

αk + 1

hk(n+1)
−

FM + 1

hkn

+
1

h2
kn





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)
+ (αk + 1)hk(n−1)





(37)

Then, this gradient is proportional to a second-order polyno-
mial:

∇hkn
QMAP

k (θk|θ
′) =

−FM

h2
kn

(

p2h
2
kn + p1hkn − p0

)

with p2 =
1

FM

αk + 1

hk(n+1)

p1 = 1 +
1

FM

p0 = h̃kn +
αk + 1

FM
hk(n−1)

where h̃kn is the ML estimator (see equation (34)). For
n = N the term p(hk(n+1)|hkn) is simply removed from
equation (36). Forn = 1, the Markov chain structure imposes
to choose a priorp(hk1). We take Jeffreys’ non-informative
prior: p(hk1) ∝ 1/hk1. The corresponding gradients are
written:

∇hk1
QMAP

k (θk|θ
′) = −

FM

hk1

+
1

h2
k1





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)



−
αk − 1

hk1
−

αk + 1

hk2

∇hkN
QMAP

k (θk|θ
′) = −

FM

hkN

−
αk + 1

hkN

+
1

h2
kN





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)
+ (αk + 1)hk(N−1)





This leads top0, p1 andp2 values reported in Table II.
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