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Abstract—This article presents theoretical and experimen- while the decomposition gives information about the onselt a
tal results about constrained non-negative matrix factorizatio  offset times of the associated notes.
(NMF) in a Bayesian framework. A model of superimposed  pjaaningfulis here a key word: we expect the basis to be
Gaussian components including harmonicity is proposed, while - . . .
temporal continuity is enforced through an inverse-Gamma formed of mterpr.etable elemer_1ts, e,Xh'b't'ng certain smima..
Markov chain prior. We then exhibit a space-alternating gen- The non-negativity constraint is a first step towards thierin
eralized expectation-maximization (SAGE) algorithm to estimate pretability, compared to other well-known techniques sash
the parameters. Computational time is reduced by initializing ~ Singular Value Decomposition (SVD). For instance, the dasi
the system with an original variant of multiplicative harmonic a4t hy NMF from an image database is expected to contain
NMF, which is described as well. The algorithm is then applied to . . “ .
perform polyphonic piano music transcription. It is compared to meamngfgl Images (the .so-called part-ba_sed represqnfat
other state-of-the-art algorithms, especially NMF-based. Corer-  [7]). This interpretability is often observed in practicehich
gence issues are also discussed on a theoretical and experimentals certainly one of the reasons for NMF’s popularity; butsit i
point of view. _ N o not always as satisfying as expected (see, for instanci| fac
constraits is Shown  outperiorm ofher standard NMF-pased "T208S f (8], that are expected t0 retain facial parts liese
transcription systems, providing a meaningful mid-level repre- nose, mquth, but do not exactl_y_). A_S’ _some other desirable
sentation of the data. However, temporal smoothness has its characteristics of the decomposition, it is more obsenged a
drawbacks, as far as transients are concerned in particular, and welcome side-effect, than enforced and controlled.
can be detrimental to transcription performance when it is the To alleviate this lack of control on the decomposition
only constraint used. Possible improvements of the temporal prior properties, most authors have proposed constrained t&oéan

are discussed. . . . .
| ndex Terms—Non-negative matrix factorization (NMF), music NMF, ensuring and enhancing those side-effects of baseline

transcription, audio source separation, unsupervised machine NMF: sparsity, spatial localization, temporal continuiiyr
learning, Bayesian regression. instance. The typical approach for such constrained Viarian
to add a penalty term to the usual cost function (reconstmict
error) and minimize their sum, sesg. [1], [8], [9].
On the other hand, several authors have imported the idea
of a non-negative constraint in other frameworks than NMF,
ON-NEGATIVE matrix factorization (NMF) is a pow- in particular statistical framework. We can cite non-nagat
erful, unsupervised decomposition technique allowingariants of Independent Component Analysis (ICA) [10] and
the representation of two-dimensional non-negative data anon-negative sparse coding [11]. The Bayesian framework
linear combination of meaningful elements in a basis. offers both a strong theoretical framework, and the poléyibi
NMF has been widely and successfully used to proceismanage constraints through models and priors.
audio signals, including various tasks such as monauraidsou In this paper, we focus on a Bayesian approach of NMF that
source separation [1], audio stream separation [2], atedio-allows to enforce harmonicity of the dictionary compone(ats
score alignment [3], drum transcription [4]. In particylitr desired property for music transcription task) and temipora
has been efficiently used to separate notes in polyphoniccmugmoothness of the decompositiopreserving however the
[5], [6] and transcribe it in a symbolic format such as MIDladaptiveness of NMF, which is purely data-driven, and the
In this case, a time-frequency representation of the signalinterest of the provided mid-level representation for othe
factored as the product between a basis (or dictionary) pétential applications The paper is organised as follows.
pseudo-spectra and a matrix (decomposition) of time-ugryi Section Il recalls the baseline NMF model and state-of-the-
gains. When obtained from harmonic instruments sounds, @& constrained NMF algorithms. In particular, constrsint
basis is shown to partially retain harmonic componentsh widf harmonicity and temporal continuity are discussed and
a pitched structure, that can be interpreted as musicasnotdayesian approaches for NMF are presented. Our model, and
an EM-like algorithm for NMF with harmonicity and temporal
N. Bertin and R. Badeau are with theepartement Traitement du Signal etsmoothness are proposed in section lll, including a midagl
des Images, Institut TELECOM, TELECOM ParisTech, LTCI CNR®jis, tjve initialization phase that updates our previous work on
France (e-mail{nancy.bertin,roland.badep@telecom-paristech.fr). . . . .
E. Vincent is with the METISS Project, IRISA-INRIA, 35 042 mees harmonic NMF. Section IV is devoted to experimental results
Cedex, France (e-mail: emmanuel.vincent@irisa.fr) in the transcription task context. Conclusion and perspest
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A. Notations K T
] _ ) —X2 Zk:l [HH ]kk (8]
Matrices are denoted by straight bold letters, for instance | ... correlation Zf—lbg [HHT] ~ log |HHT| [9]
V, W, H. Lowercase bold letters denote column vectors, sugh — kk
_ T ; i i Temporal continuity ZK ZN |hien — hy |2 [1]
aswy = (wik ... wpg)", while lowercase plain letters with k=12 un=1""kn — Mk(n—1)
a single index denote rows, such tit= (h{ ... R%)T. We TABLE |
also define the matriﬁ = WH. SOME STATE-OF-THE-ART CONSTRAINTS D, IN NMF PROBLEM.

We use the binary operatofs to denote definitions and
to denote equality up tan additiveconstant.

Calligraphic uppercase letters are used to denote prdtyabil
distributions:V, P, ZG denote Gaussian, Poisson and invers&or some choices of, like EUC or KL, monotonicity of the
Gamma distributions. Their expressions are recalled ire@app criterion under these rules can be proven [7], but in the ggne
dix A. case, these updates do not guarantee any convergence.

B. Baseline model and algorithms C. Constrained approaches

Out of any applicative context, the NMF problem is ex- 1) Constraints imposed via penalty terms. In standard
pressed as follows: given a matrM of dimensionsF x N NMF, the only constraint is the elementwise non-negativity
with non-negative entries, NMF is the problem of finding af all matrices. All other properties of the decompositias,
factorization satisfying as it is, come as uncontrolled side-effects and i

VaWH=V (1) way, the fact that the decomposition retains certain seicgant

of the original signal, performs separation or provides mea

where W and H are non-negative matrices of dimensionfhgful and interpretable components is just “good news”. It
Fx K and K x N, respectively.K is usually chosen such sounds thus natural to try to improve this potential by agdin
that K + KN < F'N, hence reducing the data dimensionexplicit constraints to the factorization problem, in arde
In typical audio applications, the matri% is chosen as enhance and control desired properties.
a time-frequency representatio.d, magnitude or power Then, several constraints have been introduced to get NMF
spectrogram),f denoting the frequency bin and the time gsojutions that better fit certain expectancies. Among other

frame. proposed constraints, we can cite sparsity [12], spatzdlio
The factorization (1) is generally obtained by minimizing &ation [8], least correlation between sources [9] or terapo
cost function defined by continuity [1], [13].
F N The common point between those algorithms, whichever
D(V|\“f) - Z Z d(Wsn|Osn) (2) constraintis considered, is the “penalty term approachthBr
f=1n=1 than minimizing only a reconstruction error teti. (EUC or

KL, typically), the minimized cost function includes a term

whered(a|b) is a function of two scalar variablesis typically 1, “that quantifies the desired property. The constrained NMF
non-negative and takes value zero if and only if (if)= 0. problem is then expressed as:

The most popular cost functions for NMF are the Euclidean
(EUC) distance and the generalized Kullback-Leibler (KL) d
vergence, which were particularly popularized (as NMHFfifse
by Lee and Seung, seeg., [7]. They described multiplicative

min D, (VIWH) + AD.(V|WH)
W.H

where \ is a weight parameter. Table | gives a few examples

update rules under whict(V|WH) is shown to be non- ot jiterature penalty terms. Temporal smoothness is one of
increasing, while ensuring non-negativity & and H. The o0 examples. In standard NMF and most of its variants,

update rules are obtained by using a simple heuristics,Whigo frames are considered as independent, non-related ob-
can be seen as a gradient descent algorithm with an ap@®pPria, .\ ations, which is obviously not true for real-world sdsin

chou;e of the descep}t Sﬁfp' By exaressmg the graﬂéj‘t of in particular for music. In the case of musical notes,
cost functionV' D) as the difference of two positive terVs™ D he main part of the note (the sustain and decay parts, after

andV™D, the cost functloq is shown (in particular cases) qfq attack) possesses a slowly time-varying spectrum. When
observed to be nonincreasing under the rules: expressed as the product between a template speotrym
Vi D(VIWH) gn_d a time—varying ga?mk, according to !\IMF formulatiqn,
— oo it is equivalent to saying that the row;, is smooth, or, in
VwD(VIWH) ©) other words, that the coefficient,,, is not that different from
VuD(VIWH) hi(n—1)- [1] and [13] thus introduce penalty terms in the NMF
Vi D(VIWH) cost function to take into account this temporal continuiity
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[1] the term is directly linked to the differencés, —hy(n—1),
while [13] variant relies on a ratio between short-time an it
long-time variance ofh,. Those terms are shown to favor
smoothness in lines df. Another possible approach is the
statistical approach from [14]. Temporal continuity isdesd
through putting an appropriate prior d&fh. This solution will
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be exposed with more details and adapted to our case inisec 02f
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It is interesting to notice that non-smoothness may also .. S m

an objective (see for instance [15]), depending on the data (a) Dictionary atomw

and the application. [15] points out that smoothness of one
of the NMF factors i(e. W or H) may enhance sparsity
of the other one, thus establishing a link between those twn
popular constraints. On the other hand, [1] combines dyars ; el ; Lilmornln
and temporal continuity constraints &h, but concludes to the os l os
non-efficiency of the sparsity constraint in his particutase. I P —— oll S ——
The penalty approach has several drawbacks. First, a cr : e : o 20000
rion quantifying the desired property must be found. Secor 0s l 0s l
no general proof of convergence is available for the upde ! l SS— ! ‘m!o“‘m S
scheme (3). Moreover, the paramekdras to be chosen empir- : Fuo Lo 2220008 : Fio Lo 221080

ically. These reasons motivated our approach for harmgnic o o A

constraint in previous and current work; this approach .l AA,- A MJ\AM

exposed in section I1-C2. T e T T
2) Deterministic constraints. Musical notes, excluding (b) Corresponding patterns;,,

transients, are pseudo-periodic. Their spectra are therbco
alike, with regularly spaced frequency peaks. As we wish . 1. Example harmonic basis spectrum, corresponding to the note
use NMF to separate musical notes in a polyphonic recordirfg} (MIDI pitch 72), with underlying narrowband specti,, and spectral
we expect that elements in the ba¥is are as near as possible®nVelope coefficients,, (with M= 6).
from a harmonic distribution. This property is yet not easil
uantified by a penalty term. . .

q yap y . .where latent variables;, are independent and follow a

In [16], we rather proposed an alternative model to baseline

. . . . multivariate Gaussian distribution
NMF problem, enforcing the basis harmonicity. We impose the

basis components to be expressed as the linear combindtion o Cin ~ N(0, hypdiag(wy)) (6)
narrow-band harmonic spectra (patterns), which are arbitr
fixed: In [14], the estimation of the parametér= {W, H}, in a
maximum likelihood (ML) sense is shown to be equivalent to
M solving the NMF problemV ~ WH, when observingv =
Wy = Z emkPrm (f) (4)  (Jzfnl?)sn and choosing the underlying cost functidras the
m=1 Itakura-Saito divergence:
For a given_ component numbér all the.patternst,,,,_share drs(alb) = a log ¢ @)
the same pitch (fundamental frequenygy; they are defined by b b

summation of the spectra of a few adjacent individual plartia Other authors, like [19], have proven similar equivalences
at harmonic frequencies ofy, scaled by the spectral shapeéetween NMF with KL cost and ML estimation in the model:

of subbandk. This spectral envelope is chosen according to K
perceptual modelling [16]. Figure 1 illustrates the paiseior x| = Z |Cen| (8)
one note and the corresponding atem. Coefficientse,, —1

are learned by NMF as well as the decomposiftdnUpdate
rules are obtained by minimizing the same cost function
in baseline NMF, except that it is minimized with respect t
(wrt) E and H rather thanW and H.

3) Satistical constraints: Another way to induce properties
in the NMF is to switch to a statistical framework an
introduce adequate prior distributions. Let us consider t
following model, proposed in [17], [18n =1, ..., N,

Eder the assumptiofey,, (f)| ~ P(wskhi,), whereP () is

e Poisson distribution.

In [20], the authors propose a model where the facMfs
andH are expressed as two functiofisand f,, (called “link-
unctions”) of Gaussian latent variables. It can be seen as a
rgeneralization of the previous model for appropriate cb®ic
of f;, and f,, (relatively soft assumptions are put on them). It
is another example of the power of the statistical approach t
K incorporate constraints or knowledge in the NMF problem.
X, = chn cCF (5) One main advantage of this statistical approach is the

P possibility to switch from ML estimation to maximum a



posteriori (MAP) estimation, thanks to Bayes rule: the additive form of the model (10) where the latent variable

p(VIW, H)p(W)p(H) © are supposed independent, allow the usage df the Space
% Alternatmg Generahzed EM algorithm (SAG_E), introduced

in [21], to estimate the parameters. The hidden data-space

Thus, choosing adequate prior distributignd) andp(H) associated with each subséf, is D, = [Dyi...Dinl,

is a way to induce desired properties in the decompositiophere Dy, = [dimi - .. drmn] € CFXN. The use of SAGE

Furthermore, the statistical framework provides a strdv&pt implies maximizing the functiona)M *(6,|6") which is the

retical basis and efficient algorithms with proven convermge conditional expectation of the log likelihood @

like the expectation-maximization (EM) algorithm and its

variants, to estimate NMF factors. ML (9,|6") é/ log p(D|0)p(Dk|V,0")dD;,  (12)

In next section, we propose to combine this framework Dy,

and the previous model (4) to enforce both harmonicity ivr\]/hereé)’

columns of W and smoothness in rows df, which are

desired properties of the NMF of musical signals.

(W, H|V) =

contains the most up-to-date estimated values of all
parameters.
We can however notice th&? = can be expressed as the

sum (overm) of auxiliary functionalsQ}! expressed as:
[Il. PROPOSED ALGORITHM

A. Probabilistic harmonic model ML(g, 1g7) & / 08 p(Dion|Orm )P (Do |V, 8 )dD o
The direct usage of formulation (4) in the model (5) is Dim (13)
possible, but leads to computational issues. An equivalepf ..o \ve define subse@,, — {em, hi}. The problem
model is obtained by assuming: reduces to maximizing eactM~(0y,,|0") wrt e,,;, and
K M the sumQM~(0,]6’) wrt hy,, iteratively. Maximizing these
Xp = Z Z dimn (10)  functionals makes the criteriof';1.(8) increase, according
k=1m=1 to [21].
with At each iteration and for each, the functionalsQ}/L are
r computed. The sum of the functionals overis formed and
x, € C . . L L
maximized by computing and zeroing its derivative Wgt, .
dimn  ~ N(0, hgnempdiagPrm)) The derivative wrte,,, of each functional is computed and
Pi, = [Pkm(l)...Pkm(F)]T zeroed, resulting in an update rule for eaghy. Details of
: . the computations are available in appendix B. Updates rules
Assuming the equalitycr, = 3, dimn and the .., po then expressed as follows:
independence ofdy,,,, we can verify thatcy, ~
N0, hien D=, emrdiagPr.m,)). D _ h/(f) “

From [14], we can establish the equivalence between ML *"
. . . . . . . . . (Z) (e)
estlmat|en in '_[hls generative model (10) and m|n|m|zat|cbn_ o} - 1 ZZ hy) e Pem (f) Ui (14)
drs, which will offer a good coherence and comparability M iy brm
between algorithms for our test. [14] also show that Itakura Ioom
Saito divergence, whose expression is recalled in equéfipn

is well-suited to NMF decomposition of audio signals. Advan 1y (y)

tages ofd;s also include: a good representation of residual “mk Cmk %

noise (if components are devoted to it, see future work ssigge 1 petD O p f

. . . . . . mkd km (O

tions in section V), and a good fit between the representation| 1 + N Z b @’k ) <Uf - 1) (15)
and the observation on a log scale (due to the shaplkeoat n fn o

fixed energy scale, and the strong cost of representing a Wﬂere the superscript denotes the value at iteratighand

by zero). This motivates our model and the choice of IS CO\?/tnere d7, iS the current reconstruction ofy,, i.e. i, —

i(r?r:rdisc\JAtl,ofrir instance, the weighted Euclidean cost fron})[le:li(:1 Zﬁ{:l hin o P (f) With the most up-to-date values
' of the parameter, eithe(f) or (¢+ 1) depending on the
most recent available valuekn SAGE formalism, we update
separately each rowy, one after the othelhut, during this
We now describe an EM-based algorithm for the estimatiarpdate, alh,.,, for n from 1 to N are updated simultaneously.
of the parameter@ = {E, H}. This algorithm is adapted from  Using SAGE framework guarantees the monotonicity of the
ML estimation proposed in [14] for the model (10). In MLcriterion CM(6). Moreover, [21] proves the existence of a
estimation, the criterion to be maximized is the log-likelbd region of monotone convergence in norm, i.€.converges
of the observations: in norm to a local minimum, provided the algorithm was
Carr(6) 2 log p(V6) (11) initialized in an appropriate neighborhood of that minimum

B. Maximum likelihood estimation

We partition the set of all parameters into disjoint subsetstwith a more explicit notation, at iteratiof? + 1), the coefficients(* "

kn
0 = {{emk }m,hr} so thatd = Ui{:l 6. This partition, and is determined using ahy“) for all j < k and h,(f; for all p.



C. Enforcing temporal smoothness ML peing unchanged, we just have to incorporate the con-
In terms of computational cost, this maximum likelihoodribution of the prior in the computation and zeroing of the
estimation ofE and H has no practical interest, comparedradients. In Appendix C, this is shown to be proportional to
to multiplicative gradient descent update rules: as ofesern/@ second-order polynomial:
in [14] for a similar case (multiplicative vs. SAGE algorith
for standard NMF with Itakura-Saito divergence), itdem- Vi, @i " (emp, hi[6') = 2 (P2 hi + 1 hien — o)
putationnallyslower and even more sensitive to local minima kn (21)
than usual multiplicative algorithms. However, it has twaim The values of py,pi,p» are common for eachn €
advantages: first, the theoretical framework guaranteegeco [2...N —1] and take different values at the borders of the
gence to a local minimum; second, it opens the possibility ®farkov chain . = 1 andn = N). They obviously depend
including priors on the parameters, possibly in a hier@ahi on %, » and ¢ (though the notation doesn’t mention it, for
fashion, and then constraining NMF solutions in an elegafdadability purpose). Their expressions are given in Table
way. and the detailed computations are available in Appendix C.

In [14], this framework is exploited to enforce temporarhe resulting update rule is given by the only non-negative
smoothness over the rows Bf. We provide a priori informa- root of the polynomial:

tion on 8, expressed as a prior distributigri@). Thanks to

the Bayes rule, recalled in equation (9), we get a maximum plern) 2po 22
a posteriori (MAP) estimator by maximizing the following V/pi + 4p2po + p1
criterion: (written here in a form avoiding possible division by zerajla
Crar(0) = logp(6|V) (16) the ML update ofE (15) is unchanged.
£ Cur(6) +logp(6) (17) I | | |
We choose here to use the Markov chain prior structure n=1 n=2...N-1 n=N
proposed in [14]: Po Pk B + S by | Py + S By )
N 1—oy 1 1+ay
p1 || 1+ 1+ 14+ 25
p(hi) = p(hi1) H (i |Pr(n—1)) (18) ) (ilfl L aijfl OFM
n=2 P2 || FM hps FM Fginin)
wherep(hin|hyn—1)) reaches its maximum aty,_1), thus TABLE I

favoring a slow variation ofh;, in time. We proposed for COEFFICIENTS OF THE ORDER2 POLYNOMIAL TO BE SOLVED IN ORDER
instance the following choice: ' TO UPDATE Ay, IN BAYESIAN HARMONIC NMF WITH AN

INVERSE-GAMMA MARKOV CHAIN PRIOR. h‘kn DENOTES THEML
UPDATE, GIVEN BY THE RIGHT MEMBER OF EQUAT|ON(14).
P(hknlhin-1)) = ZG(hgnlar, (ax + Dhgm-1y)  (19)

whereZG(ula, b) denotes the inverse-Gamma distribution with

shape parameteti and scale parametdr, whose mode is _ i i . .
b/(a +1); the initial distribution p(hy) is Jeffrey’s non- In the foIIO\,/,V|ng, we refer to th!:s algorlth”m as “Harmonic
informative prior (see appendi®). Smooth NMF” (or, in short form, “HS-NMF”").

Several reasons motivated the choice of this prior. Fist;n V& can also consider the current model of temporal smooth-

negativity arises naturally from this modelling. Secondhjs N€SS, but without harmonicity constraint, leading to thg-re
prior is conjugate with respect to the Gaussian observatigirizeéd NMF algorithm proposed in [14]. In the following,
model, which brings computational simplicity. Moreover, ithis algorithm will be denoted as *S-NMF".

seems appropriate to the modelling of temporal envelopes

in music signal, first for its favouring the smoothness by ultiplicative initialization with harmonicity

the appropriate choice of the mode, secondly because its

assymmetry around the mode constraints more smoothnﬁﬁz\ﬂ:e to éhe Sl%W cc])cfnyergtlange_ _OfI,E'\g'l'lﬁ] aIgor.|th||”ns, HIS'
on decrease partsif, < hy,_1)) than on increase parts needs to be efficiently initialized. Theoretical result
Hom [21] also suggest the interest of smart initialization

(hkn = hin—1))- Thus, it favours smoothness in silence an ‘ ¢ the algorith : |
sustain/decay parts of the notes, but does not disfavoar “t9 f€rms of convergence of the algorit m. Harmo”mc mul-
much” the attacks. t|p||ca_1t|ve NMF could then l?e_ us_ed to b_ootstrap SAGE
Parametersy, are here arbitrarily fixed, depending on th&90rithm. However, the multiplicative algorithm of [22]as
desired degree of smoothness (the highgr the smoother or|g|nally de.S|gned for a perceptually .We|ghted Euglldgan
hi), but we could consider in future work the possibility tflistance, Whlcr_l would not be cohere;nt with HS-NMF criterion
learn it as well. (based on IS divergence (7)). For this reason, we wish totadap
As the prior respects the scheméH) = Hkalp(}lk) harmonic NMF with multiplicative update rules from [22] to
we can still use the SAGE formalism. The functional (124S distance. The criterion to be minimizesiwrittert
to minimize is now written: F N K M
VAP e L / Drs(VIWH) = Z Zdls(vfn| Z Z Pinemi Prm (f))
MAP(0,10') = > QMY (e, hil0') + logp(hy)  (20) F=1n=1 h=1m=1 23

m=1



We compute its derivative wri,,, which is expressed as thehigh quality software synthesis. From this very complete

difference of two positive terms: database, we excerpted two subsets to evaluate our afgsrith
P r a synthetic subset, produced by Native Instruments’ Akkust
Vi, Drs(VIWH) = Z % _ Z Ufn;Ufk (24) Piano (“Bechstein Bach” preset, from samples recorded on
o U S Vi a Bechstein D280 piano), and a real audio subset, recorded
at TELECOM ParisTech on a Yamaha Mark Il (upright
where Ufn = Zﬁzl Wk Mern = DisKlavier). Each subset is composed of 30 pieces of 30
S Zm/ 1 €mk Py (f)hir. The  derivative  wrt seconds each (original pieces framfPSwere truncated)The
emk fits in the same scheme: piano was chosen for practical reasons, but it can be sttesse
that nothing in the method constraints it to be applied oaly t
V.. Dis(VIWH) = Z Z P P (f piano signals. o
o Dpn 2) Structure of NMF-based transcription: All NMF-based

transcription systems used here follow the same workflow:

_ Z Z Ufnhknpkm f) (25) 1) Computation of an adapted time-frequency representa-
f=1n=1 tion of the signal,V;
2) FactorizationV ~ WH;

The update rules are derived from the heuristics (3) andewrit 3) Attribution of a MIDI pitch to each basis spectrum

Z?ZI Ufnwfk/@;n w;. (either from original labelling of columnsyhen
hen < hin X SR (26) the algorithm includes the harmonicity constraint, or by
Ff':l Af;’“ fn performing a pitch estimation
D1 2omet Vfnlikn Pem () /93, 27) 4) Onset/offset detection applied to each time envelgpe
Cmk T Cmk X Z?legﬂhknpkm(f)/ﬁfn In [22], it is observed that using a nonlinear frequency

... scale resulted in a representation of smaller size, wittebet
H- temporal resolution in the higher frequency range, tharalusu
Short-Time Fourier Transform (STFT), while preserving the
subsequent transcription performance. We then pass thalsig
IV. APPLICATION TO MUSIC TRANSCRIPTION through a filterbank of 257 sinusoidally modulated Hanning
Music transcription consists in converting a raw musigindows with frequencies linearly spaced between 5 Hz and
signal into a symbolic representation of the music withirit0.8 kHz on the Equivalent Rectangular Bandwidth (ERB)
for instance a score, or a MIDI file. Here, we focus oscale. We then split each subband into disjoint 23 ms time
information strictly related to musical notéss. musical pitch, frames and compute the power within each frame.
onset and offset time, discarding high level informationally Pitch estimation of basis spectra is superflugusNMF
available in a full music sheet, such as bar lines or keyith harmonicity constraintsince each basis component can
signature. Automatic transcription is a very active field dfe labelled from the beginning with the pitch of the patterns
research, known to be difficult, in particular because ofnoP,, used to initialize it.For NMF without this constraint
overlapping in the time-frequency plane. Various methaalah pitch identification is performed on each column¥af by the
been proposed to address the transcription issue, ingjudirarmonic comb-based technique used in [16].
neural network modelling [23], parametric signal modgjlin Note onsets and offsets are determined by a simple
and HMM tracking [24] or Bayesian approaches [25]. Wéhreshold-based detection, followed by a minimum-duratio
propose here to assess the efficiency of Bayesian harmaopigning, see [16]. The detection threshold is denotedipy

In the following, this algorithm will be referred to as
NMF/MU”.

and smooth NMF for this task. and expressed in dB und&F maximum.
. al [ Abbr. [ Description | Reference]

A. Experimental setup NMF/MU Baseline NMF minimizing IS divergence  [14]

1) Database: To evaluate and quantify transcription perfor- Multiplicative update rules
mance, we need a set of polyphonic music pieces with accurdte >"NMF SAGE algorithm for NMF

' polyp . P With smoothness constraint dd [14]
MIDI references. The two most simple ways to get such dataviraneno7 Multiplicative NMF
are either to record a MIDI instrument (the acquisition of With temporal continuity constraint (1]
; ; ; ; N Minimizing KL div. plus a penalty term

audio gnd MIDI bglng simultaneous), or Fo synthetl_ze sound— = Multplicative NMIF 6]
from given MI'D'I.ﬁIes. For _the s.ake of. timbre realism apd With weighted Euclidean distance
ease of acquisition, the piano is an instrument of choice: and harmonicity constraint __
very high quality software synthetizers are available de,sa [_Marolt04 Neural network based transcription (23]
and an acoustic piano can be equipped to play mechanically, TABLE Il
and produce a MIDI output, while retaining the timbre of a REFERENCE ALGORITHMS

real instrument. In his thesis [26], Valentin Emiya colkstt

such a databas®APS (MIDI-Aligned Piano Sounds) includes

isolated notes, random and tonal chords, pieces from the3) Evaluation: Transcription performance is quantitatively
piano repertoire, recordings on an upright DisKlavier angvaluated according to usual information retrieval sc2&$.



Precision rate (P) is the proportion of correct notes amonc
all transcribed notes (quantifying the number of notes #nat
transcribed, but should notRecall rate (R) is the propor-
tion of notes from the MIDI reference which are correctl
transcribed (thus quantifying the number of notes that shot
be transcribed, but are notl.-measure (F) aggregates the
two former criteria in one unique score and is defined :
F = 2PR/(P + R). A transcribed note is considered a:
correct if its pitch is identical to the ground truth, and it
onset time is within 50ms of the ground truth, according t
community standards (see, for instance, the MIREX comp
tition). Note offset detection is also evaluated througk tt g
mean overlap ratio ¥IOR) defined in [28]. For a correctly
transcribed note, the overlap ratiq,;. between the original — e
note and its transcription is the ratio between the lengtthef e 1;1 w '
intersection and union of their temporal widths:

With H-NMF/MU init.
+++0 Without H-NMF/MU init,

Fig. 2. Evolution of the criterid0™ AP and D;g wrt the iteration number.
min(t,sy) — max(top)

(28)

Onote = max(tors) — min(topn)

. . for the same number of iterations, as well as a lower value
wheret,,, andt,s; are the vectors of onset times (respectlvele the reconstruction error terd;s (which is equal to the
offset times) of the original and corresponding transatibe s 9

note. Mean Overlap Ratio (MOR) is the mean of overlap minus qu likelihood up to a constant). After a few _hun_dreds

. of iterations, the reconstruction error changes verelitivhile
ratios for all correct notes. the contribution from the prior still increases slowly, ukm

The original algorithms (H-NMF/MU and HS-NMF) previ- . ne p - Y 9

in very few changes in the transcription performance. More

ously proposed are compared to several state-of-thegot al | " .
: : . decisive, on the presented excerpt (one 30s piece from the
rithms listed in Table IlI.

FENNEIMU, HSNM. and SME were impement by/2% 400 U052, HSME vt mutpieat oty
the authors for this work. Virtanen’07 and NMF/MU are run 9 P P 270);

. Y : . : its counterpart without HS-NMF/MU initialization is totgl
from their author's implementation, which they nicely str inefficient in separating notes in the same tinf&=0% after

ano_l Marolt 04. IS rur,1 fr(_)m the SQNIC softv_vare, dlstnbuteqjoo iterations). An explanation for this is the relative gids
by its authorVincent'08 is tuned with the optimal parameter%etween the two terms i"MAP; the first goal is to reach

determined in [16] The orderX is set to 88(the number of a good reconstruction, smoothness is a bonus; but if the

components, i.e. of colgmns W, is naturally taken as the contribution from the prior takes the most part of the criey
number of keys on a piandpr all NMF-based algorithms. . : LR
reconstruction will be poor. Multiplicative initializatn allows

For algorithms with harmonicity constraint, we take take on L :
! .~ to optimize first the reconstruction error term, then to fcu
component (fundamental frequency) per pitch. The maximum

number of patterns per note s — 10. When a multiplicative on the refinement that is the smoothness constraint.

initialization is needed (HS-NMF and S-NMF), 10 iterations [ Algorithm [P | R | 7 [ MOR ][ Aap |
of the associated multiplicative algorithm (H-NMF/MU and NMF/MU 63.4 [ 56.1] 549 512 -62
NMF/MU respectively) are performed before switching to the Vincent08 || 60.7 | 60.0 | 58.4 | 54.8 -32
tested algorithm. Note detection thresholtlgz are manually Hg"\,fl';/’l'\lz"u Zg'z igé Zg'g gg'g gf
tuned algorithm per algorithm (and reported in Tables IV and Vitanen'07 T 559 1 564 T 536 521 o7
V), by maximizing the average-measure on each dataset. The HS-NMF 65.8 | 645 | 60.7 | 443 38
minimum duration for a transcribed note is fixed to 50ms. Marolt04 | 83.5] 70.1] 758] 535 -
TABLE IV

TRANSCRIPTION SCORES ON SYNTHETIC DATA

B. Results

1) Convergence: We monitor the values af' 4" andD;g
at each iteration of HS-NMF, in order to evaluate its speed2) Overall transcription performance: Tables IV and V
and efficiency of convergence, and to assess the impactr@port the transcription performance of tested algorittons
initializing HS-NMF by H-NMF/MU. Then, we compare thethe synthetic and recorded datasets respectively. HS-NMF
evolution of the criteria between “pure” HS-NMF, and HSeutperforms other NMF-based algorithms in both cases, but
NMF preceded by 10 iterations of H-NMF/MU, on the sameemains less performant than SONIC software. Smoothness
example piece from the dataset and with the same randoonstraint used alone seems detrimental to transcriptésn p
initialization. Figure 2 presents this evolution in theseot formance, may it be implemented by a multiplicative algo-
casesThoughCMAP decreases sharply during the initializarithm (Virtanen’07) or by a Bayesian algorithm (S-NMF), but
tion (10 first iterations), the multiplicative initializah phase improves the performance of harmonically constrained NMF
allows the algorithm to reach a higher value of the criteriofH-NMF vs. HS-NMF).



Results are comparable to scores from [24] obtained orcamponents to represent faithfully the most frequent notes
database including ours, and place our algorithm perfocmarwhile possibly neglecting rare passing tones. Moreoveaneso
at the state-of-the-art level.

components do not exhibit a pitched structure (5, in avgrage
On the contrary, NMRvith harmonicity constrainhave a fixed
number of components per pitch (one, in our case). This guar-
antees representation of all notes, including notes playdgd

a few times in the piece, but implies also useless computatio
on components corresponding to absent notes in the piece,
and does not allow representation of non-harmonic parts of
the signal. This could be alleviated by adding unconstchine
components to the harmonic dictionary, updated separately

[ Algorithm [ P T R F [ MOR ][ Aag ]
NMF/MU 43.3 | 43.4 | 40.8 47.7 -60
Vincent'08 38.7 | 374 | 36.1 50.0 -30
H-NMF/MU 43.0 | 42.7 | 41.3 44.6 -30

S-NMF 46.2 | 32.0 | 36.6 45.6 -49

Virtanen'07 34.2 | 348 | 33.6 47.1 -21

HS-NMF 46.6 | 45.3 | 45.0 43.2 -32

Marolt'04 63.7 | 53.6 | 58.0 50.0 -
TABLE V

TRANSCRIPTION SCORES ON REAL AUDIO DATA

3) Harmonicity of the basis: On figure 3, we display bases
W after convergence, with columns sorted by increasing pitch
We can see that non-harmonically constrained NMF exhibits a
dictionary that has a pitched structure but a rather noisi,lo
whereas bases from harmonically constrained algorithras ar
much cleaner. S-NMF produces a much less sparser dictionary

MIDI pitch number

2
8

\,
a

~
3

@
&

2
3

Pianoroll of the original piece

under usual multiplicative rules, for instance.

. . . . .
8 10 12 14 16
Time (s)

L
18

than unconstrained NMF, which is coherent with observation e
from [15] and could explain its lower performance. Another :

NMFIMU

(b)

b b )
Basis spectra W (NMF/MU) | e
101 :
-10
g -20 8 10 1‘2 14 16 uw. 20
%0 ‘ ' Sfl\‘AMF ‘ ‘ ‘ ‘
_50 ' 10 lszl‘Ak 16 18 20
1 13 25 37- 49 61 73 85 ' . ' ' ' '
Component number k
Basis spectra W (S-NMF) 0 oA 5‘“1‘ l\\ A
101 0 2 4 6 8 T":S(S) 12 14 16 18 20
-10
-20
20 Fig. 4. Temporal activation of not€'4 for four different algorithms
(NMF/MU, H-NMF/MU, S-NMF and HS-NMF from top to bottomyn the
-40 same excerpt. The pianoroll of the corresponding excerph i®p, with C'4
_50 in black and neighbour notes in gragegions of interest are framed with
dotted lines.
1 13 25 37 49 61 73 85
Ci t ber k
) omponent number 4) Smoothness of components: Temporal envelopes,
Lo—2asis spectia W (HS-NMF) for k corresponding to the not€'4, obtained by NMF/MU
. . . .
i -10 (without constraint), H-NMF, S-NMF and HS-NMF are dis-
-20 played on Figure 4. The ground truth pianoroll (time-pitch
50 representation) is displayed as well. S-NMF and HS-NMF
—40 produce indeed smoother envelopes, which can be noticed
50 in particular when the note is supposed to be off. We can
notice several spurious peaks in NMF/MU and H-NMF/MU,

21 33 45 57 69 81 93 105
MIDI pitch

Fig. 3.

Example basis matrice8V for algorithms without and with

harmonicity contraint. Columns are sorted by increasinghpitc

for instance during the first 750 millisecond®dion (a)) or
aroundt = 10s (region (b)), whose amplitude is reduced or
zeroed by the associate smooth version (S-NMF and HS-NMF
respectively). Another noticeable result is that harmibyic
constraint seems to disfavour smoothness of the envelopes.

noticeable result is the pitch repartition in the basis. MAN We also briefly investigated on the impact of the choicevpf
without harmonicity constraings the basis is completely free,on smoothness and performance; valuespbetween 5 and
pitch repartition in the basis follows the same trend ashpitd5 resulted in a loss of less than 2 points in the F-measure
repartition in the original piece; NMF tends to use morand a barely noticeable difference in the smoothness of.rows
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5) Detection threshold: In Tables IV and V, the optimal de- H ‘
tection threshold is manually determined to get the besthmea ST
F-measure over the test database. Varying this thresholdsal s
to display Precision-Recall curves and have a deeper insigh ;
on algorithms performance. Figure 5 presents these curves I ,
for NMF/MU, H-NMF/MU, S-NMF and HS-NMF. The curve I
confirms the good performance of HS-NMF. It reaches a better
trade-off between precision and recall and is more robust to
the choice of the threshold. Both multiplicative algorithii- .
NMF/MU and NMF/MU) are comparable around the optimal

Recall (%)
B o @D
o o o
~
~
~

@
S

N
=]
~

F-measure. S-NMF gives the poorest results at every thicksho I M 1
We can also notice that a 100% recall is never reached, even +m = HS-NMF 5
at very low threshold, which points a limit of NMF-based oL - = -
transcription algorithms. Precision (%)

These curves, as well as Tables IV and V, are obtained
by averaging the scores over the dataset, but it is importai. 5. Precision-Recall curves for four different algbrits. The detection
to note an important variability between pieces, in terms gfeshold varies from 0 to -100 dB undEf maximum. The coupleR.R)
. . realizing theF maximum is represented with a star.
performance and optimal threshold. At fixed threshdigs,
F standard deviation is worth about 12% for all NMF-based

algorithms (from 9% for Virtanen’07, to 16% for HS-NMF). )
appears here, as a 100% recall rate is never reached, for any

value of the threshold or any tested algorithm.

Using a statistical model relies of course on the fact that
In this paper, we proposed an original model for includinthe ground truth actually follows this model. Performanbe o

harmonicity and temporal smoothness constraints in no@&ined here let hope it is more or less the case, but adequatio
negative matrix factorization of time-frequency repréaen between the data and the model should be further investigate
tions, in a unified framework. The resulting algorithm wen. In particular, the choice of the shape parameteaf the
propose, HS-NMF, is derived from a Bayesian framework aridverse-Gamma prior put on temporal envelopes should be
outperforms other benchmarked NMF approaches in a taskdicussed, and its learning, as well as NMF factors aretiearn
polyphonic music transcription, evaluated on a realistisim  should be considered.

database. The Bayesian framework also offers theoreticaPossible improvements include a refinement of the temporal
results about convergence, that are generally not aveil@bl prior, which suits for modelling the sustain and decay parts
usual multiplicative approaches of NMF. We also proposedo? the note, but disfavour attacks and silences. An option
novel multiplicative NMF with harmonicity constraint, min to alleviate this mismatch between the model and the data
imizing Itakura-Saito divergence, which has links with theould be the use of switching state models for the rows
exposed statistical approach and was shown to suit well ff H, that would explicity model the possibility fofu,
the representation of audio signals in this context [14usth to vary quickly (attack) or to be strictly zero (absence of
the contributions of this paper are theoretical, algorithemd the note). As far asW is concerned, transients are badly
experimental at a time, in the very active domains of musiepresented in an entirely harmonic dictionary, but thisld¢o
transcription and NMF study. be solved by adding a few unconstrained (non harmonic)
NMF-based methods remain here less performant than otégmponents in the representatiamhich would hopefully be
finely tuned state-of-the-art methods, especially methods well captured thanks td; g scale-invarianceAt last, as many
plying a training phase, the use of learning data and musiM-based algorithms, HS-NMF remains very slow compared
cologically inspired post-processing. However, NMF isatiyt  to multiplicative gradient descent approaches; an alteto
data-driven, it requires no training and then adapts itsefie it could be the direct minimization of the criterion it opiires
data while avoiding the risk of a mismatch between trainingy the usual multiplicative heuristics (3), possibly lagithe

and test data. It also provides a semantically meaningfdt miproof of convergence but reducing computational time.
level representation of the data. Its potential here asdeiss

clear, letting the hope of very good performance with better
tuning and improvement3he temporal smoothness constraint

V. CONCLUSION AND PERSPECTIVES

does not bring all improvements we could expect, in paricul APPENDIXA

in terms of robustness to the detection threshold and effigie STANDARD DISTRIBUTIONS

of the note duration estimation. However, it seems useful to

compensate the tendency MMF with harmonicity constraint Complex valued Gaussian N (ulp, ) =
to produce non-smooth decomposition, and lead therefore|to=| " exp —(u — )7 =7 (u — p) ,
a better transcription performance when both constrairgs &0isson P(ul\) = exp(—A) 27

used. A limitation of our common NMF framework (NMFInverse-Gammé&g(u|a, 5) = F/?Z) u~ (et exp(—g), u>0
core algorithm plus detection threshold based post-psings Jeffrey’s
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APPENDIXB APPENDIXC
SAGE UPDATE RULES WITH HARMONICITY SAGEUPDATE RULES WITH HARMONICITY AND

In this appendix we detail the derivations leading to update TEMPORAL SMOOTH’;'WESS

rules of equations (14) and (15). The functiog.~ (6y.,,,|0") We write the functionaQ 47 =S~ QML tlog p(hy,)
defined in equation (13) may be processed in two steps. Fi&s, the sum of the ML functional and contributions from the
we write the hidden data log-likelihood: prior. Forn =2...N — 1:

M
Vi QN A7 (04]0") = Vi, (Z Q%f(aka’))
m=1

+ Vien (108 p(hg(ng1y[Pin) +10g p(hin|hgn-1))) (36)
As log ZG (ula, B) = alog B — (a+ 1) logu — 3/u, we have:

N F

AS dimn(f) ~ N(O,hknemkPkm(f)), we have:

N F v ]V[AP(B |0,)_ ap +1 FM+1 1
c Rgn k - - - 7o
logp(ka|0km = Z Z 1Og hknemkPkm(f>) § hk(nJrl) hkn hin
n=1f=1 F 1 post 2 post
2 Mkmn(f)‘ + )\kmn(f)
1
hknemkPkm(f) f=1m=1 (37)

The second term to be computed is the hidden data pos-
terior p(Dy,,|V,6’). It may be obtained by writing,, = Then, this gradient is proportional to a second-order pmlyn
Atrmn + 32 2 (4 ) () D @0d using the Wiener filter- mial:
ing method proposed in [17] for the separation of two sources M —FM

AP ’ _ 2 _
According to it, the posterior mean and variancedgf,,(f) @k (0:]67) = 2 (p2hin + Prhn — po)
write respectively: ] 1 ap+1
R i P (f) With e = Tarn
kn€mkL km k(n+1)
MZ(;Z;(JC) = Tﬂﬁn(f) (31) 1
n — 1
P + Jali
0s 5 o + 1
APOSt(f) po = hien + —p b1
h n€m P m 5 . . .
= M > > hwnerwmPrm(f) (32) where hy, is the ML estimator (see equation (34)). For
Ufn (k' m/ )% (k,m) = N the term p(hy(y41)|hrn) is simply removed from

Hequatlon (36). Fon = 1, the Markov chain structure imposes
to choose a priop(hg). We take Jeffreys’ non-informative
prior: p(hr1) o 1/hg1. The corresponding gradients are

Then, by taking the expectation of the log-likelihood wit
regard to the posterior, we get the functional expression:

written:
Qi Bk |0") = Z 10g(hknemkPrm(f))
n=tf=1 _FM
2 | \pos Vi, QMAL(0,10") =
O ) gy Ve OO =
h n-m P m 0S 0S
FnCmh =k (f) 4 ZZ Zm;( ‘ +)\Zm:1(f) _ak_l_ak+1
Zeroing the gradients o= wrt e, and the gradient of hi1 = emikPrm (f) hi1 hio
their sum overn wrt hy,, leads to the update rules:
post post’ FM 1
R ZZ “km"(f)‘ + Nen () (34) Vi QA7 (0,]6) = —7— — 22T
kn = FM P hin hin
m mk km(f) post (f)‘Q n )\post (f)
‘Mpost f)‘ T )\post’(f) 5 Z Z Fkmn Pt 4 (o + Dhgv-1)
e(€+1) _ Z Z kmn kmn (35) h‘kN =1m=1 emkPkm(f)
mk FN (€+1 Pkm(f)

This leads topg, p1 andpy values reported in Table 1.

where the superscrigt indicates that\?!’ and post’ are

kmn Prmn
computed with most up-to-date valuesBfand H. This form ACKNOWLEDGMENT
lets appear possible numeric errorshif, = 0 or e, = 0. The research leading to this paper was supported by the
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expressions (31) and (32). This leads to update rules pedposdge Space of semantic inference for automatic annotation
in equations (14) and (15). and retrieval of multimedia content (K-SPACE), and by
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