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FBST:

The Full Bayesian Significance Test (FBST),

first presented by Pereira and Stern in 1999, is

a coherent Bayesian significance test for sharp

hypotheses.

In several applications that motivated the FBST

it was desirable or necessary to use a test of

sharp (precise) hypotheses with the following

characteristics:
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• Give an intuitive and simple measure of sig-

nificance for the (null) hypothesis, ideally, a

probability defined directly in the original (nat-

ural) parameter space.

• Be a consistent indicator for the hypothesis

being tested, in the sense that increasing sam-

ple size should make it converge to the right

Boolean (0/1 false/true) indicator.

• Have an intrinsically geometric definition, in-

dependent of any non-geometric aspect, like:

- The hypothesis (manifold) parameterization,

- The coordinate system on the parameter space,

i.e., be an invariant procedure.

• Be an exact procedure, i.e., make no use of

“large sample” asymptotic approximations.
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• Comply with the Onus Probandi juridical

principle (or In Dubito Pro Reo rule), i.e. con-

sider in the “most favorable way” the claim

stated by the hypothesis.

• Obey the likelihood principle, that is, the

information gathered from observations should

be represented by, and only by, the likelihood

function.

• Require no ad hoc artifice that could lead

to judicial contention, like assigning a positive

prior probability to a zero measure set, or set-

ting an arbitrary initial belief ratio between hy-

potheses.

• Allow, (only) if desired, the incorporation

of previous experience or expert opinion via a

subjective prior distribution.
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Let θ ∈ Θ ⊆ Rp be a vector parameter of inter-

est, and Lx = L(θ |x) the likelihood associated

to the observed data x.

Under the Bayesian paradigm the posterior den-

sity, px(θ), is proportional to the product of the

likelihood and a prior density p(θ),

px(θ) ∝ p(θ)L(θ |x).

The (null) hypothesis H states that the pa-

rameter lies in the null set ΘH,

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}.

For sharp hypotheses, dim(ΘH) < dim(Θ).
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The posterior surprise, s(θ), relative to a given

reference density r(θ), is:

s(θ) = px(θ)/r(θ).

The supremum of the relative surprise function

over the hypothesis (manifold) is:

s∗ = s∗(ΘH , p, Lx, r) = sup
θ ∈ ΘH

s(θ)

The contour or level sets and the Highest Rel-

ative Surprise Set (HRSS), at level ϕ, are:

C(ϕ, p, Lx, r) = {θ ∈ Θ | s(θ) = ϕ}

D(ϕ, p, Lx, r) = {θ ∈ Θ | s(θ) > ϕ}
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The FBST value of evidence against a hypoth-
esis H, Ev(H), is defined by:

Ev(H) = Ev(ΘH , p, Lx, r)

=
∫
T (H)

px(θ) dθ

T (H) = T (ΘH , p, Lx, r)

= D(s∗, p, Lx, r)

The tangential HRSS, T (H), contains the points
in the parameter space whose surprise, relative
to the reference density, is higher than that of
any other point in the null set ΘH. When the
uniform reference density, r(θ) ∝ 1, is used,
T (H) is the Posterior’s Highest Density Prob-
ability Set (HDPS) tangential to the null set.

Interpretation: Small values of Ev(H) indicate
that the hypothesis traverses high density re-
gions, favoring the hypothesis.

Ev(H) = 1 − Ev(H) is the value of evidence
supporting (or in favor of) hypothesis H.
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The role of the reference density in the FBST

is to make Ev(H) implicitly invariant under

transformations of the coordinate system.

Invariance, as used in statistics, is a metric

concept. The reference density is just a com-

pact and interpretable representation for the

reference metric in the original parameter space.

This metric is given by the geodesic distance

on the density surface.

The natural choice of reference density is an

uninformative prior, interpreted as a represen-

tation of no information in the parameter space,

or the limit prior for no observations, or the

neutral ground state for the Bayesian opera-

tion. Standard (possibly improper) uninforma-

tive priors include the uniform and maximum

entropy densities.
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Possibilistic Support Structure:

Many standard Belief Calculi can be formal-

ized in the context of Abstract Belief Calculus,

ABC , of Darwiche and Ginsberg.

〈Φ,⊕,�〉 is a Support Structure , and

〈Φ,⊕〉 is a Partial Support Structure.

Φ is the Support Function, on

U , a universe of statements.

⊕ is the support Summation operator,

� is the support Scaling or Conditionalization,

0 and 1 indicate the minimal and maximal

states of support.

⊕ gives the support value of the disjunction

D = (A∨B) of two logically disjoint statements

from their individual support values, i.e.,

¬(A ∧B) ⇒ Φ(A ∨B) = Φ(A)⊕Φ(B) .
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� gives the conditional support value of B

given A from the unconditional support values

of A and the conjunction C = A ∧B, i.e.,

ΦA(B) = Φ(A ∧B)�Φ(A) .

Support structures for some belief calculi, namely,

classical logic (CL), probability calculus (PR),

possibility calculus (PS), and disbelief calculus

(DB), are given in the next table, where

C = A ∧B, a = Φ(A), b = Φ(B), c = Φ(C).

Φ(U) a⊕ b 0 1 c� a Calc.
{0,1} max(a, b) 0 1 min(c, a) CL
[0,1] a + b 0 1 c/a PR
[0,1] max(a, b) 0 1 c/a PS

{0 . . .∞} min(a, b) ∞ 0 c− a DB
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In the FBST, the support values,

Φ(H) = Ev(H), are computed using standard

probability calculus on Θ which has an intrinsic

conditionalization operator.

The computed evidences, on the other hand,

have a possibilistic summation, i.e., the value

of evidence in favor of a composite hypoth-

esis H = A ∨ B, is the most favorable value

of evidence in favor of each of its terms, i.e.,

Ev(H) = max{Ev(A),Ev(B)}.

It is impossible however to define a compatible

scaling operator for this possibilistic support.

Hence, two belief calculi are in simultaneous

use in the FBST setup: Ev constitutes a pos-

sibilistic partial support structure coexisting in

harmony with the probabilistic support struc-

ture given by the posterior probability measure

in the parameter space.
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Inconsistency aor Sensitivity Analysis:

For a given likelihood and prior density, let,

η = Ev(ΘH , p, Lx, r) denote the value of evi-

dence against a hypothesis H, with respect to

reference r. Let η′, η′′ . . . denote the evidence

against H with respect to references r′, r′′ . . ..

The degree of inconsistency of the value of

evidence against a hypothesis H, induced by a

set of references, {r, r′, r′′ . . .} can be defined

by the Inconsistency index

I
{
η, η′, η′′ . . .

}
=

max
{
η, η′, η′′ . . .

}
−min

{
η, η′, η′′ . . .

}

This intuitive measure of inconsistency can be

made rigorous in the context of paraconsistent

logic and bilattice structures.
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The degree of inconsistency for the evidence
against H induced by multiple changes of the
reference can be used as an index of impre-
cision or fuzziness of the value of evidence,
Ev(H) , that can be interpreted within the pos-
sibilistic context of the partial support struc-
ture given by the evidence.

Some of the alternative ways of measuring the
uncertainty of the value of evidence Ev(H),
such as the empirical power analysis, have a
dual possibilistic / probabilistic interpretation.

The degree of inconsistency also has the prac-
tical advantage of being inexpensive. When
computing the evidence, only the integration
limit, i.e. the threshold s∗, is changed, while
the integrand, i.e. the posterior density, re-
mains the same. Hence, when computing Ev(H),
only a small computational overhead is required
for the inconsistency analysis. In contrast, an
empirical power analysis requires much more
computational work than it is required to com-
pute a single evidence.
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Numerical Examples:

For the HW model we use as uniformative ref-

erence the standard maximum entropy density,

that can be represented as [−1,−1,−1] obser-

vation counts.

For the sensitivity analysis we also use the uni-

form reference, represented as [0,0,0] observa-

tion counts, and intermediate “perturbation”

references corresponding to [−1,0,0], [0,−1,0]

and [0,0,−1] observation counts.

The examples in Figure 2 are given by

sample size factor and proportions,

[x1, x2, x3] = n ∗ [1,2,1] ,

where the HW hypothesis is true, and

[x1, x2, x3] = n ∗ [1,1,2] ,

where the HW hypothesis is false.
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The induced degree of inconsistency is given

by the vertical interval between the lines (solid

bars), whose interpretation is similar to that of

the usual statistical error bars.

16



Final Remarks:

The FBST evidence can be interpreted within

the context of a possibilistic support structure.

The semantic closure of such significance anal-

ysis relates to the notion of Autopoiesis, a

term used by H.Maturana to express the con-

cept of autonomy in Biology, Systems Theory

and Epistemology.

The autopoietic nature of the FBST is in con-

trast with standard Bayesian significance anal-

ysis, using decision theoretic constructs based

cost or utility functions.

If the original application problem context in-

cludes those economic concepts, we can still

consider the decision theoretic analysis autopoi-

etic. Therefore it is important to know that

the FBST significance analysis is completely

compatible with decision theory, this is shown

by Madruga, Esteves and Wechsler in 2001.
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However, there are many applications whose

context does not necessarily include such eco-

nomic constructs; as in problems found in sci-

ence, law, politics, and other fields. In this

case, an analysis based on exogenous concepts

constitutes Systemic Dedifferentiation

(Entdifferenzierung), a term by N.Luhmann.

In the specific situations where decision the-

oretic arguments based on economic concepts

are not needed or recommended, the FBST al-

lows for a statistical significance analysis that

is immune to a dedifferentiation critique, like

N.Luhmann:

“In this sense it is meaningless to speak of

‘non-economic’ costs. This is only a metaphor-

ical way of speaking that transfers the speci-

ficity of the economic mode of thinking indis-

criminately to other social systems”.
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Future Research:

Many traditional interpretations of Bayesian the-

ory for hypothesis test rely on the epistemo-

logical tripod of empiricism, subjectivism and

decision theory. The results of Madruga, Es-

teves and Wechsler imply that the FBST is

fully compatible with this setting.

However, the autopoietic nature of the FBST

analysis opens the possibility of providing Bayesian

significance analysis that is friendly to users

adopting other epistemological settings.

jstern@ime.usp.br

www.ime.usp.br/ ∼jstern
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Appendix: Bilattices

Given two complete lattices, 〈C,≤c〉 , 〈D,≤d〉,
B(C, D) has Knowledge and Truth orders,

B(C, D) = 〈C ×D,≤k,≤t〉
〈c1, d1〉 ≤k 〈c2, d2〉 ⇔ c1 ≤c c2 and d1 ≤d d2

〈c1, d1〉 ≤t 〈c2, d2〉 ⇔ c1 ≤c c2 and d2 ≤d d1

Interpretation: C - credibility, D - doubt

If 〈c1, d1〉 ≤k 〈c2, d2〉, more information in

1 than 2 (even if inconsistent)

If 〈c1, d1〉 ≤t 〈c2, d2〉, more reason to trust

2 than 1 (even if with less information).
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Join and a Meet operators, t and u,

for truth and knowledge orders:

〈c1, d1〉 tt 〈c2, d2〉 = 〈c1 tc c2, d1 ud d2〉
〈c1, d1〉 ut 〈c2, d2〉 = 〈c1 uc c2, d1 td d2〉
〈c1, d1〉 tk 〈c2, d2〉 = 〈c1 tc c2, d1 td d2〉
〈c1, d1〉 uk 〈c2, d2〉 = 〈c1 uc c2, d1 ud d2〉

Negation, ¬ , and Conflation, −
properties, (if defined):

Ng1: x ≤k y ⇒ ¬x ≤k ¬y,

Ng2: x ≤t y ⇒ ¬y ≤t ¬x,

Cf1: x ≤k y ⇒ −y ≤k −x,

Cf2: x ≤t y ⇒ −x ≤t −y,

Ng3: ¬¬x = x , Cf3: −−x = x.

Ng: reverses trust, preserves knowledge,

Cf: reverses knowledge, preserves trust.
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Unit Square bilattice, over the standard

Unit Interval lattice, 〈[0,1],≤〉 , where

Join and Meet operators, t and u,

coincide with max and min operators.

Negation and conflation operators are:

¬ 〈c, d〉 = 〈d, c〉 , −〈c, d〉 = 〈1− c,1− d〉.

In Figure 2 we have the extremes points,

t-truth, f-false, >-inconsist., ⊥-indeterm.

Region R in the convex hull of points

n-north, s-south, e-east and w-west.

Points kj, km, tj and tm are knowledge

and truth join and meet, over r ∈ R.

Degree of Trust and Inconsistency,

for a point x = 〈c, d〉 in the Bilattice,

are given by linear reparameterizations:

BT(〈c, d〉) = c− d , BI (〈c, d〉) = c + d− 1 .
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