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Objectivity means invariance with respect to the group of automorphisms.

Hermann Weyl (1989, p.132). Symmetry.

Let us turn now to the relation of symmetry or invariance principles to the laws of nature...
It is good to emphasize at this point the fact that the laws of nature, that is, the correlations

between events, are the entities to which the symmetry laws apply, not the events themselves.

Eugene Wigner (1967, p.16). Symmetry and Conservation Laws.

We cannot understand what is happening until we learn to think of
probability distributions in terms of their demonstrable information content.

Ed. Jaynes (2003, p.198). Probability Theory: The Logic of Science.

Abstract

This paper has two main objectives: (a) Discuss the formal analogy between some impor-
tant symmetry–invariance arguments used in physics, probability and statistics. Specifically,
we will focus on Noether theorems in physics, maximum entropy principle in probability the-
ory, and de Finetti type theorems in Bayesian statistics. (b) Discuss the epistemological and
ontological implications of these theorems, as they are interpreted in physics and statistics.
Specifically, we will focus on the positivist (in physics) or subjective (in statistics) vs objec-
tive interpretations that are suggested by the mathematical results in topic (a). Some ideas
of the physicist and philosopher Max Born will be particularly important in our discussion.
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1 Introduction

This paper has two main objectives:
(a) Discuss the formal analogy between some important symmetry–invariance arguments used

in physics, probability and statistics. Specifically, we will focus on Noether theorems in physics,
maximum entropy principle in probability theory, and de Finetti type theorems in Bayesian
statistics.

(b) Discuss the epistemological and ontological implications of these theorems, as they are
interpreted in physics and statistics. Specifically, we will focus on the positivist (in physics) or
subjective (in statistics) vs. objective interpretations that are suggested by the mathematical
results in topic (a). Some ideas of the physicist and philosopher Max Born will be particularly
important in our discussion.

In order to make this article accessible for readers in the physics and the statistical commu-
nities, we give a succinct review of several concepts, terminology and results involved. Section
2 presents a review of some ideas of calculus of variations and Noether theorems. Section 3
contrasts positivist and objective-ontological views of the invariant objects discusses in section
2. Section 4 gives a very basic overview of Bayesian statistics and some results concerning
the beginnings and the endings of the inferential process, namely, the construction of invari-
ant priors and posterior convergence theorems. Section 5 presents de Finetti theorem and his
subjectivist interpretation of Bayesian statistics. Sections 6 and 7 extend the discussion of
symmetry–invariance in statistics to wider contexts, and makes some analogies between the
MaxEnt apparatus in statistics and Noether theorems in physics. These sections also include
the discussion of objective ontologies for statistics, and a critique to de Finetti position. Section
8, presents the cognitive constructivism epistemological framework as a way out of the realist -
subjectivist dilemma. This third alternative offers a synthesis of the classical realist and sub-
jectivist positions that, we believe, is also able to overcome some of their shortcomings. Section
9 presents our final conclusions and directions for further research.

2 Minimum Action Principle and Physical Invariants

This section discusses some ideas of symmetry and invariance in classical physics. The key tool
for developing these ideas is variational calculus, briefly reviewed in the following subsection.
This section also presents the minimum action principle and the basic idea of Noether theorems,
the most powerful results linking symmetry and invariance in classical physics. Emmy Noether
original work is in Noether (1918). The presentation in the next subsections follows Byron and
Fuller (1969, V-I, Sec. 2.7). For other sccinct presentations, see Lanczos (1986), and McShane
(1981). For an historical perspective see Doncel et al. (1987). For thorough reviews of Noether
theorem and its consequences, see Gruber (1980-98) and Neuenschwander (2011).

Variational Principles

Variational problem asks for the function q(t) that minimizes a global functional (function of a
function), J(q), with fixed boundary conditions, q(a) and q(b), as shown in Figure 1. Its general
form is given by a local functional, F (t, q, q′), and an integral or global functional, where the
prime indicates, as usual, the simple derivative with respect to t, that is, q′ = dq/dt,

J(q) =
∫ b

a
F (t, q, q′)dt .
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Figure 1: Variational problem, q(x), η(x), q(x) + εη(x).

Euler-Lagrange Equation

Consider a ‘variation’ of q(t) given by another curve, η(t), satisfying the fixed boundary condi-
tions, η(a) = η(b) = 0,

q = q(ε, t) = q(t) + εη(t) and

J(ε) =
∫ b

a
F
(
t, q(ε, t), q′(ε, t)

)
dt .

A minimizing q(t) must be stationary, that is,

∂ J

∂ ε
=

∂

∂ ε

∫ b

a
F
(
t, q(ε, t), q′(ε, t)

)
dt = 0 .

Since the boundary conditions are fixed, the differential operator affects only the integrand,
hence

∂ J

∂ ε
=
∫ b

a

(
∂ F

∂ q

∂ q

∂ ε
+
∂ F

∂ q′
∂ q′

∂ ε

)
dt

From the definition of q(ε, t) we have

∂ q

∂ ε
= η(t) ,

∂ q′

∂ ε
= η′(t) , hence ,

∂ J

∂ ε
=
∫ b

a

(
∂ F

∂ q
η(t) +

∂ F

∂ q′
η′(t)

)
dt .

Integrating the second term by parts, we get∫ b

a

∂ F

∂ q′
η′(t)dt =

∂ F

∂ q′
η(t)

∣∣∣∣b
a

−
∫ b

a

d

dt

(
∂ F

∂ q′

)
η(t)dt ,

where the first term vanishes, since the extreme points, η(a) = η(b) = 0, are fixed. Hence

∂ J

∂ ε
=
∫ b

a

(
∂ F

∂ q
− d

dt

∂ F

∂ q′

)
η(t)dt .

Since η(t) is arbitrary and the integral must be zero, the parenthesis in the integrand must be
zero. This is the Euler-Lagrange equation:

∂ F

∂ q
− d

dt

∂ F

∂ q′
= 0 .
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If F does not depend explicitly on t, only implicitly through q and q′, Euler-Lagrange equation
implies

d

dt

(
q′
∂ F

∂ q′
− F

)
= q′′

∂ F

∂ q′
+ q′

d

dt

∂ F

∂ q′
− ∂ F

∂ t
− ∂ F

∂ q
q′ − ∂ F

∂ q′
q′′ =

−q′
(
∂ F

∂ q
− d

dt

∂ F

∂ q′

)
− ∂ F

∂ t
= 0 ⇒

(
q′
∂ F

∂ q′
− F

)
= const.

Hamilton’s Principle and Classical Mechanics

The Lagrangean of a classical mechanics system specified by generalized vector coordinates q(t),
kinetic energy T (q, q′), and potential energy V (q, t), is defined as L(t, q, q′) = T (q, q′)− V (q, t).

Hamilton’s Principle states that, if a classical mechanics system is anchored at initial and
final fixed positions q(a) and q(b), a < b, then the system follows the trajectory that minimizes
it action. The action, J(q), is defined as the integral of the Lagrangean over time along the
systems’ trajectory,

J(q) =
∫ b

a
L(t, q, q′)dt .

Nother theorems establishes very general conditions under which the existence of a symmetry
in the system, described by the invariance under the action of a continuous group, implies the
existence of a quantity that remains constant in the system’s evolution, that is, a conservation
law, see for example Byron and Fuller (1969, V-I, Sec. 2.7).

As a first example, consider a Lagrangean L(t, q, q′) that does not depends explicitly of q.
This situation reveals a symmetry: The system is invariant by a translation on the coordinate
q. From Euler-Lagrange equation, it follows that the quantity p = ∂ F/∂ q′ is conserved. In the
language of classical mechanics, q would be called a cyclic coordinate, while p would be called a
generalized moment.

As a second example, consider a Lagrangean that does not depend explicitly on t. In this
case, Euler-Lagrandge equation implies q′ ∂ L∂ q′ − L = E, where the constant E is interpreted
as the system’s energy. Indeed, if the potential, V (q), is only function of the system position,
and the kinetic energy is a quadratic form on the velocities, T =

∑
i,j ci,jq

′
iq
′
j , the last equation

assumes the familiar form E = 2T − L = T + V .

As a particular instance, consider a particle in a plane orbit around a radially symmetric and
time independent potential, L = m

2 (r′2 + r2θ′) − V (r). Since the Lagrangean does not depend
explicitly on θ, the system conserves its angular momentum, A, displayed in the next equation.
Since the Lagrangean also does not depend explicitly on t, the system conserves its energy, E,

∂ L

∂ q′
= mr2q′ = A , T + V =

m

2
(r′2 + r2θ′) + V (r) = E .

These two constants of motion, A and E, are in fact a complete set of parameters for the
particle’s orbit, that is, these constants fully specify the possible orbits, as becomes clear by
combining the last equations into the following system of ordinary differential equations,

r′
2 =

2
m

(E − V (r))− m2r2

A
, θ′ =

A

mr2
.
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3 Positivism vs. Objective Ontologies

In this section we discuss the ontological status of the constants or conserved quantities that
emerge from Noether’s theorem. For example, quantities E and A, energy or angular momen-
tum, the parameters for the orbits of the central force system in the last subsection. What
‘are’ these parameters? Are they something ‘real’? In following sections we discuss similar for-
malisms in mathematical statistics, and raise similar questions concerning the ontological status
of parameters in statistical models.

3.1 Positivism, Subjectivism and Solipsism

According to the positivist school, closely related to the skeptical or solipsist traditions, the pri-
mary physical quantities must be directly measurable, like time, position, etc. In the example at
hand, the variables of direct interest, corresponding to the primary physical quantities, describe
the system’s trajectory, giving the time-evolution of the particle’s position, [r(t), θ(t)].

For the positivist school, quantities like A and E have a metaphysical character. The literal
meaning of the word meta-physical is just beyond-physical, designating entities that are not
accessible to our senses or, in our case, quantities that are not directly measurable. Therefore,
from a positivist perspective, metaphysical entities have a very low ontological status, that is,
they do not correspond to objects having a real existence in the world. Rather, they are ghost
that only exist inside our formalism.

In the example at hand, E and A constitute a very convenient index system for the collection
of all possible orbits, but that does not grant these quantities any real existence. On the
contrary, these quantities must be considered just as integration constants, useful variables in
an intermediate step for the calculation of the system’s orbits. They can be used as convenient
auxiliary variables, generating secondary or derived concepts, but that is all that they can ever
aspire to be. The physicist Max Born (1956, p.49,144,152) summarizes this position:

Positivism assumes that the only primary statements which are immediately
evident are those describing direct sensual impressions. All other statements are
indirect, theoretical constructions to describe in short terms the connections and
relations of the primary experiences. Only these have the character of reality. The
secondary statements do not correspond to anything real, and have nothing to do
with an existing external world; they are conventions invented artificially to arrange
and simplify ‘economically’ the flood of sensual impressions.

[The] strictly positivistic standpoint: The only reality is the sense impressions.
All the rest are ‘constructs’ of the mind. We are able to predict, with the help of
the mathematical apparatus... what the experimentalist will observe under definite
experimental conditions... But it is meaningless to ask what there is behind the
phenomena, waves or particles or what else.

We have before us a standpoint of extreme subjectivism, which may rightly be
called ‘physical solipsism’. It is well-known that obstinately held solipsism cannot
be refuted by logical argument. This much, however, can be said, that solipsism
such as this does not solve but evades the problem. Logical coherence is a purely
negative criterion; no system can be accepted without it, but no system is acceptable
just because it is logically tenable. The only positive argument in support of this
abstract type of ultra-subjectivism is... the belief in the existence of an external
world is irrelevant and indeed detrimental to the progress of science.
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3.2 Born Criticism of Positivism

The gnosiological sense of the word metaphysics has its roots in Aristotelic philosophy: In a
nutshell, it designates concepts that enable possible answers to why-questions, that is, meta-
physical concepts are the basis for any possible answer ‘explaining why’ things are the way
they do. Hence, metaphysical concepts are at the core of metaphorical figures and explana-
tion mechanisms, providing an articulation point between the empirical and the hypothetical, a
bridge from the rational and the intuitive, a link between calculation and insight. In this role,
metaphysical concepts give us access to a ‘much deeper’ level of reality. Without metaphysical
concepts, physical reasoning would be downgraded to merely cranking the formalism, either by
algebraic manipulation of the symbolic machinery or by sheer number crunching. Furthermore,
metaphysical concepts are used to express metaphorical figures that constitute the basis of our
communication. These points are addressed by Max Born (1956, p.144,152):

Many physicists have adopted [the positivist] standpoint. I dislike it thoroughly...
The actual situation is very different. All great discoveries in experimental physics
have been due to the intuition of men who made free use of models, which were for
them not products of the imagination, but representatives of real things. How could
an experimentalist work and communicate with his collaborators and his contem-
poraries without using models composed of particles, electrons, nucleons, photons,
neutrinos, fields and waves, the concepts of which are condemned as irrelevant and
futile?

However, there is of course some reason for this extreme standpoint. We have
learned that a certain caution is necessary in using these concepts... Modern theories
demand a reformulation. This new formulation is slowly evolving, but has probably
not reached a final expression.

The final lines of the last quotation address a distinct characteristic of modern science,
namely, its dynamism, the rapid pace of its growth, the creation and reformulation of theories.
However, formulating new theories implies creating new concepts and, sometimes, abandoning
an old one. The frustration of finding out that some of the traditional good-old ‘things’ do not
‘exist’, may be followed by the post-traumatic reaction of denying the existence of anything that
is not unequivocally perceived by direct sensorial experience. In this setting, the popularity
of positivism or subjectivism may be understood as a first (although clumsy) reaction against
naive realism. We believe that the two extreme epistemological positions of naive realism and
subjective solipsism can be seen as two tentatives of building an ontology based on a correspon-
dence principle, as opposed to the approach taken in epistemological framework of cognitive
constructivism. We will return to this theme at section 8.

3.3 Ontology by Invariance and Autonomy

The idea of founding an ontology on invariance properties has its origin in the Erlangen program
of Felix Klein, see Klein (1893) and Hawkins (1984). His approach to geometry provided a
unified treatment for Euclidean, non-Euclidean and Riemannian geometry, see Hawkins (1984)
and Klein (2004). In Klein’s approach, the intrinsic properties of a geometric space is specified
by a set of privileged actions, like a discrete or continuous group of possible transformations.
Well known examples are the rigid translations and rotations of Euclidean geometry, the parallel
transport of Riemannian geometry, and so on. Moreover, the essential objects or properties in
such a geometry are characterized as invariants under the specified actions.
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Furthermore, invariance suggests self-determination or autonomy: Invariance properties can
be interpreted as stating the irrelevance of peripheral peculiarities. For example, the irrelevance
of the particular coordinate system or reference frame being used (in a well defined class of
equivalence), the observer’s prior beliefs, etc. Hence, invariant objects are perceived to be
detached from any idiosyncratic condition, to stand by themselves, to be autonomous. Max
Born (1956, p.158,163,104,51), summarizes this position as applied to build an ontology for
physical sciences:

I think the idea of invariant is the clue to a rational concept of reality, not only
in physics but in every aspect of the world. The theory of transformation groups
and their invariants is a well established part of mathematics. Already in 1872 the
great mathematician Felix Klein discussed in his famous ‘Erlanger Program’ the
classification of geometry according to this point of view; the theory of relativity
can be regarded as an extension of this program to the four-dimensional geometry of
space-time. The question of reality in regard to gross matter has from this standpoint
a clear and simple answer.

Thus we apply analysis to construct what is permanent in the flux of phenomena,
the invariants. Invariants are the concepts of which science speaks in the same way
as ordinary language speaks of ‘things’, and which it provides with names as if they
were ordinary things.

The words denoting things are applied to permanent features of observation or
observational invariants.

The invariants of [a] theory have the right to be considered as representations
of objects in the real world. The only difference between them and the objects of
everyday life is that the latter are constructed by the unconscious mind, whereas the
objects of science are constructed by conscious thinking.

In the next sections we will analyze some formalisms for dealing with symmetry and in-
variance in Bayesian statistics, their traditional subjectivist interpretations, and alternative
ontological or objective interpretations based on the concepts of symmetry and invariance.

4 Bayesian Statistics

A standard model of (parametric) Bayesian statistics concerns an observed (vector) random
variable, x, that has a sampling distribution with a specified functional form, p(x | θ), indexed
by the (vector) parameter θ. This same functional form, regarded as a function of the free
variable θ with a fixed argument x, is the model’s likelihood function. In frequentist or classical
statistics, one is allowed to use probability calculus in the sample space, but strictly forbidden
to do so in the parameter space, that is, x is to be considered as a random variable, while θ is
not to be regarded as random in any way. In frequentist statistics, θ should be taken as a ‘fixed
but unknown quantity’ (whatever that means).

In the Bayesian context, the parameter θ is regarded as a latent (non-observed) random
variable. Hence, the same formalism used to express credibility or (un)certainty, namely, prob-
ability theory, is used in both the sample and the parameter space. Accordingly, the joint
probability distribution, p(x, θ) should summarize all the information available in a statistical
model. Following the rules of probability calculus, the model’s joint distribution of x and θ
can be factorized either as the likelihood function of the parameter given the observation times
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the prior distribution on θ, or as the posterior density of the parameter times the observation’s
marginal density,

p(x, θ) = p(x | θ)p(θ) = p(θ |x)p(x) .

The prior probability distribution p0(θ) represents the initial information available about the
parameter. In this setting, a predictive distribution for the observed random variable, x, is rep-
resented by a mixture (or superposition) of stochastic processes, all of them with the functional
form of the sampling distribution, according to the prior mixing (or weights) distribution,

p(x) =
∫
θ
p(x | θ)p0(θ)dθ .

If we now observe a single event, x, it follows from the factorizations of the joint distribution
above that the posterior probability distribution of θ, representing the available information
about the parameter after the observation, is given by

p1(θ) ∝ p(x | θ)p0(θ) .

In order to replace the ‘proportional to’ symbol, ∝, by an equality, it is necessary to divide
the right hand site by the normalization constant, c1 =

∫
θ p(x | θ)p0(θ)dθ. This is the Bayes

rule, giving the (inverse) probability of the parameter given the data. That is the basic learn-
ing mechanism of Bayesian statistics. Computing normalization constants is often difficult or
cumbersome. Hence, especially in large models, it is customary to work with unormalized den-
sities or potentials as long as possible in the intermediate calculations, computing only the final
normalization constants. It is interesting to observe that the joint distribution function, taken
with fixed x and free argument θ, is a potential for the posterior distribution.

Bayesian learning is a recursive process, where the posterior distribution after a learning
step becomes the prior distribution for the next step. Assuming that the observations are
i.i.d. (independent and identically distributed) the posterior distribution after n observations,
x(1), . . . x(n), becomes,

pn(θ) ∝ p(x(n) | θ)pn−1(θ) ∝
∏n

i=i
p(x(i) | θ)p0(θ) .

If possible, it is very convenient to use a conjugate prior, that is, a mixing distribution whose
functional form is invariant by the Bayes operation in the statistical model at hand. For example,
the conjugate priors for the Normal and Multivariate models are, respectively, Wishart and the
Dirichlet distributions. The explicit form of these distributions is given in the next sections.

In the next two subsections we further discuss the ‘beginnings and the endings’ of the
Bayesian learning process, that is, we present some rationale for choosing the prior distribu-
tion used to start the learning process, and some convergence theorems for the posterior as the
number observations increases.

4.1 Fisher’s Metric and Jeffreys’ Prior

The Fisher Information Matrix, J(θ), is defined as minus the expected Hessian of the log-
likelihood. The Fisher information matrix can also be written as the covariance matrix of for
the gradient of the same likelihood, i.e.,

J(θ) ≡ −EX
∂ 2 log p(x | θ)

∂ θ2
= EX

(
∂ log p(x | θ)

∂ θ

∂ log p(x | θ)
∂ θ

)
8



The physicist Harold Jeffreys used the Fisher metric to define a class of prior distributions,
proportional to the determinant of the information matrix,

p(θ) ∝ |J (θ)|1/2 .

Lemma: Jeffreys’ priors are geometric objects in the sense of being invariant by a continuous
and differentiable change of coordinates in the parameter space, η = f(θ). The proof follows
Zellner (1971, p.41-54):

Proof:

J(θ) =
[
∂ η

∂ θ

]
J(η)

[
∂ η

∂ θ

]′
, hence

|J (θ)|1/2 dθ =
∣∣∣∣∂ η∂ θ

∣∣∣∣ |J (η)|1/2 = |J (η)|1/2 dη , Q.E.D.

Example: For the multinomial distribution,

p(y | θ) = n!
∏m

i=1
θxi
i

/∏m

i=1
xi! , θm = 1−

∑m−1

i=1
θi , xm = n−

∑m−1

i=1
xi ,

L = log p(x | θ) =
∑m

i=1
xi log θi ,

∂ 2L

(∂ θi)2
= −xi

θ2
i

+
xm
θ2
m

,
∂ 2L

∂ θi∂ θj
= −xm

θ2
m

, i, j = 1 . . .m− 1 ,

−EX
∂ 2L

(∂ θi)2
=
n

θi
+

n

θm
, −EX

∂ 2L

∂ θi∂ θj
=

n

θm
,

|J(θ)| = (θ1θ2 . . . θm)−1 , p(θ) ∝ (θ1θ2 . . . θm)−1/2 ,

p(θ |x) ∝ θx1−1/2
1 θ

x2−1/2
2 . . . θxm−1/2

m .

Hence, in the multinomial example, Jeffreys’ prior ‘discounts’ half an observation of each
kind, while the flat prior discounts none.

4.2 Posterior Convergence

In this section we briefly state two asymptotic results that are fundamental to Bayesian statistics.
For a detailed, intuitive and very understandable discussion, see Gelman (1995, Ap.B).

Theorem Posterior Consistency for Discrete Parameters:

Consider a model where f(θ) is the prior in a discrete (vector) parameter space, Θ =
{θ(1), θ(2), . . .}, X = [x(1), . . . x(n)] is a series of observations, and the posterior is given by

f(θ(k) |X) ∝ f(θ(k)) p(X | θ(k)) = f(θ(k))
∏n

i=1
p(x(i) | θ(k))

Further, assume that this model there is a single value for the vector parameter, θ(0), that
gives the best approximation for the ‘true’ predictive distribution g(x) (in the sense that it
minimizes the information divergence, as defined in Sec.7). Then,

lim
n→∞

f(θ(k) |X) = δ(θ(k), θ(0)) .
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We can extend this result to continuous parameter spaces, assuming several regularity condi-
tions, like continuity, differentiability, and having the argument θ(0) as a interior point of Θ with
the appropriate topology. In such a context, we can state that, given a pre-established small
neighborhood around θ(0), like C(θ(0), ε) the cube of side size ε centered at θ(0), this neighbor-
hood concentrates almost all mass of f(θ |X), as the number of observations grows to infinite.
Under the same regularity conditions, we also have that Maximum a Posteriori (MAP) estimator
is a consistent estimator, i.e., θ̂ → θ(0).

The next result states the convergence in distribution of the posterior to a Normal distribu-
tion, using the Fisher information matrix as defined in the last subsection, see Gelman (1995,
Ap.B).

Theorem Posterior Normal Approximation:
The posterior distribution converges to a Normal distribution with mean θ(0) and precision
nJ(θ(0)).

4.3 Subjective Coherence vs. Objective Geometry

The invariance properties of Jeffreys’ priors entail objective interpretations that are similar to
the case of invariant objects defined via Noether theorem. In Weyl (1952, p.132-133), we find
some further explanations for the meaning of the quotation opening this paper:

We found that objectivity means invariance with respect to the group of auto-
morphisms... This is what Felix Klein called a ‘geometry’ in the abstract sense.
A geometry, Klein said, is defined by a group of transformations, and investigates
everything that is invariant under the transformations of this given group.

Under appropriate regularity conditions, the information geometry is defined by the metric
in the parameter space given by the Fisher information matrix, that is, the geometric length
of a curve is computed integrating the differential form dl2 = dθ′J(θ)dθ, see Amari (2007),
Boothby (2002) and Carmo (1976). Hence, in strict accordance to Klein’s Erlangen program,
Jeffreys’ priors can be interpreted as giving the underlying geometry of the parameter space.
In this role, Jeffreys’ priors provide reference metrics for the parameter space of statistical
models, metrics that we so often take for granted and use for a great variety of purposes without
further thought or consideration. Under the objective perspective, the posterior convergence
theorem characterizes ‘true’ parameter values as fixed points of the learning process, that is, as
(stochastic) invariants. Naturally, all these interpretations have a strong objective character.

However, subjective interpretations of the results presented in this section are also possible.
Under the subjectivist perspective, Jeffreys’ prior can be understood as coherence conditions for
the subject’s opinion. For a subjectivist, invariance by reparameterization is only a consistency
condition on rational but personal prior beliefs. Even convergence results can be re-interpreted
as leading not to to any kind of objectivity, but to inter-subjectivity, that is, as leading, in due
time, to the mutual agreement of several solipsist agents. However, perhaps the best justification
or the most powerful defense for the subjectivist position was presented by Bruno de Finetti,
the undisputed champion of the subjectivist position. In the next section we review de Finetti
theorem and how it was interpreted by his author. Ironically, these considerations are based on
yet another symmetry relation, namely, exchangeability.
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5 Exchangeability and De Finetti Theorems

In Section 4 we derived several results of Bayesian statistics assuming that observations are
i.i.d. random variables, Nevertheless, the i.i.d. hypothesis has a strong ‘objectivist’ flavor. De
Finetti theorems allow us to replace the i.i.d. hypothesis by a symmetry condition, namely,
exchangeability.

A finite sequence of n random (vector) variables, y(1), y(2), . . . y(n) is (finitely) exchangeable
if the joint distribution of these random variables is symmetric by permutations, that is, if, for
any permutation of vector π([1, 2, . . . n]),

p(y(1), y(2), . . . y(n)) = p(yπ(1), yπ(2), . . . yπ(n)) .

An infinite sequence of random variables is infinitely exchangeable if any of its finite subsequences
is exchangeable.

Bruno de Finetti original exchangeability theorem states that, for an infinite exchangeable
sequence of (scalar) Boolean random variables, partial joint probability distributions can always
be represented as a mixture on the parameter of a product of Bernoulli distributions,

p(y1, . . . yn) =
∫ 1

0

∏n

i=1
θyi(1− θ)1−yi q(θ)dθ =

∫ 1

0
θxn(1− θ)1−xn q(θ)dθ ,

the probability distributions of the partial sums, xn =
∑n

i=1 yi, can always be represented as
the corresponding mixture on the parameter of binomial distributions,

f(xn) =
(

n
xn

)∫ 1

0
θxn(1− θ)1−xn g(θ)dθ ,

and the mixing cumulative distribution, G(θ), is the limit cumulative distribution for the partial
frequencies,

Gn(θ) = Pr (xn/n ≤ θ) .

The statement above assumes that there is a limit density, g(θ); otherwise one has to employ
the abstract limit probability measure, dG(θ). For a simple and intuitive proof, see Feller (1966,
v.II, Ch.VII, Sec.1-4). Feller’s proof follows some of the same arguments used by de Finetti,
including some interesting demonstration techniques based on the theory of difference equations,
see Finetti (1981,1991) and Castelnuovo (1933). For a short proof, that nevertheless relies on a
heavy result of measure theoretic analysis, see Heath and Sudderth (1976). For several extensions
of de Finetti theorem, see Diaconis, D.Freeman (1987).

From simple characterization theorems, see Pereira and Stern (2008) it is immediate to
extend de Finetti theorem from the Binomial to the Multinomial case. Arguments of analysis, see
Bernardo (2000,Ch.4) or Renyi (1970,Sec.VII.12), allow us to further extend de Finetti theorem
to obtain a general representation theorem for finite subsequences of an infinitely exchangeable
sequence of real-valued random variables. Assuming that ordinary densities can replace the
more abstract probability measures, the general form of the joint probability distribution for
a finite set of (observed) random variables, x1, . . . xn, can be represented by the product of a
parameterized density for individual observations mixed by a density on the (latent) parameter,

p(x(1), . . . x(n)) =
∫

Θ

∏n

i=1
p(x(i) | θ)q(θ)dθ .

If these probability models are subject to additional constraints, like the symmetry conditions
considered in next sections, the general representation takes the form of a mixture in the corre-
sponding family of invariant distributions.
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5.1 De Finetti Subjectivism

Bruno de Finetti is the founder of modern Bayesian statistics, and an outspoken advocate of
extreme subjectivism. In his lecture - Exchangeability, Induction and ‘Unknown’ Probabilities
- Finetti (2008, Ch.8), he offers a synthesis of his interpretation of probability as subjective
uncertainty in the context of the theorem presented in the last section:

Every time that probability is given by a mixture of hypotheses, with indepen-
dence holding for each of them respectively, it is possible to characterize the inductive
relevance that results on the basis of [the mixture] equation in terms of exchangeabil-
ity... [This] shows how the concept of exchangeability is necessary in order to express
in a meaningful way what is usually referred to as “independence with constant but
unknown probability”. This expression is not correct because in fact (a) there is no
independence. (b) the probability is not constant because the composition of the
urn being unknown, after learning the outcome of the draws, the probability of the
various compositions is subject to variation.

Hence, according to de Finetti, the ‘objective’ i.i.d. condition is a mirage, a displaced
reflection ‘outside’ of a more fundamental symmetry condition ‘inside’, namely, exchangeability.
Naturally, for de Finetti, exchangeability is on the eyes of the beholder, expressing his or her
own explicit or implicit opinions on how observational data should be correctly handled.

I.J.Good was another leading figure of the early days of the Bayesian revival movement.
Contrary to de Finetti, Good has always been aware of the dangers of an extreme subjectivist
position. Some of his conclusions seem to echo Born’s arguments presented in section 1, see for
example Good (1983, Ch.8 Random Thoughts about Randomness, p.93):

Some of you might have expected me, as a confirmed Bayesian, to restrict the meaning
of the word ‘probability’ to subjective (personal) probability. That I have not done
so is because I tend to believe that physical [objective] probability exists and is in
any case a useful concept... The philosophical impact of de Finetti’s theorem is that
it supports the view that solipsism cannot be logically disproved. Perhaps it is the
mathematical theorem with most potential philosophical impact.

We intend to challenge de Finetti’s subjectivist view. However, before we can do so, we shall
widen the scope of our discussion, presenting probability distributions derived from symmetry
conditions far more general than exchangeability.

6 Simple Symmetric Probability Distributions

Sections 6 and 7 present important results linking symmetry constraints and the functional
form of probability distributions. We follow the very simple approach to functional equations
of probability distributions in Aczél (1966). For related but more general and sophisticated
approaches, see Diaconis (1988), Eaton (1989) and Viana (2008). These results will be important
in our philosophical discussions, but they will also help to answer a far more practical question:
What family of distributions should we chose when specifying a statistical model?

12



6.1 Cauchy’s Functional Equations

In this subsection we introduce the additive and multiplicative forms of Cauchy functional
equation, since this functional equation will be used several times in the sequel.

Cauchy’s additive functional equation has the form

f(x+ y) = f(x) + f(y) .

The following argument from Cauchy (1821) shows that a continuous solution of this functional
equation must have the form

f(x) = cx .

Repeating the sum of the same argument, x, n times, we must have f(nx) = nf(x). If
x = (m/n)t, then nx = mt and

nf(x) = f(nx) = f(mt) = mf(t) hence,

f
(m
n
t
)

=
m

n
f(t) ,

taking c = f(1), and x = m/n, it follows that f(x) = cx, over the rationals, x ∈ IQ. From the
continuity condition for f(x), the last result must also be valid over the reals, x ∈ R. Q.E.D.

Cauchy’s multiplicative functional equation has the form

f(x+ y) = f(x)f(y) , ∀x, y > 0 , f(x) ≥ 0 .

The trivial solution of this equation is f(x) ≡ 0. Assuming f(x) > 0, we take the logarithm,
reducing the multiplicative equation to the additive equation,

ln f(x+ y) = ln f(x) + ln f(y) , hence,

ln f(x) = cx , or f(x) = exp(cx) .

6.2 Radial Symmetry and the Gaussian Distribution

John Herschel (1850) gave the following derivation of the Gaussian or Normal distribution,
concerning the distribution of errors in astronomical measurements. A few years later, James
Clerk Maxwell used the same arguments to derive the functional form of the probability distri-
bution of molecular velocities in statistical physics. The derivation follows three simple steps,
based on arguments of (1) independence, (2) radial symmetry and (3) normalization. For the
sake of simplicity, we give the derivation using a two dimensional Cartesian coordinate system,
x = [x1, x2].

Independence: Measurements on orthogonal axes should be independent,

f(x1)
∐

f(x2)⇒ f(x) = f(x1)f(x2) .

Radial symmetry: Measurement errors should not depend on the current orientation of the
coordinate system. This step uses the exponential solution to Cauchy multiplicative functional
equation.

f(x) = f(x1)f(x2) = f(x2
1 + x2

2)⇒ f(x) ∝ exp(x2
1 + x2

2) = exp(||x||2) .
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Normalization: The probability density must integrate to unity.∫
f(x)dx1dx2 = 1⇒ f(x) =

a

π
exp(−a||x||2) , a > 0 .

In the next section, we give a second derivation of this functional form based on the MaxEnt
formalism, given more general constraints on the first and second statistical moments, that is,
the expectation vector and covariance matrix.

6.3 Homogeneous Discrete Markov Processes

We seek the general form of a homogeneous discrete Markov process. Let wk(t), for t ≥ 0, be
the probability of occurrence of exactly k events. Let us also assume the following hypotheses:

Time Locality: If t1 ≤ t2 ≤ t3 ≤ t4 then, the number of events in [t1, t2[ is independents of
the number of events in [t3, t4[.

Time Homogeneity: The distribution for the number of events occurring in [t1, t2[ depends
only on the interval length, t = t2 − t1.

From time locality and homogeneity, we can decompose the occurrence of no (zero) events
in [0, t+ u[ as ,

w0(t+ u) = w0(t)w0(u) .

Hence, w0(t) must obey Cauchy’s functional equation, and

w0(t) = exp(ct) = exp(−λt) .

Since w0(t) is a probability distribution, w0(t) ≤ 1, and λ > 0.

Hence, v(t) = 1 − w0(t) = 1 − exp(−λt), the probability of one or more events occurring
before t > 0, must be the familiar exponential distribution.

For k ≥ 1 occurrences before t+ u, the general decomposition relation is

wn(t+ u) =
n∑
k=0

wk(t)wn−k(u) .

Theorem (Renyi-Aczél): The Poisson distribution,

wk(t) = e−λt(λt)k/k! ,

is the (non trivial) solution of this system of functional equations under the rarity condition:
The probability that an event occurs in a short time at least once is approximately equal to the
probability that it occurs exactly once, that is, the probability of simultaneous occurrences is
zero. The general solution has the form of a mixture of Poisson processes, each one counting
bursts of a fixed number of events. For the proof, by induction, see Aczél (1966, Sec.2.1-2.3).

Pereira and Stern (2008) present the characterization of the Multinomial by the Poisson
distribution, and vice-versa. These characterizations allow us to interpret the exchangeability
symmetry characterizing a Multinomial processes in terms of the time homogeneity symmetry
and superposition principle characterizing corresponding Poisson counting processes, and vice-
versa. As observed by an anonymous referee, from a strict predictivist standpoint, our analogy
between de Finetti and Renyi-Aczél theorems is not fully complete, because an exogenous (to
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the characterization) mixing distribution on the Poisson parameter has to be integrated into
the Bayesian inferencial model. In orther to present our analogy argument in full strength,
the straight i.i.d. hypothesis for non-overlapping same-length intervals in Renyi-Aczél theorem
should be replaced by a weaker conditional i.i.d. hypothesis, given the asymptotic frequency
rate of the stochastic process. A direct characterization of the mixed Poisson process, based on
similar symmetry conditions, can be found in Proposition 1.28 of Kallenberg (2005,p.66).

This example illustrates how there may be several alternative ways to formulate the funda-
mental symmetries that characterize a given statistical model. The best choice may be dictated
by formal elegance and simplicity, or by the narrative or rhetorical context of the arguments
being supported by the statistical model at hand. Hence, in a scientific or philosophical debate,
it is not at all surprising to see the participants flipping back and forth among alternative but
equivalent symmetry conditions, according to their individual agendas and distinct perspectives.

7 Minimum Information or MaxEnt Principle

Section 1 presented Noether theorem as an apparatus that, based on the minimum action prin-
ciple, takes a symmetry constraint and produces an invariant (physical) quantity. This section
presents the Maximum Entropy (MaxEnt) apparatus in a similar way, that is, given a symme-
try condition, expressed by a suitable constraint equation, one can use the MaxEnt principle
to derive the functional form of an invariant distribution. Using the MaxEnt apparatus, it is
possible to derive the functional form of many of the most probability distributions used in
statistical models, see Kapur (1988). We also present Bregman algorithm as simple and elegant
way to compute finite MaxEnt distributions even when no closed analytical form is available.
The formulation of Bregman algorithm also provides a useful tool for validating the analytic
form of generic MaxEnt solutions.

7.1 Maximum Entropy under Constraints

The origins of the entropy concept lay in the fields of Thermodynamics and statistical physics,
but its applications have extended far and wide to many other phenomena, physical or not.
The entropy of a probability distribution, H(p(x)), is a measure of uncertainty (or impurity,
confusion) in a system whose states, x ∈ X , have p(x) as probability distribution. For detailed
analysis and further references, see Caticha (2008), Dugdale (1996), Khinchin (1953) and Stern
(2008b,Ap.E). For the sake of simplicity, we present most of the following discussion in the
context of a finite system, with states spanned by an indexed i ∈ {1, 2, . . . n}.

The Boltzmann-Gibbs-Shannon measure of entropy, defined as

Hn(p) = −In(p) = −
∑n

i=1
pi log(pi) = −Ei log(pi) , 0 log(0) ≡ 0

The opposite of the entropy, I(p) = −H(p), the Neguentropy, is a measure of Information
available about the system.

Shannon’s Inequality, a theorem that follows directly from the definition of entropy, can be
stated as follows: If p and q are two distributions over a system with n possible states, and
qi 6= 0, then the Information Divergence of p relative to q, In(p, q), is positive, except if p = q,
when it is null,

In(p, q) ≡
∑n

i=1
pi log

(
pi
qi

)
, In(p, q) ≥ 0 , In(p, q) = 0⇒ p = q
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Shannon’s inequality motivates the use of the Information Divergence as a measure of (non
symmetric) ‘distance’ between distributions. In statistical sciences, this measure is known as
the Kullback-Leibler distance. The denominations Directed Divergence or Cross Information
are used in Engineering.

Given a prior distribution, q, we would like to find a vector p that minimizes the Information
Divergence In(p, q), where p is under the constraint of being a probability distribution, and
maybe also under additional constraints over the expectation of functions taking values on the
system’s states. In the specification of the constraints, A is an (m− 1)× n real matrix, and the
problem is formulated as

p∗ ∈ arg min In(p, q) , p ≥ 0 |1′p = 1 and Ap = b .

The solution p∗ is the Minimum Information Divergence distribution, relative to q, given the
constraints {A, b}. We can write the probability normalization constraint as a generic linear
constraint, including 1 and 1 as the m-th (or 0-th) rows of matrix A and vector b. So doing, we
do not need to keep any distinction between the normalization and the other constraints. In this
chapter, the operators � e � indicate the point (element) wise product and division between
matrices of same dimension.

The Lagrangean function of this optimization problem, and its derivatives are:

L(p, w) = p′ log(p� q) + w′(b−Ap) ,

∂ L

∂ pi
= log(pi/qi) + 1− w′A•,i ,

∂ L

∂ wk
= bk −Ak,• p .

Equating the n+m derivatives to zero, we have a system with n+m unknowns and equations,
giving viability and optimality conditions (VOCs) for the problem:

pi = qi exp
(
w′A•,i − 1

)
or p = q � exp

(
(w′A)′ − 1

)
Ak,• p = bk , p ≥ 0

We can further replace the unknown probabilities, pi, writing the VOCs only on w, the dual
variables (Lagrange multipliers),

hk(w) ≡ Ak,•
(
q � exp

(
(w′A)′ − 1

))
− bk = 0

In the case of finite systems, the last form of the VOCs motivates the use of iterative algo-
rithms of Gauss-Seidel type, solving the problem by cyclic iteration. In this type of algorithm,
one cyclically ‘fits’ one equation of the system, for the current value of the other variables. For
a detailed analysis of this type of algorithm, see Censor and Zenios (1994, 1997), Elfving (1980),
Fang et al. (1997), Garcia et al. (2002) and Iusem and Pierro (1987).

Bregman Algorithm:

Initialization: Take t = 0, w(t) ∈ Rm, and

p
(t)
i = qi exp

(
w(t)′A•,i − 1

)
Iteration step: for t = 1, 2, . . ., Take

k = (t mod m) and ν |ϕ(ν) = 0 , where
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w(t+1) =
[
w

(t)
1 , . . . w

(t)
k−1, w

(t)
k + ν, w

(t)
k+1, . . . w

(t)
m

]′
p

(t+1)
i = qi exp(w(t+1)′A•,i − 1) = p

(t)
i exp(νAi,k)

ϕ(ν) = Ak,• p
(t+1) − bk

From our discussion of Entropy optimization under linear constraints, it should be clear
that the minimum information divergence distribution for a system under constraints on the
expectation of functions taking values on the system’s states,

Ep(x)ak(x) =
∫
ak(x)p(x)dx = bk ,

(including the normalization constraint, a0 = 1, b0 = 1) has the form

p(x) = q(x) exp (−θ0 − θ1 a1(x)− θ2 a2(x) . . .)

Note that we took θ0 = −(w0−1), θk = −wk, and we have also indexed the state i by variable x,
so to write the last equation in the standard form used in the statistical literature. Hence, this
form is a convenient way to check that several distributions commonly used in statistics can be
interpreted as minimum information (or MaxEnt) densities (relative to the uniform distribution,
if not otherwise stated) given some constraints over the expected value of state functions. For
example:

- The Binomial distribution is characterized as the distribution of maximum entropy for
i ∈ {1 . . . n}, given the expected value of the mean, relative to the combinatorial prior C(n, i).

- The Normal distribution is characterized as the distribution of maximum entropy on Rn,
given the expected values of its first and second moments, i.e., mean vector and covariance
matrix.

- The Wishart distribution:

f(S | ν, V ) ≡ c(ν, V ) exp
(
ν − d− 1

2
log(det(S))−

∑
i,j
Vi,jSi,j

)
is characterized as the distribution of maximum entropy in the support S > 0, given the expected
value of the elements and log-determinant of matrix S. That is, writing Γ′ for the digamma
function,

E(Si,j) = Vi,j , E(log(det(S))) =
∑d

k=1
Γ′
(
ν − k + 1

2

)
- The Dirichlet distribution

f(x | θ) = c(θ) exp
(∑m

k=1
(θk − 1) log(xk)

)
is characterized as the distribution of maximum entropy in the simplex support, x ≥ 0 |1′x = 1,
given the expected values of the log-coordinates, E(log(xk)).

For the Multinomial distribution, the mean vector represents expected frequency rates, and
the combinatorial prior represents the equiprobability condition. The Multinomial distribution
is only a function of accumulated counts, it is not dependent on the particular order of the
outcomes. Hence it represents exchangeable events.

For the Normal distribution, the mean represents a translation vector, and the coefficients
of the correlation matrix represent rotation angles. Translations and rotations constitute the
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action group defining Euclidean geometry. In particular, Herchel’s isotropy and orthogonality
condition is given by the zero mean vector and the identity correlation matrix, a symmetry
constraint that engenders the standard Normal distribution. Similar interpretations can be
given to the other distributions.

The Dirichlet and the Wishart distribution can be characterized as conjugate and invariant
priors for the first two distributions, or as MaxEnt distributions in their on right. Dirichlet-
Multinomial and Normal-Wishart models, and many of its variations, like discrete Bayesian
networks, regression, factor analysis, generalized linear models (GLIM), and combinations of
the above, known as finite mixture models, encompass the most widely used classes of statistical
models. This is due to the formal convenience for mathematical manipulation offered by these
models, and also by the importance (in the target application) of the symmetries encoded by
these models. The next section should help to clarify this last statement.

8 Cognitive Constructivism

In the preceding sections, we have discussed several forms of symmetry found in statistical
models. However, it is a matter of constant debate whether these symmetries concern: (a) the
observer, (b) the observed phenomena an sich (in itself), or (c) the observation process. These
three possibilities are related to the epistemological frameworks of (a) subjectivism, skepticism,
solipsism, etc. (b) naive or dogmatic forms of realism. (c) cognitive constructivism. Previ-
ous sections discussed some aspects of the first two epistemological frameworks. This sections
makes additional considerations about these two frameworks and also introduces a third option,
Cognitive Constructivism, or Cog-Con.

8.1 Objects as Eigen-Solutions

The Cog-Con framework rests upon Heinz von Forster’s metaphor of Objects as tokens for
eigen-solutions. the key to Cog-Con ontology and metaphysics. The recursive nature of a
learning system interacting with its environment produces recurrent states or stable solutions.
Under appropriate conditions, such a (learned or known) solution, if presented to the system,
will regenerate itself as a fixed point, an equilibrium or homeostatic state, etc. These are
called eigen-values, eigen-vectors, eigen-functions, eigen-behaviors or, in general, eigen-solutions.
The circular or cyclic characteristic of recursive processes and their eigen (auto, equilibrium,
fixed, homeostatic, invariant, recurrent, recursive) -states are investigated in Foerster (2003)
and Segal (2001). The concept of eigen-solution is the key to distinguish specific objects in the
cognitive domain of a learning system. Objects are “tokens for eigen-solutions”. (A soccer ball is
something that interacts with a human in the exact way it is supposed to do for playing soccer.)
Eigen-solutions can also be tagged or labeled by words, and these words can be articulated
in language. Of course, the articulation rules defined for a given language, its grammar and
semantics, only make the language useful if they somehow correspond to the composition rules
for the objects the words stand for.

Moreover, von Foerster establishes four essential attributes of eigen-solutions: Eigen-values
are ontologically discrete, stable, separable and composable. It is important to realize that,
in the sequel, the term ‘discrete’, used by von Foerster to qualify eigen-solutions in general,
should be replaced, depending on the specific context, by terms such as lower-dimensional,
precise, sharp, singular etc. In several well known examples in exact sciences, these four essential
properties lead to the concept of basis, basis of a finite vector space, like in linear algebra, basis
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of a Hilbert space, like in Fourier or Wavelet analysis, or more abstract settings, like basis for
matroid structure, generators for an algebraic group, etc. Nevertheless, the concept of eigen-
solution and its four essential properties is so important in the Cog-Con framework, that it is
used as a fundamental metaphor in far more general, and not necessarily formalized, contexts.
For detailed interpretations of the of these four essential attributes on eigen-solutions in the
context of Bayesian learning systems, see Stern (2007a,b, 2008a,b). For a formal derivation of
compositionality properties in the FBST context, see Borges and Stern (2007).

8.2 Semantics by Construction and by Correspondence

In this subsection we further investigate some consequences of the Cog-Con perspective on
objects and their representation in language, contrasting it with more traditional approaches,
based on dyadic cuts and subsequent correspondences. Correspondence approaches start by
making a distinction that cuts the world in two, and then choose or decide if objects are correctly
placed ‘in here’ or ‘out there’: Are they internal concepts in a given system or are they external
entities in the environment? Do they belong to the ‘subjective’ or ‘upper’ world of the mind,
spirit, intuitive thought etc. or do they belong to ‘reality’ or ‘lower’ world of the body, matter,
etc.?

The predetermined cut splitting the world in two also suggests two natural alternative ways
to climb the epistemological mountain: Either the correct ideas above are those corresponding
to the ‘reality’ below, or the correct things below are those corresponding to the ‘good’ ideas
above, etc. The existence of true and static correspondence principle is a necessary pre-requisite,
but there are different ways to establish the connection, or to learn it (or to remember it). An
empiricist diligently observes the world, expecting his reward to be paid in current scientific
knowledge that can, in turn, be used to pay for convenient tools to be used in technological
enterprises. A dogmatic idealist works hard at his metaphysical doctrine, in order to secure a
good spot at the top, expecting to have an easy ride sliding down the epistemological road.

The dyadic correspondence approach is simple and robust. It can be readily adapted to
many different situations and purposes. It also has attractive didactic qualities, being easy
to understand and to teach. The dyadic correspondence approach has low entrance fees and
low maintenance costs, as long as one understands that the assumption of a predetermined
correspondence makes the whole system essentially static. Its major weakness relates to this
rigidity. It is not easy to consider new hypothesis or original concepts, and even harder to handle
the refutation or the dismissal of previously accepted ones. New world orders always need to
be, at least conceptually, proven afresh or build up from scratch.

In Cognitive Constructivism, language can be seen as a third pole in the epistemological
framework, a third element that can play the role of a buffer, moderating or mitigating the
interaction of system and environment, the relation of theory and experiment, etc. After all,
it is only in language that it is possible to enunciate statements, that can then be judged for
truthfulness or falsehood. Moreover language gives us a shelf to place our objects (represen-
tations of eigen-solutions), a cabinet to store these (symbolic) tokens. Even if the notion of
object correspondence, to either purely internal concepts to a given system or to strictly exter-
nal entities in the environment, is inconsistent with the Cog-Con framework, this framework is
perfectly compatible with having objects re-presented as symbols in one or several languages.
This view is very convenient and can be very useful, as long as we are not carried away, and
start attributing to language magic powers capable of creating ex-nihilo the world we live in.
As naive as this may seem, this is a fatal mistake made by some philosophers in the radical
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constructivist movement, see Stern (2005).

The Cog-Con approach requires, from the start, a more sophisticated construction, but
it should compensate this trouble with the advantage of being more resilient. Among our
goals is escaping the dilemmas inherent to predetermined correspondence approaches, allowing
more flexibility, providing dynamic strength and stability. In this way, finding better objects,
representing sharper, stabler, easier to compose, or more generally valid eigen-solutions (or even
better representations for these objects in the context of a given system), does not automatically
imply the obliteration of the old ones. Old concepts or notations can be replaced by better
ones, without the need ever being categorically discredited. Hence, theories have more room
to continuously grow and adapt, while a concept at one time abandoned may be recycled if its
(re)use is convenient at a later opportunity. In this way, the Cog-Con epistemological framework
naturally accommodates dynamic concepts, change of hypotheses and evolution of theories, all
so characteristic of modern science.

9 Conclusions and Further Research

When Bayesian statistical models are examined in the Cog-Con framework, the role played by the
model’s parameters becomes clear: They are (converging to) eigen-solutions of that statistical
model in the process of information acquisition by the incorporation of observational data. These
eigen-solution are (in the limit, stochastic) invariants of the Bayesian learning process. As such,
they have a compelling objective character, according to Herman Weyl’s quotation opening this
article. The precision aspect of the quality of these eigen-solution, that is, its objectivity, can be
accessed by the current posterior density. Hence, we can also access the objective truthfulness
of more general hypotheses, stated as equations on the parameters. The FBST - Full Bayesian
Significance Test, was designed having this specific purpose in mind, see Borges and Stern (2007)
and Pereira et al. (2008).

Frequentist statistics categorically forbids probabilistic statements in the parameter space.
De Finettian subjectivist interpretation of Bayesian statistics ‘justifies’ the use of prior and
posterior distributions for the parameters, but their role is to be used as nothing more then
integration variables in the process of computing predictive distributions. In a very positivist
spirit, like any other non directly observable or latent quantity, parameters are labeled as meta-
physical entities, and given a very low ontological status. Finally, in the Cog-Con interpretation
of Bayesian statistics, parameters can take their rightful place on the center stage of the infer-
ential process. They are not just auxiliary variables, but legitimate objects of knowledge, that
can be properly used in true bearing statements. We claim that the last situation corresponds
to what a scientist naturally finds, needs and wants in the practice of empirical science.

Ontological frameworks based on correspondence semantics seem to be particularly inappro-
priate in quantum mechanics. We believe that many of the arguments and ideas presented in
this paper can be re-presented, even more emphatically, for statistical models concerning exper-
imental measurements in this realm. The formal analogies between the symmetry arguments
and their use in statistics and physics is even stronger in quantum mechanics than in the case
of classical physics, see Gross (1995), Houtappel et al. (1965), Fleming (1979) and Wigner
(1967,1968). For example, the idea of eigen-solution, that already plays a very important role
in the epistemology of classical physics, see for example Stern (2008b), plays an absolutely
preponderant role in quantum mechanics. Furthermore, the quantum mechanics superposition
principle makes the use of mixtures of basic symmetric solutions as natural (and necessary) in
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quantum mechanics as they are in statistics. Moreover, quantum mechanics theory naturally
leads to interpretations that go beyond the classical understanding of probability as ‘uncertainty
about a well defined but unknown state of nature’. As stated by Born (1956,p.168), in quantum
mechanics “the true physical variable is the probability density”.

Perhaps Born’s statement ending the last paragraph is also pertinent in application ar-
eas (sometimes derogatorily) labeled ‘soft’ science. In the context of physics and other ‘hard’
sciences, we search for anchors that can hold to the very fabric of existence, which can grip
rock-bottom reality, or provide irreducible elements that can be considered as basic constituents
or components of a multitude of derived complex systems. In this context, this article argued
that the objective perspective offered by the Cog-Con epistemological framework is far superior
to the strict subjective (or at most inter-subjective) views of the decision theoretic epistemolog-
ical framework of traditional Bayesian statistics. Meanwhile, in the context of ‘soft’ sciences,
like marketing, psychology or sociology, the subjective and inter-subjective views of traditional
Bayesian statistics may not contradict but rather complement the objective perspective offered
by Cog-Con. We intend to explore this possibility as a second path of future research.

References

- J.Aczél (1966). Lectures on Functional Equations and their Applications. NY: Academic Press.
- S.I.Amari (2007). Methods of Information Geometry. American Mathematical Society.
- W.Boothby (2002). An Introduction to Differential Manifolds and Riemannian Geometry. NY: Aca-
demic Press.
- W.Borges, J.M.Stern (2007). The Rules of Logic Composition for the Bayesian Epistemic e-values.
Logic Journal of the IGPL, 15, 5-6, 401-420. doi:10.1093/jigpal/jzm032 .
- M.Born (1949). Natural Philosophy of Cause and Chance. Oxford: Clarendon Press.
- M.Born (1956). Physics in my Generation. London: Pergamon Press.
- F.W.Byron Jr., R.W.Fuller (1969). Mathematics of Classical and Quantum Physics. Reading, MA:
Addison-Wesley.
- Y.Censor, S.A.Zenios (1997). Parallel Optimization: Theory, Algorithms, and Applications. NY: Oxford
Univ.Press.
- G.Castelnuovo (1933). Calcolo delle Probabilità. Bologna: N.Zanichelli.
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