## Logical Hexagons of Statistical Modalities: Probabilistic, Alethic, Hybrid \& Spiral

> Luís Gustavo Esteves*, Julio Michael Stern*,

* University of São Paulo,

Rafael Izbicki\#, Rafael Bassi Stern\#;
\# Fed. Univ. of São Carlos.

http://www.ime.usp.br/~jstern/miscellanea/jmsslide/hexa16.pdf 5th W. Congr. Square of Oppositon, Rapa Nui, Chile, Nov. 11-15, 2016; XVIII Brazilian Logic Conference, Pirenópolis, Brazil, May 8-12, 2017;

## This Presentation

I- Introduction;
II- Logical Hexagons of Opposing Modalities;
III- Testing (Accepting / Rejecting) Statistical Hypotheses,
Desirable Logical Properties of Agnostic Tests, Failure of Probabilistic Statistical Tests;

IV- Full Coherence = (Alethic= Possib.Calculus) Region Tests, Generalized Full Bayesian Significance Test, GFBST Continuous Mathematics under the hood;

V- Hybrid (Alethic / Probabilistic) Relations, Sharp Hypotheses: Importance, vs. Slackness;
Pierre Gallais' Hexagonal Spirals and Science Evolution;
VI- Final Remarks.
Problem of Induction: $\triangleleft H$ ? or $\otimes H=\diamond H \wedge \neg \odot H$ !!!
Future Research: How to measure Slackness?
References and Acknowledgments.

## Logical Hexagons of Opposing Modalities



Modal Operators:
$\square$ - Necessity,
$\diamond$ - Possibility,
$\Delta$ - Contingency,
$\nabla$ - Non-Contingency;
Types:
$\nabla \Delta \diamond \square$ - Alethic,
$\forall \otimes \otimes \boxplus$ - Probabilistic,
$\nabla \Delta \odot \square$ - Slackness,
$\nabla \Delta$ © - Hybrid;
Logical Operators:
$\neg-$ Nega., $\rightarrow$ - Implic.,
$\wedge-$ Conjunction (and),
$\checkmark$ - Disjunction (or);
Opposition relations:
= Contradiction,
--- Contrariety,
...... Sub-Contrariety.

## The Problem of Induction: $\oplus H$ or $\diamond H$ ?

## A: Accept or Reject

$\boxplus$ : Accept $H \Leftrightarrow \operatorname{Pr}(H) \geq 1-\alpha$ $\star$ : Do not Reject
$\neg \oplus$ : Reject $H \Leftrightarrow \operatorname{Pr}(H)<\beta$
$\neg \boxplus$ : Do not Accept
$\nabla$ : Agnostic $\Leftrightarrow$ Neither Accept nor Reject
Ideal world (wishful thinking), not how it really works:
Parameter space $\Theta$, Posterior Probability $p_{n}(\theta) \propto p_{0}(\theta) p(X, \theta)$; Hypotheses $H: \theta \in \Theta_{H}$ (relaxed notation: $H$ for $\Theta_{H}$ ); Hypothesis $H \subset \Theta$ has known $\operatorname{Pr}(H)=\int_{H} p(\theta) d \theta$;
$\beta=\operatorname{Pr}($ type II error = false negative );
$1-\beta=\operatorname{Power}=\operatorname{Pr}($ reject $H$ if $\theta \notin H)$;
$\alpha=$ Significance level $=\operatorname{Pr}($ type I error $=$ reject $H$ if $\theta \in H)$;
Choices for $\alpha$ or $\beta$ :
Ronald Fisher: $\alpha=0.05\left(^{*}\right), 0.02\left({ }^{* *}\right), 0.01\left({ }^{* * *}\right)$;
Equal weight: $\underset{\sim}{\mathcal{H}}$ Calibrate the test to minimize $\alpha+\beta$.
$\widetilde{H}=\Theta-H, \operatorname{Pr}(\widetilde{H})=1-\operatorname{Pr}(H)$;

## Slack and Sharp versions of Non-Cont.

$\Delta$ : Ordained
$\square$ : Mandatory
$\neg \diamond$ : Forbiden
$\diamond$ : Permitted

## $\nabla$ : Indifferent

$\Delta$ : Inclu.orExclu.
$\square$ : Inclusion
$\diamond$ : Inclu. or Intersct.
$\neg \diamond$ : Exclusion
$\neg \square$ : Exclu.or Intersct.
$\nabla:$ Intersection
$\neg$ : Optional

$$
\begin{array}{lll}
\square: x<y & \Delta: x \neq y & \neg \diamond: x>y \\
\diamond: x \leq y & & \neg: x=y \\
& \neg \square: x \geq y
\end{array}
$$

- The interpretation of the $\nabla$ modality can have a weak role (broad, vague, Slack) or a "reverse" strong role (equal, identical, Sharp)!
> Examples: Deontic relations from Gallais (1982); Order relations and set operations from Blanché (1966) \& Béziau (2015).


## Coherence: Logical Desiderata for Statistical Tests



Agnostic $=$ possible case $\nabla H$
Invertibility (for H complement):
$\square H \Longleftrightarrow \neg \diamond \widetilde{H}$ and
$\nabla H \Longleftrightarrow \nabla \widetilde{H}$
$\begin{array}{ll}A \leftrightarrow \widetilde{\mathrm{E}}, & E \leftrightarrow \widetilde{\mathrm{~A}}, \\ I \leftrightarrow \widetilde{\mathrm{O}}, & O \leftrightarrow \widetilde{\mathrm{I}}, \\ U \leftrightarrow \widetilde{\mathrm{U}}, & Y \leftrightarrow \widetilde{\mathrm{Y}} ;\end{array}$

Monotonicity (for nested $H \subset H^{\prime}$ ):
$H \subseteq H^{\prime} \Rightarrow\left\{\begin{array}{l}\square H \Rightarrow \square H^{\prime} \\ \diamond H \Rightarrow \diamond H^{\prime}\end{array}\right.$
$A \leftrightarrow \mathrm{~A}^{\prime}, \quad I \leftrightarrow \mathrm{I}^{\prime}$,
$O^{\prime} \leftrightarrow \mathrm{O}, \quad E^{\prime} \leftrightarrow \mathrm{E} ;$
See Esteves et al. (2016).

## Coherence: Logical Desiderata for Statistical Tests



Agnostic $=$ possible case $\nabla H$

Strong union consonance: For every index set $I$,
$\diamond\left(\cup_{i \in I} H_{i}\right) \Rightarrow \exists i \in I \mid \diamond H_{i} ;$

Strong intersection consonance: For every index set I
$\neg \square\left(\cap_{i \in I} H_{i}\right) \Rightarrow \exists i \in I \mid \neg \square H_{i} ;$
Figures: Under strong consonance, there is at least one path from the center to a vertex of the polygon representing the indexed set of sub-hypotheses.

## Failure of Decision Th. Posterior Probability Tests



| Decis. | Truth | $H$ |
| :---: | :---: | :---: |
| $\boxplus H$ |  |  |
| $\nabla H$ | 0 | 1 |
| $\neg \oplus H$ | b | b |
| $\neg$ | a | 0 |

Optimal Decision: Take
$c_{1}=\max \left((1+a)^{-1}, b\right)$,
$c_{2}=\min \left((1+a)^{-1}, b / a\right)$, and
Choose Probabilistic modality:
$\begin{cases}\boxplus H & \text {, if } p_{n}(H \mid x)>c_{1} \\ \neg \oplus H & \text {, if } p_{n}(H \mid x)<c_{2} \\ \nabla H & \text {, otherwise. }\end{cases}$
These tests are logically incoherent: Can calibrate constants $a$ and $b$ s.t. tests are invertible \& monotonic, but these tests are not consonant!

## Failures of other Standard Statistical Tests

| Property\Test | ALRT | Post.Pr. | GFBST |
| :--- | :---: | :---: | :---: |
| Invertibility | X | $\checkmark$ | $\checkmark$ |
| Monotonicity | X | $\checkmark$ | $\checkmark$ |
| Consonance | X | X | $\checkmark$ |
| Invariance $(\Theta, H)$ | $\checkmark$ | $?$ | $\checkmark$ |
| Consistency | $\checkmark$ | $?$ | $\checkmark$ |

> ALRT - Agnostic Likelihood Ratio Test: Slack or Sharp H;
> Generalized Full Bayesian Significance Test: Slack or Sharp;
> Posterior Probability: ?= $\downarrow$ for Slack H, ?=X for Sharp* H;
For details and examples: Izbicki \& Esteves (2015).

* Posterior Probability tests may be extended to sharp H via Bayes Factors based on ad hoc prior/posterior measures defined on $H$. Bad idea, leading to well known paradoxes. Fully acknowledged by orthodox (decision theoretic) Bayesian statistics, that regards sharp hypotheses as ill formulated!


## Fully Coherent (Alethic) Region Tests



Choose Alethic modality $\begin{cases}\square H & \text { if } S \subseteq H \\ \neg \diamond H & \text { if } S \subseteq \widetilde{H} \\ \nabla H & \text { if } S \cap H \neq \varnothing \& S \cap \widetilde{H} \neq \varnothing\end{cases}$ where $S$ is a region estimator of the parameter $\theta$, i.e., $S \subseteq \Theta$.

- Esteves (2016): Fully coherent tests must be region tests.
- ex: $S=\left\{\theta \in \Theta \mid p_{n}(\theta)>v\right\}$, Highest Probability Density Set.
$>S$ may not be path- or simply-connected.


## Generalized Full Bayesian Significance Test

- Surprise function $s(\theta)=p_{n}(\theta) / r(\theta)$;
- Reference density $r(\theta) \neq p_{0}(\theta)$, ex: Jeffreys invariant prior, or representation of Fisher Information Metric, $d l^{2}=d \theta^{\prime} J(\theta) d \theta$;
- $T(v)=\{\theta \in \Theta \mid s(\theta) \geq v\}$, HSFS at level $v$.
$>$ Highest Surprise Function Set, defining the region test.
Significance measure for hypothesis $H$ :
- Wahrheit or truth function $W(v)=1-\int_{T(v)} p_{n}(\theta \mid x) d \theta$;
- $e$-value or Epistemic Value of $H$ given observations $X$ is $\mathrm{ev}(H \mid X)=W\left(s^{*}\right)$, where $s^{*}=\sup _{\theta \in H} s(\theta)$.
- GFBST: Alethic modality $\begin{cases}\square H & \text { if ev }(\widetilde{H})<c \\ \neg \diamond H & \text { if ev }(H)<c \\ \nabla H & \text { otherwise. }\end{cases}$

Obs.1: $T\left(s^{*}\right)=$ Tangential Set, the smallest HSFS $\mid \diamond H$.
Obs.2: $J(\theta)=\mathrm{E}_{\mathcal{X}} \frac{\partial \log r(x \mid \theta)}{\partial \theta} \otimes \frac{\partial \log r(x \mid \theta)}{\partial \theta}$.

## GFBST Continuous Mathematics under the hood

- ev $(H \mid X)$ has good asymptotic properties;
> Sharp or precise hypotheses pose no special difficulties;
- ev $(H \mid X)$ is fully invariant by model reparameterization;
- ev $(H \mid X)$ can be logically computed for Coherent Structures, that is, for the series / parallel composition of statistical models and hypotheses, see Borges and Stern (2007).

Consistency and asymptotics:
Assuming a "true" (vector) parameter $\theta^{0}$ for the regular (ex. H is a differentiable algebraic sub-manifold of $\Theta$ ) statistical model:

- If $\theta^{0}$ is an interior point of $H, \operatorname{ev}(H \mid X) \rightarrow 1$;
- If $\theta^{0} \in H$, where $H$ is sharp, $t=\operatorname{dim}(\Theta) \& h=\operatorname{dim}(H)$, then as $n \rightarrow \infty$ (increasing sample size) the Standarized $e$-value, $\operatorname{sev}(H \mid X)$, converges in distribution to the Uniform in $[0,1]$ :
$>\operatorname{sev}(H \mid X)=\operatorname{Chi2}\left(t, \operatorname{Chi2}^{-1}(t-h, \operatorname{ev}(H \mid X)) \sim U_{[0,1]}\right.$;
$>\operatorname{Chi2}(k, x)=\Gamma\left(\frac{k}{2}, \frac{x}{2}\right) / \Gamma\left(\frac{k}{2}, \infty\right)$.


## GFBST Invariance by Reparameterization of $\Theta$

Consider a regular (bijective, integrable, a.s.cont. differentiable) reparameterization of the statistical model's parameter space, $\omega=\phi(\theta), \Omega_{H}=\phi\left(\Theta_{H}\right)$, with Jacobian matrix

$$
\begin{gathered}
J(\omega)=\left[\frac{\partial \theta}{\partial \omega}\right]=\left[\frac{\partial \phi^{-1}(\omega)}{\partial \omega}\right]=\left[\begin{array}{ccc}
\frac{\partial \theta_{1}}{\partial \omega_{1}} & \cdots & \frac{\partial \theta_{1}}{\partial \omega_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \theta_{n}}{\partial \omega_{1}} & \cdots & \frac{\partial \theta_{n}}{\partial \omega_{n}}
\end{array}\right] \\
\breve{s}(\omega)=\frac{\breve{p}_{n}(\omega)}{\breve{r}(\omega)}=\frac{p_{n}\left(\phi^{-1}(\omega)\right)|J(\omega)|}{r\left(\phi^{-1}(\omega)\right)|J(\omega)|}=s\left(\phi^{-1}(\omega)\right)
\end{gathered}
$$

and $\quad \breve{s}^{*}=\sup _{\omega \in \Omega_{H}} \breve{s}(\omega)=\sup _{\theta \in \Theta_{H}} s(\theta)=s^{*}$. Hence,
$T\left(s^{*}\right) \mapsto \phi\left(T\left(s^{*}\right)\right)=\breve{T}\left(\breve{s}^{*}\right)$, making the significance measure

$$
\breve{\operatorname{ev}}(H)=1-\int_{\check{T}\left(s^{*}\right)} \breve{p}_{n}(\omega) d \omega=1-\int_{T\left(s^{*}\right)} p_{n}(\theta) d \theta=\operatorname{ev}(H)
$$

invariant by the reparameterization.

## Disjunctive Normal Form for Coherent Structures

A Coherent Structure is a family, $M^{(i, j)}=\left\{\Theta^{j}, H^{(i, j)}, p_{0}^{j}, p_{n}^{j}, r^{j}\right\}$, of Independent Models, $M^{j}, j=1 \ldots k$, including, for each model $M^{j}$, a set of alternative hypotheses, $H^{(i, j)}, i=1 \ldots q$ (serial composition of models with parallel hypotheses).

$$
\begin{aligned}
\mathrm{ev}(H) & =\mathrm{ev}\left(\bigvee_{i=1}^{q} \bigwedge_{j=1}^{k} H^{(i, j)}\right)=\max _{i=1}^{q} \mathrm{ev}\left(\bigwedge_{j=1}^{k} H^{(i, j)}\right) \\
& =W\left(\max _{i=1}^{q} \prod_{j=1}^{k} s^{*(i, j)}\right) ; \quad W=\bigotimes_{1 \leq j \leq k} w^{j}
\end{aligned}
$$

- $W$ is the Mellin Convolution of the models' truth functions, where $[f \otimes g](y)=\int_{0}^{\infty}(1 / x) f(x) g(y / x) d x$;
- If all $s^{*}=0 \vee \widehat{s}$, ev $=0 \vee 1$, we get classical logic.




Setting constants $c_{1}=1-c \& c_{2}=c$, the modal operators defined by the GFBST and the agnostic probabilistic test obey:

- $\square H \Rightarrow \operatorname{Pr}(H \mid X) \geq 1-c \Rightarrow \boxplus H$;
- $\neg \diamond H \Rightarrow \operatorname{Pr}(H \mid X) \leq c \Rightarrow \neg \oplus H$;


## Hybrid (Alethic / Probabilistic) Relations



- Hence, setting consts.
$c_{1}=1-c$ and $c_{2}=c$, $\neg \diamond H \Rightarrow \neg \uplus H \Rightarrow \neg \boxplus H$, $\boxplus H \Rightarrow \ominus H \Rightarrow \diamond H$, and all (stared) relations in hybrid hexagon hold! (+Consist => false hopes?)
- However, if $H$ is sharp, $\operatorname{Pr}(H \mid X)=0 \Rightarrow \neg \uplus H$ (trivial hybrid relations)
- Nevertheless, $\diamond H$ is a consistent (s.12) outcome of the GFBST (FBST main motivation)
- Importance sharp H? Meaningful measures \& versions of $\bullet H \diamond H$ ?


## From Probability to Slackness \& role reversals

- Most important scientific hypotheses or Laws are Equations, and those are naturally expressed as Sharp Hypotheses;
- Motivates having new versions of $\oplus \& \boxplus$ that are meaningful for precise $H$, with non-trivial and useful relations to $\diamond H$;
- Let $\bullet H \Leftrightarrow \int_{H} r(\theta) d \theta>0$ (Lebesgue reference volume), so that $\bullet H$ indicates a Necessarily Slack or loose $H$;
- A regular (a.e. differentiable algebraic sub-manifold of $\Theta$ ) hypothesis $H$ is Sharp or precise iff $\neg \boxtimes H \Leftrightarrow \operatorname{Pr}(H, r)=0$.
- Role Reversal of a positive Lebesgue measure of $H$ !
> Zero measure means Shapness, a desirable characteristic;
> Slackness entails inexactness, error, Doubt.
-     * $H=\diamond H \wedge \neg \backsim H$ reversal (s.5) from weak to strong!!! $>$ Indeed, corroborating an $H$ that is almost surely false is a Miracle!!! (Infidels required to take Physics101-104+Lab.)


## Gallais' Hexagonal Spirals \& Science Evolution



$$
U: \triangle H=\square H \vee \neg \diamond H
$$

$$
\begin{array}{cc}
\mathrm{A}: \triangleleft H & \mathrm{E}: \neg \diamond H \\
\mathrm{I}: \diamond H & \mathrm{O}: \neg \odot H \\
\mathrm{Y}: \otimes H=\diamond H \wedge \neg \cdot H
\end{array}
$$

$\diamond=$ Credibility, ev $(H)$, possible truth;
$\square$ = Doubt, necessary slackness.
(A) A well established theory with well defined laws is put in question; (U) Vis-à-vis an alternative class of models that, at this point, may still be somewhat vague or imprecise; (E) The old laws are rejected as new information becomes available;
(O) Alternative class of models is taken into consideration; and a specific (precise) form is selected; (Y) New Laws are corroborated!!! fundamental constants calibrated; (I) Theory / paradigm integration, (A') including best estimates and imprecisions (measurement errors).

## Gallais' Hexagonal Spirals \& Science Evolution



$$
U: \triangle H=\odot H \vee \neg \diamond H
$$

| $\mathrm{A}: \boxtimes H$ | $\mathrm{E}: \neg \diamond H$ |
| :---: | ---: |
| $\mathrm{I}: \diamond H \quad \mathrm{O} \neg \triangleleft H$ |  |
| $\mathrm{Y}: \otimes H=\diamond H \wedge \neg \cdot H$ |  |

$\diamond=$ Credibility, ev $(H)$, possible truth;
$\square$ = Doubt, necessary slackness.
(A) Ptolemaic astronomy \& system of epicycles is put in question;
(U) Circles or Oval orbits?
(E) Orbits are Not circular;
(O) Elliptical orbits (eureka);
(Y) Kepler laws!!!
(A') Vortex forces in question;
(U') Tangential or Radial?
(E') Forces are Not tangential;
(O') Radial \& inverse square;
(Y’) Newton laws!!!
(I') Newtonian mechanics,
(A") including its imprecisions.

## Gallais' Hexagonal Spirals \& Science Evolution



$$
\text { U: } \triangle H=\square H \vee \neg \diamond H
$$

| A: $『 H$ | $\mathrm{E}: \neg \diamond H$ |
| :---: | ---: |
| $\mathrm{I}: \diamond H \quad \mathrm{O} \neg \square H$ |  |
| $\mathrm{Y}: \otimes H=\diamond H \wedge \neg \cdot H$ |  |

(A) Geoffroy rules and tables as axioms of chemical affinity;
(U) Ordinal or Numerical?
(E) Not ordinal;
(O) Integer affinity numbers;
(Y) Morveau rules and tables!
(I) Modern (1800) chemistry, including stoichiometry rules.
(A') Substitution reactions;
(U') Total or Parcial?
(E') Not total substitution;
(O') Reversible equilibria;
(Y') Mass-Action kinetics!!!
(I') Thermodynamic networks,
(A") including its imprecisions.

## Future Research: Unit Square Bilattice


$\diamond: c=\mathrm{ev}(H \mid X)$, Credibility, possib.truth; $\odot: d=\mu(H \mid X)$, Doubt, possibly slack.

Unit Square Bilattice in $[0,1]^{2}$ orders Knowledge and Trust, given coordinates Credibility and Doubt: $B(C, D)=\left\langle C \times D, \leq_{k}, \leq_{t}\right\rangle$, $\left\langle c_{1}, d_{1}\right\rangle \leq_{k}\left\langle c_{2}, d_{2}\right\rangle \Leftrightarrow c_{1} \leq_{c} c_{2} \wedge d_{1} \leq_{d} d_{2}$, $\left\langle c_{1}, d_{1}\right\rangle \leq_{t}\left\langle c_{2}, d_{2}\right\rangle \Leftrightarrow c_{1} \leq_{c} c_{2} \wedge d_{2} \leq_{d} d_{1} ;$

Alternative coordinates in $[-1,+1]^{2}$ : BT $(\langle c, d\rangle)=c-d$, degree of Trust; $\mathrm{BI}(\langle c, d\rangle)=c+d-1$, Inconsistency.
Extreme points: Inconsistency ( $T$ ), truth ( t ), false (f), indetermination ( $\perp$ ); Stern (2004).

- How to better use the USB to map the evolutionary path of a scientific theory?


## Future Research: Measures of Slackness

- Want Possible Slackness to express a measure of doubt:
$\stackrel{H}{ } \Leftrightarrow d=\mu(H \mid X)>\delta$
- What is the best measure $\mu(H \mid X)$ ?
> Credal sets or intervals?
> Confidence regions or intervals?
$>$ for the theory fundamental constants or empirical calibration constants vs. instrumentation or observational error estimates?
- Could that be a good appropriate opportunity to look directly at uncertainty in the sample space?
> Some version of $p$-values?
$>$ Parameter estimates and their credibility, measured in $\Theta$, and prediction errors, measured in $\mathcal{X}$, can both have a legitimate role to play in statistical epistemology?
- Universal or case specific solutions?


## Short Bibliography

$>$ W. Borges, J. M. Stern (2007). The Rules of Logic Composition for the Bayesian Epistemic e-values. Logic Journal of the IGPL, 15, 401-420.
> L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern (2016). The Logical Consistency of Simultaneous Agnostic Hypothesis Tests. Entropy, 18, 7, 256.1-256.32.
> R. Izbicki, L.G. Esteves (2015). Logical Consistency in Simultaneous Statistical Test Procedures. Logic Journal of the IGPL, 23, 5, 732-758.
> C.A.B. Pereira, J.M. Stern, S. Wechsler (2008). Can a Signicance Test be Genuinely Bayesian? Bayesian Analysis, 3, 79-100.
> J.M. Stern (2015). Continuous versions of Haack's Puzzles: Equilibria, Eigen-States and Ontologies. CLE e-prints, 15, 7, 1-25.
> J.M. Stern (2015). Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Muenchhausen's Trilemma.
Interdisciplinary Bayesian Statistics, Ch.5, p.55-68. Heidelberg: Springer.
> J.M. Stern, C.A.B. Pereira (2014). Bayesian Epistemic Values: Focus on Surprise, Measure Probability! Logic Journal of the IGPL, 22, 236-254.
> J.M. Stern (2014). Jacob's Ladder and Scientific Ontologies. Cybernetics \& Human Knowing, 21, 3, p.9-43.
> J.M. Stern (2011). Constructive Verification, Empirical Induction, and Falibilist Deduction: A Threefold Contrast. Information, 2, 635-650
> J.M. Stern (2004). Paraconsistent Sensitivity Analysis for Bayesian Significance Tests. LNAI, 3171, 134-143.
> J. Alcantara, C.V. Damasio, L.M. Pereira (2002). Paraconsistent Logic Programs. LNCS, 2424, 345-356.
> O. Arieli, A. Avron (1996). Reasoning with Logical Bilattices. J.of Logic, Language and Information, 5, 25-63.
> J.Y. Béziau (2005). Paraconsistent Logic from a Modal Viewpoint. Journal of Applied Logic, 3, 7-14.
> J.Y. Béziau (2012). The Power of the Hexagon. Logica Universalis, 6, 1-43.
> J.Y. Béziau (2015). Opposition and order. In J.Y.Béziau, K.Gan-Krzywoszynska (2015). New Dimensions of the Square of Opposition. Munich: Philosophia Verlag.
> R. Blanché (1966). Structures Intellectuelles: Essai sur l'Organisation Systématique des Concepts. Paris: Vrin.
$>$ W. Carnielli, C. Pizzi (2008). Modalities and Multimodalities. Heidelberg: Springer.
> D. Dudois, H. Prade (1982). On Several Representations of an Uncertain Body of Evidence. pp. 167-181 in M. M. Gupta, E. Sanchez (1982). Fuzzy Information and Decision Processes. North-Holland.
> D. Dudois, H. Prade (2012). From Blanché's Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory. Logica Universalis, 6, 149-169.
> P. Gallais, V. Pollina (1974). Hegaxonal \& Spiral Structure in Medieval Narrative. Yale French Studies, 51, 115-132.
> P. Gallais (1982). Dialetique du Récit Mediéval: Chretien Troyes et l'Hexagone Logique. Amsterdam: Rodopi.

## Acknowledgments



The Problem of Induction: $\oplus H$ ?

$$
\text { or } \circledast H=\diamond H \wedge \neg \odot H \text { !!! }
$$

- He who wishes to solve the problem of induction must beware of trying to prove too much.
Karl Popper, Replies to my Critics; in Schilpp (1974, Ch.32, p.1110), also quoted in Stern (2011).
This work was supported by IME-USP the Institute of Mathematics and Statistics of the University of São Paulo; UFSCar the Federal University of São Carlos; FAPESP - State of São Paulo Research Foundation (grants CEPID 2013/07375-0, CEPID 2014/50279-4 \& 2014/25302-2); and CNPq - Brazilian National Counsel of Technological and Scientific Development (PQ 301206/2011-2, PQ 301892/2015-6).


## Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!



## Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!



- The legendary Polynesian king and navigator Hotu Matu'a reached Te pito te henua (the navel of the world) some time arround 1000 CE, sailing a double hull catamaran from Mangareva, 2600 km, or the Marquesas, 3200 km away;
- Building of Ariña ora ata tepuña, face-living-image-idols or moai monoliths, lead to ecological devastation, famine, war, cultural breakdown \& civilization collapse.


## Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!



## Goodby! Adiós! Adeus! Au revoir! Ko te pava kokorua!



