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Density Function f(x, θ)

Data x ∈ S, the Sample Space,
Parameter Space Θ = {θ ∈ Rk | g(θ) ≤ 0}

Given (after we have observed)
the data x, sample size n,

Likelihood Function L(θ |x)
c =

∫
Θ L(θ |x) dθ

1- Likelihood, Plausibility, Favorable Chances.
2- Wahrscheinlichkeit , Verossimilhança,

Possibility it is Truth, Give Proof, Veracity.

1- Should we consider (1/c)L(θ |x)
as a probability function of θ ?
Bayesians (yes) X Frequentists (no)

2- Posterior Function,
given a (Subjective) Prior g(θ) ,
f(θ |x) ∝ L(θ |x)g(θ)
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Estimation:

What is (my, the) best guess for θ?

1- θ∗ ∈ arg max f(θ |x)

2- θ∗ ∈ arg minθ′∈Θ
∫
Θ f(θ′ |x) p(θ′, θ) dθ

p(θ′, θ) Loss, penalty or distance function.

ex: p(θ′, θ) = ||θ′ − θ||p
θ∗ = Median, for p = 1,

θ∗ = Mean, for p = 2,

θ∗ = Mode, for p = ∞

Operators: maxΘ ,
∫
Θ d θ
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Parameter Space Θ = ∆× Λ best δ∗ ?

λ are “nuisance” parameters

≡ we do not care about λ∗ ∈ Λ

nonsense (meaningless, foolish) < F. non sens

< L. sentire (to feel), G. sinn (meaning)

annoyance < anoye < O.F. enoyer , SP. enojar

< V.L. in odio (to hate)

nuisance (trouble) < O.F. nuire

< V.L. nocere (to harm), V.L. necare (to kill)

Eliminate λ

(get rid of the killer paramameters)

How? Std. Ans: Projection Π
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Projection Operator, Π:

1- Profile Posterior:

f(δ |x) = f(δ, λ∗ |x)

2- Marginal Posterior:

f(δ |x) =
∫

f(δ, λ |x) dλ
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Hypothesis Testing:

Θ = Θ0 + Θ1

Null, H0 : θ ∈ Θ0 Alternative, H1 : θ ∈ Θ1

LR =
maxΘ0

f(θ |x)
maxΘ1

f(θ |x) =
f(θ∗0 |x)
f(θ∗1 |x)

Likelihood Ratio, Not a Probability

Neyman-Pearson Theorem Θ = {θ0} ∪ {θ1}
LR ≤ k criterion minimizes convex combination

of errors: 1-reject H0 | θ0 , 2-accept H0 | θ1

P-Value, Extreme events probability:

T = {x ∈ S |LR(x) ≤ LR} , Tail points

α = Pr(T |H0) ≡ Pr(T | θ̃) , Nominal Level

θ̃ = arg maxΘ0
Pr(T | θ)

1- α is a probability in the sample space

2- ∀θ , n →∞ ⇒ α → 0

“Increase sample size to reject”
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If H0 Posterior Probability

α = (1/c)
∫
Θ0

f(θ |x) dθ > 0

1- Is a probability in Θ

2- If θ ∈ Θ̇0 , n →∞ ⇒ α → 1

3- If θ ∈ Θ̇1 , n →∞ ⇒ α → 0

Odds Ratio

OR(H0 , x) =

∫
Θ0

f(θ |x) dθ /c∫
Θ1

f(θ |x) dθ /c

O(p) = p/(1− p)

7



Precise Hypothesis:

Θ0 = {θ ∈ Θ | h(θ) = 0}
dim(Θ0) < dim(Θ) ⇔ dim(h) ≥ 1

we may use δ = h(θ)

∫
Θ0

1dθ = 0 ⇒ OR = 0 , ∀x !

Change measure over Θ0,

OR = π
1−π

∫
Θ0

f(δ=0,λ , x)g(δ,λ) dλ∫
Θ1

f(θ , x)g(θ) dθ

1- which mass π ?

2- which measure dλ in Θ0?

natural = easy parameterization of Θ0 ?

3- ∀θ , π > 0 , n →∞ ⇒ OR → 1

“Increase sample size to accept”
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Savage’s allegory:

King Hiero suspects his goldsmith cheated, us-

ing impure gold for his new crown. Arquimedes

must measure the crown density, N(m, s), test

m = g, and advise the king about the hanging.

Epistemological questions:

1- Do precise (sharp) hypothesis really exist?

Instrumental (model) versus

Essential (real) theory.

Galileo’s “Epur si muove”

2- How can we “check” a precise hypothesis?

I.J.Good’s positions on precise hypothesis:

0- We Do want to “Check” H

1- Denial of real sharp tests,

2- Favoring Jeffrey’s scheme,

3- Reduction to dichotomies.
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0- “Since I regard refutation and corroboration

as both valid criteria for this demarcation it is

convenient to use another term, Checkability,

to embrace both processes. I regard checka-

bility as a measure to which a theory is scien-

tific, where checking is to be taken in both its

positive and negative senses, confirming and

disconfirming.”

1- “Let us consider a null hypothesis that is

a (sharp) simple statistical hypothesis H. This

is often done is statistical practice, although it

would usually be more realistic to lump in with

H a small neighborhood of close hypotheses.

...
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Of course if H is redefined to be a composite

hypothesis by including within H a small neigh-

borhood of the sharp null hypothesis, then it

becomes possible to obtain much more evi-

dence in favor of H, even without assuming

a prior over the components of H.

Similarly, if by the truth of Newtonian mechan-

ics we mean that it is approximately true in

some appropriate well defined sense we could

obtain strong evidence that it is true; but if we

mean by its truth that it is exactly true then it

has already been refuted.

Very often the statistician doesn’t bother to

make it quite clear whether his null hypothesis

is intended to be sharp or only approximately

sharp. ... It is hardly surprising then that

many Fisherians (and Popperians) say that -

you can’t get (much) evidence in favor of the

null hypothesis but can only refute it.”
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2- “My own view on induction is close to that

of Jeffreys (1939) in that I think that the initial

probability is positive for every self-consistent

scientific theory with consequences verifiable in

a probabilistic sense. No contradiction can be

inferred from this assumption since the num-

ber of statable theories is at most countably

infinite (enumerable).”

3- “It is very difficult to decide on numerical

values for the probabilities, but it is not quite

so difficult to judge the ratio of the subjec-

tive initial probabilities of two theories by com-

paring their complexities. This is one reason

why the history of science is scientificaly im-

portant.”

Text book history is a post-mortem analysis.
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When do we have a Precise Hypothesis?

A Scientific Theory, ex:

1- Classical Mechanics, errors in measurements

2- Statistical Physics, too many variables

3- Old (Einstein) Quantum Mechanics,

Unobservable (complex) wave function

4- Modern (Heisemberg) Quantum Mechanics,

No hidden states, von Neuman theorem

The Physical law is exact (precise) in Θ

Measurements in S are inexact, incomplete,

unattainable, or essentially uncertain.
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Software Controlled Randomized Process

Randomization may be:

- External, exogenous, or

- Internally induced, endogenous

1- Efficient Algorithms

Simulated Annealing, Genetic, Tabu Search

2- Desirable unpredictability

Ex. of internal randomization applications:

1- Cryptography

2- Automatic Transactions,

Exchange, Clearing, etc

3- Games and Lotteries

Precise hypothesis may be:

1- Software specifications

2- Functional specifications

3- Normative or Legal Requirements
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Test h(θ) = 0

No access to source code
Confidentiality, Outsourcing, Privacy, Security

Data from Black Box Simulation
or Historical Observations

Benefit of the Doubt, Onus Probandi,
Presumption of Innocence, In Dubito Pro Reo
Safe Harbor Liability Rule:

This kind of principle establishes that there is
no liability as long as there is a reasonable ba-
sis for belief, effectively placing the burden of
proof on the plaintiff, who, in a lawsuit, must
prove false a defendant’s misstatement.

Such a rule also prevents the plaintiff of mak-
ing any assumption not explicitly stated by the
defendant, or tacitly implied by existing law or
regulation.
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Must consider the plaintif’s claim, H0,
in the most favorable way ⇒
θ∗ ∈ arg maxΘ0

f(θ |x) , ϕ = f(θ∗ |x)
Can not integrate on Θ0,
(it is a classic, not a quantic plaintif)

Can only consider as evidence againts H0
the more likelly alternatives
HPDS(ϕ) = {θ ∈ Θ | f(θ |x) ≥ ϕ}
Tangent Highest Probability Density Set

'

&

$

%
HPDS(ϕ)

h(θ) = 0

θ∗
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FBST Operational Definition

Θ = {θ ∈ Rn | g(θ) ≤ 0}

Θ0 = {θ ∈ Θ |h(θ) = 0}

1- Numerical Optimization step:

θ∗ ∈ arg maxθ∈Θ0
f(θ) ,

2- Numerical Integration step:

Ev(H) =
∫
Θ f∗(θ | d)dθ , where

f∗(θ) = 1(θ ∈ T ∗)f(θ) ,

T ∗ = {θ ∈ Θ | f(θ) ≥ f(θ∗)}

T ∗ HPDS is Tangent to H (manifold)

Ev(H) Against H , Ev(H) = 1− Ev(H)
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FBST properties:

Clear and Simple definition

Ev(H) is a Probability in Θ ,
nothing but Θ , the whole Θ

“Increase sample size
to get it right, accept / reject”

Testing ∼ “Checking” H,
as every scientist always wanted

... but also Compatible with the
Decision Theory framework, as shown by
Madruga, Esteves and Wechsler

Invariant on Hypothesis parameterization

Computationally Intensive:
Let Optimization, Num. Analysis
people earn a living :-)
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FBST Explicitly Invariant Formulation

Θ = {θ ∈ Rn | g(θ) ≤ 0}

Θ0 = {θ ∈ Θ |h(θ) = 0}

r(θ) a “Reference Density”

1- Numerical Optimization step:

θ∗ ∈ arg maxθ∈Θ0
f(θ)
r(θ) ,

2- Numerical Integration step:

Ev(H) =
∫
Θ f∗(θ | d)dθ , where

f∗(θ) = 1(θ ∈ T ∗)f(θ) ,

T ∗ =
{
θ ∈ Θ | f(θ)

r(θ) ≥
f(θ∗)
r(θ∗)

}
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f(θ)
r(θ) is the Relative Surprise

If we change the parameter space

a density changes by the Jacobian’s

determinant, and the ratio is unchanged

If θ′ = Φ(θ), f(θ′) = f(Φ−1(θ′)) det(J)

J =
∂ θ

∂ θ′
=


∂ θ1
∂ θ′1

. . . ∂ θ1
∂ θ′n

... . . . ...
∂ θn
∂ θ′1

. . . ∂ θn
∂ θ′n



If r(θ) is uniform (possibly improper)

Ev(H) is unchanged, we are just

mapping T ∗ to the new coordinates
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Jeffreys: The natural parameter space

is the one where the non-informative

prior is uniform in ]−∞,+∞[

In this framework r(θ) is

Jeffreys’ non-informative prior

Ex. for σ ∈ [0,∞[ , φ = log( )

σ′ = φ(σ) take us to ]−∞,+∞[

dσ′ = dσ/σ, and r(σ) = 1/σ

is the non-informative prior in [0,∞[

φ = log(ρ = σk) ⇒ r(ρ) = 1/ρ

In ]−∞,+∞[ the FBST Evidence

and the Uniform Measure are both

Invariant by Linear Transformations
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Warning-1: θ′ = Φ(θ) back to paradise

may be ambiguous, artificial and awkward

Transformations of [0,1] → ]−∞,+∞[

1, 2, 3, 4, ...

Correlations “are” Angles so why look

for a uniform in Rn and not in Sn ?

Warning-2: Invariance has different meanings

In Geometry (and therefore Physics)

we should talk about Invariance

by the Action of a Group

Noether Theorem: For every continuous sym-

metry of the laws of physics, there must exist a

conservation law. For every conservation law,

there must exist a continuous symmetry.
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