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The Full Bayesian Significance Test (FBST)

for precise hypotheses is applied, to a Multi-

variate Normal Structure (MNS) model.

In the FBST we compute the evidence against

the precise hypothesis. This evidence is the

probability of the Highest Relative Surprise Set

(HRSS) “tangent” to the sub-manifold (of the

parameter space) that defines the null hypoth-

esis.

The FBST formulation presented in this paper

provides an invariant procedure under general

coordinate transformations of the parameter

space, provided a reference density has been

established.
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The Multivariate Normal Structure (MNS) model

we present appears when testing equivalence

conditions for genetic expression, using micro-

array technology. FBST departs from major

statistical paradigms, like nuisance parameters

elimination. We discuss some of the statisti-

cal and epistemological consequences of this

departure.
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prise, Structural models for multivariate nor-

mals.
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In the application presented in this paper, as

well as in those in Irony et al. (2002), Pereira

and Stern (1999a,b 2001) or Stern (2001), it

is desirable or necessary to use a test with the

following characteristics:

1- Be formulated directly in the original (nat-

ural) parameter space.

2- Take into account the full geometry of the

null hypothesis as a manifold (surface) imbed-

ded in the whole parameter space.

3- Have an intrinsically geometric definition,

independent of any non-geometric aspect, like

the particular parameterization of the (man-

ifold representing the) null hypothesis being

tested.

4- Be an invariant procedure under general bi-

jective and smooth transformations of the pa-

rameter space coordinate system.
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5- Be consistent with the Onus Probandi ju-

ridical principle (or safe harbor liability rule),

i.e. consider in the “most favorable way” the

claim stated by the hypothesis.

6- Consider only the observed sample, allowing

no ad hoc artifice (that could lead to judicial

contention), like a positive prior probability dis-

tribution on the precise hypothesis.

7- Converge to the Boolean indicator for the

hypothesis being tested, in the sense that in-

creasing sample size should make the test con-

verge to the right 0/1 value (accept/reject de-

cision).

8- Give an intuitive and simple measure of sig-

nificance for the (null) hypothesis, ideally, a

probability in the parameter space.
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Moreover, as shown in Madruga et al. (2001),
the FBST is also in perfect harmony with Bayesian
decision theory of Rubin (1987), in the sense
that there are specific loss functions which ren-
der the FBST.

The FBST is based on the Onus Probandi
juridical principle, Pereira and Stern (1999b).
Compliance with this juridical principle, also
known as Benefit of the Doubt, Presumption
of Innocence or (in accounting) Safe Harbor
Liability Rule, was imperative in some of our
consulting projects, Pereira and Stern (1999a).
This kind of principle establishes that:

There is no liability as long as there is a rea-
sonable basis for belief, effectively placing the
burden of proof (Onus Probandi) on the plain-
tiff, who, in a lawsuit, must prove false a de-
fendant’s misstatement, without making any
assumption not explicitly stated by the defen-
dant, or tacitly implied by existing law or reg-
ulation.
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FBST: Invariant Procedure Definition

Parameter space, Θ ⊂ Rn,

Hypothesis, Θ0 ⊂ Θ,

Θ0 = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}

We are interested in precise hypotheses, so we

have at least one equality constraint, hence

dim(Θ0) < dim(Θ).

f(θ) is the posterior probability density func-

tion. The computation of the evidence mea-

sure against the null hypothesis, Ev(H), used

on the FBST is performed in two steps, a

numerical optimization step, and a numerical

integration step. In order to provide an ex-

plicitly invariant formulation for the evidence,

under general non-degenerate smooth trans-

formations of the parameter space coordinate

system, we use an extra factor, r(θ), a refer-

ence density.
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The FBST procedure is defined by:

• Numerical Optimization step:

θ∗ ∈ arg max
θ∈Θ0

f(θ)

r(θ)

• Numerical Integration step:

Ev(H) =
∫
Θ

f∗(θ | d)dθ , where

f∗(θ) = 1(θ ∈ T ∗) f(θ)

T ∗ =

{
θ ∈ Θ |

f(θ)

r(θ)
≥

f(θ∗)

r(θ∗)

}

f(θ), the posterior p.d.f.

r(θ), the reference p.d.f.

f(θ)/r(θ) is the relative surprise,

Good (1983) and Evans (1997).

T ∗ is the Highest Relative Surprise Set,

HRSS, “tangent” to the hypothesis Θ0

r(θ) = 1 ⇒ HRSS = HPDS
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Strict interpretation of the Onus Probandi prin-
ciple is to take the reference density as the
(possibly improper) uniform density, r(θ) = 1.

We can generalize the procedure using other
reference densities, For example, we may use
as reference density the uninformative prior (also
known as neutral or reference prior), if one is
available.

One of Jeffreys’ rules to obtain an uninforma-
tive prior is to define a transformation θ′ =
Φ(θ) of the parameter space so that in the
new coordinate system the uniform uninfor-
mative prior in Rn is “natural”. According to
this perspective, using the uninformative prior
as reference density is equivalent to specify
a transformation Φ of the parameter space,
so that, in the transformed parameter space,
the reference density (or uninformative prior)
is uniform. We also observe that, in Rn, the
uniform measure and the FBST are both in-
variant under non-degenerate linear transfor-
mations, Klein (1997), Santalo (1976).
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Ex: FBST for testing coefficients of variation,

CV (X) = σ(X)/E(X),

X ∼ N(β, σ) , H : σ/β = c

Using the standard improper priors, uniform on

]−∞,+∞[ for β, and 1/ρ on ]0,+∞[ for ρ, we

get the posterior joint distribution for β and ρ:

f(β, ρ |x) ∝ √
ρ exp(

−nρ(β − x̄)2

2
) exp(−br)ρa−1

x = [x1 . . . xn] , a =
n− 1

2
,

x̄ =
1

n

n∑
i=1

xi , b =
n

2

n∑
i=1

(xi − x̄)2
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FBST for H: CV=0.1

In Figure 1 we give the FBST evidence, Ev(H),

when testing CV = 0.1 with a 3 samples of size

n = 16, mean x̄ = 10 and standard deviations

s = 1.0, s = 1.1 and s = 1.5.
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Normal-Wishart Distribution

Taking as prior distribution for the precision

matrix R the wishart distribution with a > k−1

degrees of freedom and precision matrix Ṡ and,

given R, taking as prior for β a multivariante

normal with mean β̇ and precision ṅR, and

given the statistics

x̄ =
1

n

n∑
j=1

X•,j =
1

n
X1

W = (X − β)(X − β)′

The posterior distribution for R is a Wishart

distribution with a+n degrees of freedom and

precision S̈, and the conditional distribution for

β, given R, is k-Normal with mean β̈ and pre-

cision n̈R.
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f(β, R |n, x̄, S) =

f(R |n, x̄, S) f(β |R, n, x̄, S)

f(R |n, x̄, S) ∝

|R|(a+n−k−1)/2 exp(−
1

2
tr(R S̈) )

f(β |R, n, x̄, S) ∝

|R|1/2 exp(−
n̈

2
(β − β̈)′R(β − β̈) )

β̈ = (nx̄ + ṅβ̇)/n̈ , n̈ = n + ṅ

S̈ = S + Ṡ +
nṅ

n + ṅ
(β̇ − x̄)(β̇ − x̄)′

Non-informative improper priors are given by

ṅ = 0, β̇ = 0, a = 0, Ṡ = 0, i.e. we take a

Wishart with 0 degrees of freedom as prior for

R, and a constant prior for β, Box and Tiao

(1973), DeGroot (1970), Zellner (1971).
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Multivariate Normal Structure Models

As it is usual in the covariance structure liter-

ature, we will write V (γ) =
∑

γtG
t, where the

matrices Gt form a basis for the space of n×n

symmetric matrices; in our case, n = 4.

V (γ) =
10∑

t=1

γt Gt =


γ1 γ5 γ7 γ8
γ5 γ2 γ9 γ10
γ7 γ9 γ3 γ6
γ8 γ10 γ6 γ4



The dose-equivalence hypothesis, H, asserts a

response, mean of a second bivariate normal,

proportional to a reference, first bivariate nor-

mal. H also asserts proportional standard devi-

ations, and equivalent correlations for each re-

sponse pair of measurements. The proportion-

ality coefficient, δ, is interpreted as the dose,

calibration or proportionality coefficient.
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In order to get simpler expressions for the log-

likelihood, the constraints and its gradients, we

extend the parameter space including the co-

efficient δ, and state the dose-equivalence opti-

mization problem on the extended 15-dimentional

space, with a 5-dimentional constraint:

Θ = {θ = [γ′, β′, δ]′ ∈ R10+4+1 , V (γ) > 0}
Θ0 = {θ ∈ Θ |h(θ) = 0}

h(θ) =


δ2γ1 − γ3
δ2γ2 − γ4
δ2γ5 − γ6
δβ1 − β3
δβ2 − β4



15



FBST for Minimum Total Error, α + β

The minimum empirical total error, α + β, as

a function of the sample size, n, for the two

experimental data available, are presented in

Figure 2, showing interpolated values. As ex-

pected, Figure 2 indicates that the power of

the test is an increasing function of n.

We are not aware of any competing test for

this problem.

16


