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Hypothesis testing is a key component in Statistics. In practice, it is common for a 
practitioner to test several hypotheses, the so-called simultaneous hypothesis testing 
problem. Unfortunately, simultaneous hypothesis tests can be logically incoherent: for 
instance, if hypothesis H1 implies hypothesis H2, a procedure that rejects H2 should 
also reject H1, a property not always met by multiple test procedures. Indeed, previous 
results show that standard two-way hypothesis tests cannot be logically coherent. Three-
way tests allow more nuanced data-based decisions. This paper studies whether Bayesian 
simultaneous three-way hypothesis tests can be logically coherent. Two types of results 
are obtained. First, under the standard error-wise constant loss, only for a limited set of 
models a Bayes simultaneous test can be logically coherent. Second, if more general loss 
functions are used, then it is possible to obtain Bayes simultaneous tests that are always 
logically coherent. An explicit example of such a loss function is provided. These results 
provide guidelines on how to build a logically coherent posterior probability three-way 
hypothesis test or more general Bayesian three-way hypothesis tests.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In a three-way decision problem [1–6], one must classify objects into three categories. While a two-way decision nec-
essarily leads to an affirmation or a negation, a three-way decision also allows non-commitment or pause to gather more 
evidence. Such a flexible approach has led to advances in areas such as clustering [7], classification [8–13], cognitive analyt-
ics [14], conflict analysis [15–17], crowdsourcing [18], game theory [19–21], granular computing [22], investment decisions 
[23], medicine [24], multi-agent decisions [25–27], pattern discovery [28], and recommender systems [29,30].

Among the frameworks for three-way decisions [1,22], the first approach is based on Pawlak’s rough set model [31], 
a special case of the TAO model [4]. In this framework, one wishes to determine a concept related to X ⊆ X based on 
∼, an equivalence relation over X . Letting [x] = {y ∈ X : y ∼ x}, the upper and lower approximations of X are defined, 
respectively, as appr(X) = {x ∈ X : [x] ∩ X �= ∅} and appr(X) = {x ∈ X : [x] ∩ X �= ∅}. These definitions divide X into three 
regions: P O S(X) := appr(X) are the elements that certainly belong to the concept, BN D(X) := appr(X) − appr(X) are the 
elements that might belong to the concept, and N EG(X) := X − appr(X) are the elements that do not belong to the 
concept.
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One generalization of Pawlak’s rough set framework is given by decision-theoretic rough set theory [32]. In the latter, 
P O S(X) = {x ∈ X : P (X |[x] > α}, BN D(X) = {x ∈ X : β ≤ P (X |[x] ≤ α}, and N EG(X) = {x ∈ X : P (X |[x] < β}. The use of 
probability in these definitions makes them susceptible to application in Statistics.

A particular application occurs in statistical hypothesis testing [33–40]. In this context, one gathers data, x ∈ X and 
wishes to decide whether x corroborates a given statistical hypothesis, H . More formally, data is used to learn about an 
unobserved quantity, θ ∈ � and a statistical hypothesis is an assertion of the type θ ∈ H . The goal of hypothesis testing is 
to decide whether one believes that θ belongs to H in the light of data x. This problem can use the rough set framework 
by taking each dataset x as an object and H as a concept. While standard hypothesis tests allow only the rejection or non-
rejection of H , three-way (agnostic) tests also allow H to remain undecided. That is an agnostic test is such that, for each 
data, x ∈ X , x ∈ POS(H), if x confirms H , x ∈ NEG(H), if x negates H , and x ∈ BND(H), otherwise.1

In the statistical literature, such tests are usually represented by a function, ϕH : X → {0, 12 , 1}. In this context, ϕH (x) =
0, ϕH (x) = 1, and ϕH (x) = 1

2 mean that one decides, respectively, to accept, reject and remain undecided about H after 
observing data x. This definition can be identified with the standard three-decision regions:

P O S(H) := {x ∈ X : ϕH (x) = 0}, (1)

N EG(H) := {x ∈ X : ϕH (x) = 1}, and (2)

BN D(H) :=
{

x ∈ X : ϕH (x) = 1

2

}
. (3)

This framework can be extended to the problem of testing several hypotheses at the same time, the so-called simultane-
ous (or multiple) hypothesis testing problem [43]. Unfortunately, simultaneous hypothesis tests can be logically incoherent. 
For instance, an incoherent test might be such that x ∈ NEG(θ ≥ 0) and x ∈ POS(θ = 0), even though θ = 0 implies θ ≥ 0
[44]. Thus, a large body of work is devoted to understanding whether binary hypothesis tests can be logically coherent 
while retaining statistical optimality [44–47].

Logical coherence can also be of importance in more general multi-concept rough set models. For instance, one might 
wish to classify images as cats and as animals. Since every cat is an animal, one might wish the logical requirement that 
POS(cat) ⊆ POS(animal). Otherwise, if x ∈ POS(cat) but x /∈ POS(animal), one has the challenging task of explaining how it is 
certain that x represents a cat, but not an animal.

Example 1.1, below, illustrates how logical incoherence can be an important issue in a common three-way decision 
hypothesis test.

Example 1.1 (Multiple means comparisons). Consider the Analysis of Variance (ANOVA) data from Example 3.12 in Izbicki and 
Esteves [44]. It consists of independent samples from three Gaussian distributions with different means and variances. Let 
μi be the mean of the i-th group, i = 1, 2, 3. The goal is to test the following hypotheses: H1 : μ1 > μ2, H2 : μ2 > μ3, and 
H3 : μ1 > μ2 > μ3. Assume that means of each group are independent and that μi ∼ N(0, 102). Also, for simplicity, assume 
that σi is the known standard deviation of the i-th group, where σ1 = 1.09, σ2 = 0.5, and σ3 = 0.79. The following sample 
means are observed: X̄1 = 0.15, X̄2 = −0.13, and X̄3 = −0.38.

Under the model above, one can obtain P (H1|x) = 70.1%, P (H2|x) = 72.5%, and P (H3|x) = 48.3%.2 Consider a posterior 
probability three-way test [48] that rejects every hypothesis with posterior probability lesser than 50% and accepts every 
hypothesis with probability higher than 70%. Such a test accepts both H1 and H2, but rejects H3. This test is logically 
incoherent since H3 : μ1 > μ2 > μ3 is rejected, but believing in H1 : μ1 > μ2 and in H2 : μ2 > μ3 entails the logical 
conclusion that μ1 > μ2 > μ3. On the other hand, the 80%-level GFBST three-way test [39] is not incoherent, since it 
remains undecided about the three hypotheses. This conclusion can be observed in Fig. 1, since the oval Highest Posterior 
Density (HPD) set intercepts all hypotheses and their complements. �

In Example 1.1, the usual posterior probability three-way hypothesis test is logically incoherent for performing multiple 
comparisons. Specifically, the test accepts H1 : μ1 > μ2 and H2 : μ2 > μ3, but rejects the logical deduction that H3 : μ1 >

1 This goal is similar to the one in Bayesian confirmation theory [41], in which one wishes to determine whether x ∈ X confirms or disconfirms 
an hypothesis, H ⊆ �. Absolute confirmation theory states that, for some constant k ∈ [0, 1], x confirms H if P (H|x) > k, disconfirms H if P (H|x) < k, 
and is neutral if P (H|x) = k. Similarly, incremental according to incremental confirmation theory, x confirms H if P (H|x) > P (H), disconfirms H if 
P (H|x) <P (H), and is neutral if P (H|x) =P (H). One might argue that these approaches are too restrictive by stating that x is neutral only if P (H|x) = k
or P (H|x) = P (H). From a practical perspective, x might be neutral if it provides solely weak evidence for or against H . The approach in [32] deals with 
this concern and generalizes absolute confirmation theory by stating that x confirms H , if P (H|x) > α, disconfirms H , if P (H|x) < β , and is neutral if 
β ≤P (H|x) ≤ α.

Other approaches to confirmation theory, such as [42], suggest that a high value of P (H|x) is a necessary but not a sufficient condition for stating that 
x confirms H . That is, there exists α such that, if P (H|x) ≤ α, then x does not confirm H . However, P (H|x) > α does not necessarily imply that x confirms 
H . Such an approach is motivated by the fact that, using absolute confirmation theory, a value of x might confirm mutually contradictory hypothesis, 
H1, . . . , Hn . This issue is showcased in Example 1.1 and further developed in section 4.

2 These probabilities were computed via Monte Carlo integration; the code can be found on https://github .com /rizbicki /three _way _hypothesis _tests /blob /
main /example _anova .R.
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Fig. 1. Two perspectives for the HPD region (gray ellipse) and the boundaries of hypotheses H1 (red) and H2 (blue) for the data of Example 1.1. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

μ2 > μ3. Such a set of conclusions is hard to explain to most researchers. Hence, one might wish to use a logically coherent 
test. However, the existing literature provides no guidelines on how to build a logically coherent posterior probability three-
way hypothesis test or more general Bayesian three-way hypothesis tests.

The goal of this paper is to study whether decision-theoretic [49] simultaneous three-way hypothesis tests can be 
logically coherent. Section 2 reviews key concepts in decision-theoretic three-way hypothesis testing (Section 2.1) and log-
ical coherence (Section 2.2). Under this setting, Section 3 explores the relation between the EC loss, posterior probability 
three-way tests, and logical coherence. This section shows that it is impossible to fully reconcile the traditional posterior 
probability three-way tests with logical coherence. This argument can be extended to procedures based on more general 
probability thresholds. Section 4 explores decision-theoretic three-way tests under more general loss functions than the EC 
loss. This section defines the GFBST loss and shows that, under this loss, the decision-theoretic three-way test is always 
logically coherent.

2. Background review

This section reviews the main concepts regarding probability-based hypothesis tests and logical coherence that are used 
in this paper. In particular, the following subsection reviews key concepts that are required for defining simultaneous pos-
terior probability three-way hypothesis tests.

2.1. Review of hypothesis tests and loss functions

In order to determine optimal decision regions, one can use Bayesian decision theory. This flexible theory can be used 
to justify probabilistic and decision-theoretic rough sets [50–52] and also other types of Bayesian procedures [49,53–55], 
including hypothesis tests. In principle, these other procedures can be useful for investigating other types of three-way 
decisions, an approach discussed in Section 4.

In the context of Bayesian decision theory, we define a loss function,

LH : � ×
{

0,
1

2
,1

}
−→ R.

LH measures how bad each decision in 
{

0, 1
2 ,1

}
is for each parameter value, θ ∈ �. Next, we define a prior distribution 

over �, which denotes one’s prior uncertainty about θ . We denote this distribution by f (θ). The prior distribution, together 
with the data distribution, f (x|θ), yields the posterior distribution, f (θ |x). This quantity encodes one’s uncertainty about 
the θ after observing x. Finally, the Bayes decision consists of picking d ∈ {0, 12 , 1} that minimizes the expected posterior 
loss, E[LH (θ, d)|x] = ∫

LH (θ, d) f (θ |x)dθ . We call such decision the optimal Bayes decision, or simply the Bayes decision. In 
three-way tests, the Bayes decision is the decision-theoretic three-way test.

A common choice of LH is the error-type constant (EC) loss function:

Definition 2.1 (Error-type constant loss function). Let H be a hypothesis. The error-type constant (EC) loss function, LH , is 
given by Table 1, where 0 < λH

B P < λH
N P , 0 < λH

BN < λH
P N , and (λH

P N − λH
BN )λH

N P > λH
B P λH

P N . These restrictions are made so 
that the loss for each type of error corresponds to its intuitive meaning. For instance, when H is true, accepting H is better 
than not deciding at all, which in turn is better than rejecting H . Also, the last inequality warrants that not deciding is an 
admissible decision.

The loss in Table 1 is a special case of Yao [48]. Since loss functions are invariant to translations [49], there is no 
loss in generality in setting the loss to 0 when the hypothesis is correct and is accepted. Similar to other references in 
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Table 1
Error-type constant loss function.

θ ∈ H θ /∈ H

x ∈ P O S(H) 0 λH
P N

x ∈ BN D(H) λH
B P λH

BN
x ∈ N EG(H) λH

N P 0

hypothesis tests [54], we also set the loss of accepting the hypothesis when it is correct as equal to the loss of rejecting the 
hypothesis when it is incorrect. There is no loss of generality in the optimal decision rules that can be obtained, as shown 
in Example 2.2 below.

The decision-theoretic three-way test with respect to the error-type constant loss function is shown in the following 
example.

Example 2.2 (Posterior probability three-way tests). Under the EC loss (Definition 2.1), the optimal three-way decision regions 
for hypothesis tests can be obtained from the results in Yao [48] by setting λH

P P = λH
N N = 0 and using the restriction (λH

P N −
λH

BN )λH
N P > λH

B P λH
P N :

P O S(H) = {x ∈ X : P (θ ∈ H|x) > βH },
N EG(H) = {x ∈ X : P (θ ∈ H|x) < αH }, and

BN D(H) = {x ∈ X : αH ≤ P (θ ∈ H|x) ≤ βH },
where

βH = λH
P N − λH

BN

(λH
P N − λH

BN) + λH
B P

< 1, and αH = λH
BN

(λH
BN − λH

B P ) + λH
N P

> 0 � (4)

Alternative approaches for determining decision thresholds involve, for instance, Bayesian rough sets [56], Bayesian con-
firmation measures [57], the optimization approach [58], granular shadowed sets [59], information-theory [60], game-theory 
[61], or linguistic intuitionistic fuzzy information [62].

In simultaneous hypothesis testing, one wishes to test a collection of hypotheses, σ(�), at the same time [63,64]. Defi-
nition 2.3 describes Bayesian optimality in this context.

Definition 2.3 (Bayesian optimality for simultaneous hypothesis tests). For each hypothesis H ∈ σ(�), let LH be a loss function. 
A simultaneous hypothesis test, ϕ , is Bayes-optimal if, for each hypothesis, H , ϕH is a Bayes test for testing H against LH . 
In words, a simultaneous hypothesis test is Bayes-optimal if each of its hypotheses is being optimally tested.

The following example shows that simultaneous tests based on posterior probabilities are obtained from the EC loss 
similarly to Example 2.2:

Example 2.4 (Simultaneous test based for error-type constant (EC) losses). Let L be a loss function such that, for each hypothesis, 
H , LH is the loss function presented in Table 1. Then, the Bayes simultaneous test for L is such that, for each H , it satisfies 
Equation (4).

Definition 2.5 (Simultaneous test based on trivial error-type constant (TEC) losses). If for each H ∈ σ(�), LH is such that the 
constants in Table 1 do not depend on H , then L is said to be a trivial error-type constant loss (TEC). In this case, the Bayes 
simultaneous test given by Equation (4) is such that αH = α and βH = β do not depend on H , α, β ∈ (0, 1).

Despite satisfying Bayesian optimality, simultaneous posterior probability three-way hypothesis tests might not be logi-
cally coherent. The following subsection defines logical coherence and provides examples of tests meeting each requirement.

2.2. Review of logical coherence

In the context of simultaneous tests, one is often interested in an overall interpretation of all the tests. One condition 
that is required for the interpretability of the tests is their logical coherence. For instance, if x ∈ P O S(θ > 1)3 and also 

3 For simplicity, we write θ > 1 as a shorthand for {θ ∈ � : θ > 1}.
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x ∈ N EG(θ > 0), then, after observing x, one would believe both that “θ > 1” is true and that “θ > 0” is false, a logical 
contradiction. Such contradictory conclusions are hard to interpret and should be avoided.

Based on this challenge and previous proposals for logical requirements [44–47,65–67], the concept of logical coherence 
in simultaneous hypothesis testing is proposed [39]:

Definition 2.6 (Logical coherence). A simultaneous hypothesis test is logically coherent if it satisfies the following:

1. (Propriety) P O S(�) = X .
2. (Monotonicity) If H1 ⊆ H2, then x ∈ P O S(H1) implies that x ∈ P O S(H2) and x ∈ N EG(H2) implies that x ∈ N EG(H1).4

3. (Intersection consonance) If x ∈ P O S(H1) and x ∈ P O S(H2), then it also holds that x ∈ P O S(H1 ∩ H2).
4. (Invertibility) x ∈ P O S(H) if, and only if, x ∈ N EG(Hc).

These requirements can be interpreted as follows. Propriety states that the hypothesis H : θ ∈ � must be accepted for 
every possible data x ∈ X . That is natural since one typically designs the parameter space � in a way such that it contains 
all possible parameter values. Thus, θ ∈ � holds by design. Monotonicity states that if H1 ⊆ H2 are nested hypotheses, then 
the conclusion obtained for H2 needs to be always at least as favorable as the conclusion obtained for H1. In particular, if 
one remains undecided about H1 after observing x, then one either remains undecided about H2 or accepts H2. Intersection 
consonance implies that if two hypotheses are accepted, then so should be their intersection – this requirement is not met 
by the posterior probability three-way hypothesis test of Example 1.1. Finally, invertibility states that, no matter whether H
or its complement Hc is being tested, the conclusions obtained should be the same.

Logically coherent tests can be characterized in terms of region estimators [39], R(x), which are subsets of the parameter 
space. These sets are typically R(x) build such that they contain likely values for θ (in light of the observed data x) - this 
is the case of the ellipsoids centered close to the observed means in Fig. 1, for instance. Region estimators are formalized 
below.

Definition 2.7 (Region estimator). A region estimator is a function R : X → P(�), where P(�) is the collection of all 
subsets of �.

A particular type of region estimator is the highest posterior density (HPD) set. The HPD contains the parameter values 
with posterior density above a given threshold. If � is finite, then the posterior density of each element of � is often taken 
as its posterior probability. Thus, in this case, the HPD contains the most probable values for θ .

Definition 2.8 (Highest posterior density set). A region estimator, R(x), is a highest posterior density set with respect to a 
posterior density, f (θ |x), if there exists k such that

R(x) = {θ ∈ � : f (θ |x) ≥ k}. (5)

The cutoff k in Definition 2.8 is chosen by the practitioner. Two common ways of choosing it are (i) via loss functions 
and (ii) by setting k such that the posterior probability of R(x) achieves a prespecified value (e.g. 95%) [54,68].

Below, Example 2.9 illustrates how to obtain the HPD in an election poll.

Example 2.9. Assume that n individuals are sampled without replacement from a population in which θ individuals vote 
for candidate A and N − θ individuals vote for candidate B, where N is larger than n and θ is unknown. Our goal is to 
infer θ using the total number of sampled individuals who vote for candidate A, X . Since individuals are sampled without 
replacement, X |θ ∼ Hypergeometric(θ, N − θ, n).

If assume that, a priori, θ ∼ Binomial(N, 0.5), then it can be shown that the posterior distribution is such that θ − X |X ∼
Binomial(N − n, 0.5). Indeed, since θ ∼ Binomial(n, 0.5), one can imagine that each individual in the population votes for 
candidate A independently with probability 0.5. After observing that X out of n vote for candidate A, this part of the 
population is fixed and the remainder part is such that each individual votes independently with probability 0.5 in candidate 
A. Hence, θ − X |X ∼ Binomial(N − n, 0.5).

Since a Binomial distribution with probability 0.5 is concave and symmetric around its average, the HPD is an interval 
that is symmetric around the average of the Binomial. That is, for every choice of k > 0 and observed data 1 ≤ x ≤ n, the 
HPD region for θ is given by

R(x) =
{

0 ≤ i ≤ N :
∣∣∣∣ (N − n)

2
+ x − i

∣∣∣∣ ≤ k

}
, (6)

4 In Esteves et al. [39], Monotonicity was defined differently. Lemma A.2 shows the equivalence between the previous definition and the more elegant 
one presented in this paper, which was suggested by an anonymous referee.
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R(x)

H

x ∈ P O S(H)

R(x)

H

x ∈ N EG(H)

R(x)
H

x ∈ BN D(H)

Fig. 2. ϕ is a region-based test for testing H .

that is, R(x) contains the most probable values for θ , which in this case correspond to the values close to x + N−n
2 . �

Using region estimators, one can construct a simultaneous test, as illustrated in Fig. 2. A test based on a region estimator, 
R(x), accepts H if R(x) ⊆ H , that is, all likely values for θ reside in H . Similarly, it rejects H if H ∩ R(x) = ∅, that is no likely 
value of θ resides in H . Otherwise, the test remains agnostic about H .

Definition 2.10 (Region-based three-way test). ϕ is a region-based test if there exists a region estimator, R , such that x ∈
P O S(H) if R(x) ⊆ H , x ∈ N EG(H) if R(x) ∩ H = ∅, and x ∈ BN D(H), otherwise, that is,

ϕH (x) =

⎧⎪⎨
⎪⎩

0 , if R(x) ⊆ H

1 , if R(x) ∩ H = ∅
1
2 , otherwise

(7)

The (non-invariant) Generalized Full Bayesian Significance Test (GFBST; Stern et al. [40]) is a particular type of test based 
on a region estimator. It uses a HPD as region estimator.

Definition 2.11. The GFBST is a region-based test in which R(x) is a HPD.

Example 2.12 illustrates the GFBST for a particular problem.

Example 2.12. Consider the hypergeometric model in Example 2.9. The GFBST accepts a hypothesis H when H contains 
R(x), that is, all points close to N−n

2 + x (where how close depends on the choice of k). Also, the GFBST rejects H when H

is disjoint from R(x), that is, H contains none of the points close to N−n
2 + x. Finally, the GFBST remains agnostic whenever 

H contains some but not all of the points close to N−n
2 + x. �

Although region-based tests are three-way tests, they generally differ from posterior-probability three-way tests. Hence, 
they provide a different class of three-way tests that necessarily provides logical coherence. Several applications of the 
GFBST, such as testing Hardy–Weinberg equilibrium, bioequivalence and linear regression have been developed [69,70].

Under special circumstances all logically coherent simultaneous tests are based on region estimators [39]. In particular, 
this relation is valid when � is a finite set.

Theorem 2.13. If � is finite and ϕ is a logically coherent simultaneous test, then ϕ is based on a region estimator.

The next section studies under what circumstances a Bayes test against an EC loss can be logically coherent. That is, 
the section studies whether a region-based three-way test can be a posterior-probability three-way test. Whenever such 
circumstances exist, probability-based tests are logically-coherent.

3. Can posterior-probability based three-way tests be logically coherent?

A logically coherent three-way test, ϕ , that is Bayes against an EC loss admits further characterization. In such a case, 
not only is ϕ a region-based test, but also based on a HPD. That is, every logically coherent posterior-probability three-way 
test is a GFBST, as presented in Theorem 3.1.5

5 Lemma A.5, in the Appendix, is used to prove Theorem 3.1. Recall that if a test is logically coherent and � is a finite set, then the test is based on a 
region estimator. Lemma A.5 shows that, if a Bayes test is based on a region estimator, then there exists a loss such that the region estimator is Bayes. That 
is, a Bayes logically coherent test is necessarily based on a region estimator which is also Bayes.
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Theorem 3.1. Let � be a finite set. If there exists a probability, P , and a TEC loss, L, such that a logically coherent simultaneous test, ϕ , 
is Bayes against L according to P , then ϕ is a GFBST.

Theorem 3.1 shows that, if a posterior-probability three-way test is logically coherent, then the test is a GFBST. That is, if 
the former conditions are desirable, then attention can be focused on the class of GFBST tests. For instance, if the thresholds 
in posterior probability three-way tests are chosen so that the test is logically coherent, then the test assumes the form of 
a GFBST. This result provides a way of obtaining logically coherent three-way tests.

However, do there exist actual cases in which a posterior-probability three-way test is logically coherent? Section 2
shows that a logically coherent test must be based on a region estimator. Despite this strong restriction, Theorem 3.2 shows 
that every logically coherent test is a probability-based three-way test for some probability measure.

Theorem 3.2. Let � and X be finite sets. If ϕ is a logically coherent simultaneous test, then there exists a probability, P , and a TEC 
loss function, L, such that ϕ is Bayes against L.

Theorem 3.2 shows that, for each logically coherent test, there exists a choice of P and a TEC loss L such that the test is 
Bayes with respect to L.6 That is, every logically coherent test is a posterior-probability three-way test for a specific choice 
of boundaries (α, β) and probability function, P . Example 3.3 illustrates such a choice when the parameter space has 4
elements.

Example 3.3. Let � = {1, 2, 3, 4}, X ∈ {0, 1}, R(0) = {1, 2}, R(1) = {3, 4}, and ϕ be a test based on R . Let L be a TEC loss 
so that β = 7

10 and α = 3
10 . Also, let P (1|x) = P (2|x) = 41−x

10 and P (3|x) = P (4|x) = 4x

10 . Let ϕ∗ be the Bayes test according 
to L. Note that the two least probable outcomes sum up a probability of 2

10 . Hence, every hypothesis that contains none of 
the most probable outcomes is rejected by ϕ∗ . Next, if a hypothesis contains both of the most probable outcomes, than its 
probability is at least 8

10 , so it is accepted by ϕ∗ . Finally, if a hypothesis contains only one of the most probable outcomes, 
than its probability is between 4

10 and 6
10 , so ϕ∗ remains agnostic about H . From the previous conclusions, obtain that 

ϕ ≡ ϕ∗ , that is, ϕ is a logically coherent test that is Bayes against L according to P . Finally, note that when using P , R is a 
HPD, that is, ϕ is a GFBST, as also known from Theorem 3.1. �

Example 3.3 shows that, for a given three-way region-based test, a specific choice of TEC loss and P are required so 
that the test is Bayes. However, in most settings P is given and one wishes to choose L so that the Bayes test is logically 
coherent. Theorem 3.4 shows that there is no choice of an EC loss such that the Bayes test is logically coherent for every P .

Theorem 3.4. Let |�| ≥ 3. For each P and L, let ϕP ,L be a Bayes simultaneous test against L according to P . If L is an EC loss, then 
there exists P such that ϕP ,L is not logically coherent.

Theorem 3.4 shows that, if L is an EC loss, then there exists a probability, P , such that the resulting Bayes test is not 
logically coherent. In particular, for every probability-based three-way test, there exists a probability such that the test is 
not logically coherent. Hence, a procedure that yields Bayes tests that are logically coherent against every probability P
cannot be a probability-based three-way test and must be based on more general loss functions. The next section explores 
these losses and their resulting three-way tests.

4. A logically coherent Bayesian procedure

This section develops a loss function such that, for every probability, P , the resulting Bayes three-way test is logically 
coherent. This loss is presented in Definition 4.1:

Definition 4.1 (GFBST loss). Let μ be a measure over � such that P (θ |x) is absolutely continuous with respect to μ for 
every x ∈ X and f (θ |x) := dP (θ |x)

dμ . For every x ∈ X , the tangent set to hypothesis H according to μ, T H
x , is defined as 

T H
x := {θ ∈ � : f (θ |x) > supθ ′∈H f (θ ′|x)}. The GFBST loss according to μ for testing H is given by Table 2.

The GFBST loss, which generalizes the two-way counterpart in Madruga et al. [55], admits an intuitive interpretation 
[71]. Observe that T H

x ⊆ Hc is the collection of values in � that are more likely than every point in H . Hence, T H
x and T Hc

x
can be interpreted as the set of points that are strong contenders for, respectively, H and Hc . The GFBST loss is lowest, 0, 
when either H is rejected and θ is a strong contender for H or H is accepted and θ is a strong contender for Hc . Also the 
GFBST loss is largest, b + c, when either H is rejected and θ is a strong contender for Hc or H is accepted and θ is a strong 

6 Under mild assumptions, Theorems 3.1 and 3.2 also hold when � is a countable set.
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Table 2
The GFBST loss. T H

x are the points in the parameter space that are strong 
contenders against H after observing x. If θ is among the strong contenders 
against H , then one receives a large penalty for accepting H , an interme-
diate penalty for remaining undecided, and a small penalty for rejecting H . 
Similarly, if θ is among the strong contenders against Hc , then one receives 
a large penalty for rejecting H , an intermediate penalty for remaining un-
decided, and a small penalty for accepting H .

decision state of the nature

θ ∈ T H
x θ /∈ T H

x ∪ T Hc

x θ ∈ T Hc

x

0 b + c b 0
1
2 v + c v v + c
1 0 b b + c

contender for H . Finally, the GFBST loss assumes intermediate values, when either θ is not a strong contender for H or Hc

or when the agnostic decision is chosen.
In the following, Theorem 4.2 shows that the optimal test against the GFBST loss is necessarily a GFBST three-way test 

and, therefore, logically coherent.

Theorem 4.2. For every probability, P , if ϕ is a Bayes simultaneous three-way test against the GFBST loss, then ϕ is a GFBST.

Proof. The posterior expected losses for each decision are given by:

E [L A(0, (θ, x)|x] = bP (θ /∈ T A
x ∪ T Ac

x |x) + (b + c)P (θ ∈ T A
x |x), (8)

E
[

L A

(
1

2
, (θ, x

)∣∣∣∣x
]

= v + cP (θ ∈ T A
x ∪ T Ac

x |x), (9)

E [L A(1, (θ, x)|x] = bP (θ /∈ T A
x ∪ T Ac

x |x) + (b + c)P (θ ∈ T Ac

x |x) . (10)

Next, it follows from definition that T A
x ⊆ Ac and T Ac

x ⊆ A. Hence, T A
x ∩ T Ac

x = ∅:

E [L A(0, (θ, x)|x] − E
[

L A

(
1

2
, (θ, x

)∣∣∣∣x
]

= (b + c)P (θ /∈ T Ac

x |x) − (v + c) (11)

E [L A(0, (θ, x)|x] − E [L A(1, (θ, x)|x] = (b + c)
(
P (θ ∈ T A

x |x) − P (θ ∈ T Ac

x |x)
)

(12)

E [L A(1, (θ, x)|x] − E
[

L A

(
1

2
, (θ, x

)∣∣∣∣x
]

= (b + c)P (θ /∈ T A
x |x) − (v + c) (13)

Also, recall from definition that either T A
x = ∅ or T Ac

x = ∅. Hence, since 0 < v < b and c > 0, if ϕ is Bayes, then ϕH (x) = 0 if 
and only if P (θ /∈ T Ac

x |x) < v+c
b+c and ϕH (x) = 1 if and only if P (θ /∈ T A

x |x) < v+c
b+c . It follows from Esteves et al. [39] that ϕ is 

the GFBST. �
Theorem 4.2 shows that, if the GFBST loss is used, then the Bayes test is a GFBST. Therefore, for every probability 

measure, the Bayes test against the GFBST loss is logically coherent. Hence, using loss functions that are more general than 
the EC loss, it is possible to always reconcile Bayesian optimality with logical coherence. In particular, if one wishes to obtain 
logical coherence, then performing decision-theoretic three-way tests based on Table 2 might be preferable to those based 
on Table 1. The three-way tests obtained from Table 2 assure logically coherent and generally differ from probability-based 
tests.

Example 4.3 illustrates the differences between posterior-probability and GFBST three-way tests through a simple case 
of observations from a normal population with unknown mean and known variance.

Example 4.3. Let X = (X1, . . . , Xn) be independent instances of a normal population with unknown mean, μ ∈ R, and known 
variance, σ 2

0 = 100
3 . Furthermore, consider that, a priori, one believes that μ is close to 0 and, furthermore, μ ∼ N(0, 1). 

Using Bayes theorem, one obtains that μ|X ∼ N

(
nσ−2

0 X̄

1+nσ−2
0

, 1
1+nσ−2

0

)
, where X̄ is the sample mean. For the sake of illustration, 

if n = 100 and X̄ = 4, then one obtains that μ|X ∼ N(3, 0.25).
When applying posterior-probability three-way tests it is possible to obtain logical incoherence. For instance, consider 

such a three-way test with thresholds 0.05 and 0.95. Note that P (μ ∈ [2.15, ∞[|x) > 0.95 and P (μ ∈] −∞, 3.85]|x) > 0.95. 
Hence, both μ ∈ [2.15, ∞[ and μ ∈] − ∞, 3.85] are supported by x. By combining both propositions, one obtains the logical 
deduction that μ ∈ [2.15, 3.85]. Hence, one might expect such a proposition to be accepted. However, using the posterior 
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distribution, one obtains that P (μ ∈ [2.15, 3.85]|x) ≈ 0.91. That is, one remains undecided whether μ ∈ [2.15, 3.85], a 
logical contradiction.

Such a contradiction cannot occur when using the GFBST three-way test. Given the posterior distribution, the 95% HPD 
set is approximately [2, 4]. Since μ ∈ [2.15, ∞[ and μ ∈] − ∞, 3.85] do not contain the HPD and are not disjoint from the 
HPD, one remains undecided about both propositions. Hence, no logical contradiction ensues. In this case, the GFBST would 
accept that μ lies in every set that contains [2, 4], reject that μ lies in every set that is disjoint from [2, 4], and remain 
undecided about the remaining cases. For instance, one would accept that μ ∈ [1, 10], reject that μ ∈ [−3, −1], and remain 
undecided about μ ∈ [1, 3].

5. Final remarks

Simultaneous three-way decisions may require more constraints than are typically used in individual decision problems. 
In particular, when performing simultaneous hypothesis tests, one might expect logical coherence between conclusions. This 
paper presents results on whether it is possible to obtain logically coherent three-way tests that are also Bayes optimal.

Two types of results are obtained. If an error-type constant loss is used, then only for a limited set of models can a Bayes 
simultaneous test be logically coherent. Specifically, a posterior probability three-way test can only be logically coherent if 
it is a GFBST test. This result motivated the investigation of other types of loss functions which might provide a better 
reconciliation between decision-theoretic three-way tests and logical coherence. We propose the GFBST loss and show that 
every Bayes test against this loss is a GFBST. Since every GFBST is logically coherent, the GFBST loss yields Bayes tests that 
are always logically coherent.

The above results show that the GFBST three-way test yields conclusions which are more interpretable than posterior 
probability three-way tests. The results also show that simultaneous three-way decisions can yield a layer of complexity that 
is not present in individual decision problems. Further investigation would determine statistical properties of logically con-
sistent three-way hypothesis tests in more general settings, such as high-dimensional parameter spaces, functional spaces, 
or nonparametric models. Logically coherent three-way decisions can also be explored in other types of problems, such as 
in hierarchical classification. Given the hierarchical nature of the classes, one might wish for the classifier to respect the 
logical relations between the labels.
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Appendix A. Proofs

Definition A.1. A simultaneous hypothesis test, ϕ , satisfies Monotonicity∗ if, for every H1 ⊆ H2, x ∈ P O S(H1) implies that 
x ∈ P O S(H2) and x ∈ BN D(H1) implies that x ∈ BN D(H2) ∪ P O S(H2).

Lemma A.2. Monotonicity∗ and Monotonicity (Definition 2.6.2) are equivalent.

Proof. First, note that both definitions of monotonicity impose that x ∈ P O S(H1) implies that x ∈ P O S(H2).
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Next, we show that, if Monotonicity∗ holds, then Monotonicity also holds:{
x ∈ P O S(H1) → x ∈ P O S(H2) (Monotonicity)

x ∈ BN D(H1) → x ∈ (BN D(H2) ∪ P O S(H2)) (Monotonicity){
x /∈ P O S(H2) → x /∈ P O S(H1) (Counter-positive)

x /∈ (BN D(H2) ∪ P O S(H2)) → x /∈ BN D(H1) (Counter-positive){
x ∈ N EG(H2) → x /∈ P O S(H1) (x ∈ N EG(H2) → x /∈ P O S(H2))

x ∈ N EG(H2) → x ∈ P O S(H1) ∪ N EG(H1){
x ∈ N EG(H2) → x ∈ N EG(H1)

Finally, we show that, if Monotonicity holds, then Monotonicity∗ also holds. It follows from Monotonicity that x ∈
N EG(H2) → x ∈ N EG(H1). Hence, x /∈ N EG(H1) → x /∈ N EG(H2). Equivalently,

x ∈ (BN D(H1) ∪ P O S(H1)) → x ∈ (BN D(H2) ∪ P O S(H2)).

Since x ∈ BN D(H1) → x ∈ (BN D(H1) ∪ P O S(H1)), the previous expression yields that x ∈ BN D(H1) → x ∈ (BN D(H2) ∪
P O S(H2)). �
Proof of Theorem 2.13. Let F = {H ∈ σ(�) : ∀H∗ ∈ σ(�), H ∩ H∗ ∈ {∅, H}}. Since � is finite and σ(�) is a σ -field, F
partitions �. Define the equivalence relation ∼ such that θ1 ∼ θ2 if there exists F ∈ F such that θ1 ∈ F and θ2 ∈ F . Define 
�∗ as the quotient space �\ ∼. Also, let σ(�∗) and ϕ∗ be the quotient σ -field of σ(�) and the quotient test of ϕ over 
∼. It follows from construction that σ(�∗) includes the singleton. Hence, Esteves et al. [39] obtains that ϕ∗ is based on a 
region estimator, R∗ . Conclude that ϕ is based on a region estimator, R . �
Definition A.3 (Proper loss function). A loss functions, L, is proper if, for every A ∈ σ(�),

L A(0, θ) < L A

(
1

2
, θ

)
< L A(1, θ), if θ ∈ A (A.1)

L A(0, θ) > L A

(
1

2
, θ

)
> L A(1, θ), if θ /∈ A (A.2)

L A

(
1

2
, θ

)
<

L A(0, θ) + L A(1, θ)

2
, ∀ θ ∈ � (A.3)

Lemma A.4. If L is a proper loss, then min

(
E

[
L{θ ′}

( 1
2 , θ

) ∣∣∣∣x
]

, (E

[
L{θ ′} (0, θ)

∣∣∣∣x
])

≤ E

[
L{θ ′} (1, θ)

∣∣∣∣x
]

implies that E
[

L{θ ′}
( 1

2 , θ
) ∣∣∣∣x

]

≤ E

[
L{θ ′} (1, θ)

∣∣∣∣x
]

.

Proof. It is sufficient to prove that, if E
[

L{θ ′} (0, θ)

∣∣∣∣x
]

≤ E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

, then E
[

L{θ ′}
( 1

2 , θ
) ∣∣∣∣x

]
≤ E

[
L{θ ′} (1, θ)

∣∣∣∣x
]

. Let 

E
[

L{θ ′} (0, θ)

∣∣∣∣x
]

≤ E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

. Since L is proper,

E
[

L{θ ′}
(

1

2
, θ

)∣∣∣∣x
]

≤
E

[
L{θ ′} (0, θ)

∣∣∣∣x
]

2
+

E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

2
(A.4)

≤ E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

. � (A.5)

Lemma A.5. Let � be finite, σ(�) include the unitary sets, and ϕ be generated by the region estimator, R. If there exists a probability, 
P , and a proper loss, L, such that ϕ is Bayes against L according to P , then R is a Bayes region estimator against L̄ according to P , 
where

L̄(A, θ) =
∑
′

[
L{θ ′}

(
1

2
, θ

)
− L{θ ′} (1, θ)

]
. (A.6)
θ ∈A

306



L.G. Esteves, R. Izbicki, J.M. Stern et al. International Journal of Approximate Reasoning 152 (2023) 297–309
Table A.3
Loss function used in the proof of Theorem 3.2.

Decision state of the nature

θ ∈ A θ /∈ A

0 (accept A) 0 k
1
2 (remain agnostic about A) 1 1
1 (reject A) k 0

Proof. The Bayes region estimator against L̄ , R∗ , satisfies:

R∗(x) :=
{
θ ′ ∈ � : E

[
L{θ ′}

(
1

2
, θ

)∣∣∣∣x
]

≤ E
[

L{θ ′} (1, θ)

∣∣∣∣x
]}

. (A.7)

Hence, it is sufficient to prove that R ≡ R∗ . Since ϕ is Bayes against L, ϕ{θ ′}(x) < 1 if and only if min

(
E

[
L{θ ′}

( 1
2 , θ

) ∣∣∣∣x
]

,

(E
[

L{θ ′}
(

0, θ

)∣∣∣∣x
])

< E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

. Using Lemma A.4, conclude that ϕ{θ ′}(x) < 1 if and only if E
[

L{θ ′}
( 1

2 , θ
) ∣∣∣∣x

]
≤

E
[

L{θ ′} (1, θ)

∣∣∣∣x
]

. Since ϕ is generated by R , it follows that R(x) = {θ ′ : ϕ{θ ′}(x) < 1}, that is,

R(x) = {
θ ′ : ϕ{θ ′}(x) < 1

}
(A.8)

=
{
θ ′ : E

[
L{θ ′}

(
1

2
, θ

)∣∣∣∣x
]

≤ E
[

L{θ ′} (1, θ)

∣∣∣∣x
]}

≡ R∗(x) � (A.9)

Proof of Theorem 3.1. Since ϕ is logically coherent, it follows from Theorem 2.13 that ϕ is based on a region estimator, R . 
It follows from Lemma A.5 that R is a Bayes region estimator against L. Since L is a TEC loss, which is proper, L(A, θ) =
λBN |A| − ((λBN − λB P ) + λN P )IA(θ). That is,

R(x) =
{
θ ∈ � : P (θ |x) ≥ λBN

(λBN − λB P ) + λN P

}
. (A.10)

Conclude that R(x) is a HPD. �
Lemma A.6 (Union consonance). Let ϕ be logically coherent. If H1 and H2 are such that ϕH1(x) = 1 and ϕH2(x) = 1, then 
ϕH1∪H2 (x) = 1.

Proof. It follows from invertibility that ϕHc
1
(x) = 0 and ϕHc

2
(x) = 0. Hence, from intersection consonance, ϕHc

1∩Hc
2
(x) = 0. 

Finally, conclude from invertibility that ϕH1∪H2 (x) = 1. �
Lemma A.7. Let � be a finite set. If ϕ is a logically coherent simultaneous test, then:

(a) For every x ∈ X , there exists θ0 ∈ � such that ϕ{θ0}(x) < 1.
(b) For every x ∈ X , if ϕ{θ0}(x) = 0, then ϕ{θ}(x) = 1, ∀θ �= θ0 .

Proof. (a) Assume that there exists x ∈ X such that ϕ{θ}(x) = 1, for every θ ∈ �. It follows from Lemma A.6 that ϕ�(x) = 1, 
which contradicts the propriety of ϕ . (b) Let θ0 be such that ϕ{θ0}(x) = 0. It follows from invertibility that ϕ{θ0}c (x) = 1. 
Conclude from monotonicity that, for every θ �= θ0, ϕ{θ}(x) = 1. �
Proof of Theorem 3.2. Since ϕ is logically coherent, it follows from Esteves et al. [39] that there exists R(x) such that, 
ϕH (x) = 1 ⇔ H ∩ R(x) = ∅, ϕH (x) = 0 ⇔ R(x) ⊆ H and ϕH (x) = 1

2 , otherwise. Using Lemma A.7, conclude that R(x) �= ∅. In 
the following, we determine a loss, L, and a joint probability, P (θ, x), such that ϕ is Bayes.

Let |�| = k. Also, let L be the TEC given by Table A.3. It follows from Yao [48] that ϕ is Bayes with respect to L when:

ϕH (x) =

⎧⎪⎨
⎪⎩

1 , if P (θ ∈ H|x) < 1
k

0 , if P (θ ∈ H|x) > k−1
k

1
2 , otherwise.

(A.11)

Next, we determine P (θ, x) such that these conditions hold.
In order to determine P (θ, x) it is sufficient to choose P (x) and P (θ |x). For each A ⊂ X , let P (x ∈ A) = |A|

|X | , that is, 
the uniform distribution over X . Also, for H ⊂ �,
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P (θ ∈ H|x) = 1

2k
· |H|
|X | + 2k − 1

2k
· |H ∩ R(x)|

|R(x)| . (A.12)

It remains to show that ϕ is Bayes with respect to L and P . We study three cases: (i) If ϕH (x) = 1, then H ∩ R(x) = ∅. Using 
Equation (A.12), conclude that P (θ ∈ H |x) ≤ 1

2k · 1 + 2k−1
2k · 0 < 1

k , (ii) If ϕH (x) = 0, then R(x) ⊆ H . Using Equation (A.12), 
conclude that P (θ ∈ H |x) ≥ 1

2k · 0 + 2k−1
2k · 1 > k−1

k , (iii) If ϕH (x) = 1
2 , then R(x) ∩ Hc �= ∅ and R(x) ∩ H �= ∅, that is, 1 ≤

|H ∩ R(x)| < |R(x)| ≤ k. Using Equation (A.12), conclude that P (θ ∈ H |x) ≥ 1
2k · 1

k + 2k−1
2k · 1

k = 1
k . Also, P (θ ∈ H |x) ≤ 1

2k ·
k−1

k + 2k−1
2k · k−1

k = k−1
k . That is, 1

k ≤ P (θ ∈ H |x) ≤ k−1
k . It follows from Equation (A.11) that ϕ is Bayes with respect to L

using P . �
Lemma A.8. Let L be an EC loss Definition 2.1 and, for each P , let ϕP ,L be a Bayes simultaneous test for P against L. If, for every P , 
ϕP ,L is logically coherent, then ϕP ,L is a simultaneous test such as in Example 2.2 and:

1. for every A, B ∈ σ(�) such that ∅ �= A ⊆ B �= 	, αA ≥ αB .
2. for every A, B ∈ σ(�) such that A − B �= ∅, B − A �= ∅, and A ∪ B �= 	: αA + αB ≤ αA∪B .

Proof. Let x ∈ X be arbitrary.
If αA < αB , then for P such that P (θ ∈ A|x) = P (θ ∈ B|x) = 0.5(αA + αB), ϕP ,L(A) < 1 and ϕP ,L(B) = 1, that is, ϕP ,L

does not satisfy monotonicity. Conclude that, if ϕP ,L is logically coherent for every P , then αA ≥ αB for every ∅ �= A ⊆ B �=
	.

If αA + αB > αA∪B , then let δ := (αA + αB) − αA∪B > 0. By taking P such that

P (θ ∈ A|x) = max(0,αA − 0.4δ), (A.13)

P (θ ∈ B|x) = max(0,αB − 0.4δ), (A.14)

P (θ ∈ A ∪ B|x) = min(1,αA + αB − 0.8δ), (A.15)

obtain ϕP ,L(A) = 1, ϕP ,L(B) = 1, and ϕP ,L(A ∪ B) < 1, that is, it follows from Lemma A.6 that ϕP ,L is not logically coherent. 
Conclude that, if ϕP ,L is logically coherent for every P , then αA + αB ≤ αA∪B . �
Proof of Theorem 3.4. Assume that, for every P , ϕL,P is logically coherent. Let θ1, θ2 ∈ � and A = {θ1}, B = {θ2}. Since 
|�| ≥ 3, A − B �= ∅, B − A �= ∅ and A ∪ B �= 	. Hence, it follows from Lemma A.8 that

αA ≥ αA∪B , (A.16)

αB ≥ αA∪B , (A.17)

αA∪B ≥ αA + αB . (A.18)

That is, αA = αB = αA∪B = 0, a contradiction with Example 2.2. Conclude that there exists P such that ϕL,P is not logically 
coherent. �
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