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Abstract

We consider random changepoint segmented regression models to analyze data
from a study conducted to verify whether treatment with stem cells may delay the
onset of a symptom of amyotrophic lateral sclerosis in genetically modified mice.
The proposed models capture the biological aspects of the data, accommodating a
smooth transition between the periods with and without symptoms. An additional
changepoint is considered to avoid negative predicted responses. Given the nonlinear
nature of the model, we adapt an algorithm proposed by Muggeo et al. (2014) to
estimate the fixed parameters and to predict the random effects by fitting linear mixed
models via standard software at each step. We compare the variances obtained in
the final step with bootstrapped and robust ones. We also average the parameters
of individually fitted models in an attempt to evaluate the quality of the proposed
algorithm.

Keywords: fitting algorithm, mixed models, random effects
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron

disease causing a progressive, rapid and irreversible degeneration of motor neurons in the

cortex, brain stem and spinal cord. In the majority of cases ALS occurs sporadically; in

about 10% of the cases it is caused by familial reasons. No effective treatment is available

and cell therapy clinical trials are currently being conducted with ALS affected patients.

The SOD1 gene encodes an important antioxidant human enzyme and mutations in this

gene represent one of the most frequent causes of ALS.

Among the different animal models for ALS, SOD1 mice are the most used in preclin-

ical studies. After the initial tremor in the limbs they develop muscle weakness in early

adulthood, become fully paralyzed and die. These mice overexpress the SOD1 gene bearing

the G93A mutation, a point mutation found in familial ALS. Interestingly, in this animal

model the disease progression exhibits a gender effect comparable to that observed in ALS

patients. Males have a shorter lifespan and a clinical condition apparently more severe

than females and differences in electrophysiological parameters have also been reported.

Treatment of ALS with stem cells is a current research topic. Mesenchymal stromal

cells (MSC), specially those derived from adipose tissues, and pericytes have been used in

studies of neurodegenerative diseases that focus on the reduction of the speed with which

symptoms progress. In this context we consider a study conducted in the Human Genome

and Stem Cell Research Center, at the Biosciences Institute, University of São Paulo, Brazil

with the objective of comparing MSC cells and pericytes injected in SOD1-G93A mice with

respect to their effects on the evolution of some symptoms of ALS. Details may be obtained

in Coatti et al. (2017).

Our objective here is to propose models for the statistical analysis of the data.
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2 The experimental setup

A set of 34 female and 21 male 8 week old SOD1-G93A mice was divided into 3 groups.

Animals in the first group (12 females and 7 males) were submitted to weekly injections of

MSC cells, those in the second group (11 females and 8 males), to injection with pericytes

while animals in the third group (11 females and 6 males) were submitted to the vehicle

(Hank’s balanced salt solution - HBSS). Clinical analysis of the progression of the disease

was evaluated weekly up to each animal’s death by means of four variables, the analysis

of one of them, rotarod is considered in this study. The rotarod test was used to evaluate

motor coordination and fatigue resistance. For that purpose, the length of time each animal

could remain on a rotating cylinder of a rotarod apparatus (IITC Life Science model 755)

was recorded. The initial speed of 1 rpm was increased constantly until a final speed of

30 rpm, after 180 s. Each animal was given three tries and the longest latency to fall was

recorded. The specific objectives of the analysis are:

i) Identification of the moment when animals become symptomatic (symptom onset)

for the six groups defined by the combination of treatment (HBSS, MSC, pericytes)

and sex (male, female).

ii) Estimation of the expected variation in response after symptom onset for each group.

iii) Evaluation of the effects of treatment, sex and their interaction on the expected

moment of symptom onset and post-onset variation of the expected response.

3 Statistical model and inference

Profile plots for the response along with LOESS curves are displayed in Figure 1.
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Figure 1: Profile plots for the response along with LOESS curves.

A descriptive analysis of the behaviour of the response variable corroborates its expected

stable level before the onset of the symptom (a decrease in the length of time during which

the animal holds on to the rotating cylinder). Furthermore, individual differences in the

moment where this occurs as well as differences among the speed with which the intensity

of the symptom progresses are also visible. It also seems reasonable to expect a change in

the acceleration with which the intensity of the symptom progresses after the disease onset.

Given that such conclusions are in line with the expected biological behaviour, a random
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changepoint polynomial segmented regression model may be considered for the analysis.

Such models have an attractive practical appeal in many fields and have been the object

of statistical research for a long time as detailed in Muggeo et al. (2014). These authors

consider a frequentist approach as opposed to the commonly Bayesian perspective usually

employed in the statistical literature.

Keeping in mind the necessarily nonnegative nature of the response, we adopt a similar

approach and consider an analysis of the ALS data based on the model

yijk = αijI[tk < ψ2ij(λij)] + γij[tk − ψ1ij(λij)]
2I[ψ1ij(λij) ≤ tk < ψ2ij(λij)] + eijk (1)

(i = 1, . . . , 6, j = 1, . . . , ni and k = 1, . . . , nij) where yijk denotes the response for the j-th

animal observed in the i-th group (defined by the combination of the levels of treatment and

sex) at the k-th evaluation instant, αij is the corresponding stable level of the symptom, γij

is the coefficient of the quadratic term for the curve that governs the response behaviour

post-changepoint ψ1ij, with

ψ1ij(λij) = [L1i + L2i exp(λij)]/[1 + exp(λij)]

to restrict the value of ψ1ij to the interval (L1i, L2i) in which the observations are recorded

and ψ2ij denotes the instant where the response is null. We assume that αij = αi + aij,

γij = γi + cij, λij = λi + `ij with bij = (aij, cij, `ij)
> ∼ N(0,Gi) and eijk ∼ N(0, σ2

i )

independent of bij.

This is an extension of the models proposed by Muggeo et al. (2014) where a smooth

transition and a second changepoint are incorporated. Because of its nonlinear nature, the

model must be fitted via iterative procedures.

For the sake of notational simplicity and without loss of generality, we drop the subscript

i to specify the the fitting algorithm.
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Given that ψ2j corresponds to the instant tk where yjk = 0, we have I(tk < ψ2j) = 1

and I(ψ1j ≤ tk < ψ2j) = 1 and consequently, that αj + {γj[ψ2j − ψ1j(λj)]
2} = 0, implying

that

ψ2j = ψ2j(αj, γj, ψ1j) =
√
−αj/γj + ψ1j(λj)

Following Muggeo et al. (2014) and Fasola et al. (2018), the nonlinear model may be

approximated by a first order Taylor expansion of

f [tk, γj, ψ1j(λj)] = γj[tk − ψ1j(λj)]
2I[ψ1j(λj) ≤ tk < ψ2j(λj)].

Explicitly,

f [tk, γj, ψ1j(λj)] ≈ f [tk, γj, ψ1j(λ̂j)] + (λj − λ̂j)
∂f [tk, γj, ψ1j]

∂ψ1j

∂ψ1j(λj)

λj

∣∣
λj=λ̂j

with
∂f [tk, γj, ψ1j]

∂ψ1j

= hj(λj) = 2γj[tk − ψ1j(λj)]I[ψ1j(λj) ≤ tk < ψ2ij(λj)]

and
∂ψ1j(λj)

∂λj
= gj(λj) =

(L2 − L1) exp(λj)

[1 + exp(λj)]2
.

Consequently we may approximate model (1) by

yjk ≈ αjI[tk < ψ2j(λ̂j)] + f [tk, γj, ψ1j(λ̂j)]− λ̂jhj(λ̂j)gj(λ̂j) + λjhj(λ̂j)gj(λ̂j) + ejk. (2)

Considering the pseudo observations defined by y∗jk = yjk + λ̂jhj(λ̂j)gj(λ̂j), the model

y∗jk = αjI[tk < ψ2j(λ̂j)] + f [tk, γj, ψ1j(λ̂j)] + λjhj(λ̂j)gj(λ̂j) + ejk

suggests the following algorithm to fit (1)

1) Let ψ
(0)
1j = ψ

(0)
1 and ψ

(0)
2j = ψ

(0)
2 .
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2) Fit model yjk = αjI(tk < ψ0
2j) + γj(tk −ψ(0)

2j )2I(ψ
(0)
1j ≤ tk < ψ

(0)
2j ) + ejk to obtain α(0),

a
(0)
j , γ(0), c

(0)
j , λ

(0)
j = log[(ψ

(0)
1j − L1)/(L2 − ψ(0)

1j )] and ψ
(1)
2j =

√
−α(0)

j /γ
(0)
j + ψ

(0)
1j .

3) Let r = 1.

4) Compute y
(r)
jk = yjk + λ

(r−1)
j hj(λ

(r−1)
j )gj(λ

(r−1)
j ).

5) Fit model

y
(r)
jk = αjI(tk < ψ

(r)
2j )+γj[tk−ψ(r−1)

1j ]2I(ψ
(r−1)
1j ≤ tk < ψ

(r)
2j )+λjhj(λ

(r−1)
j )gj(λ

(r−1)
j )+e

(r−1)
jk

to obtain α(r), a
(r)
j , γ(r), c

(r)
j , λ(r), `

(r)
j , ψ

(r)
1j = [L1 + L2 exp(λ

(r)
j )]/[1 + exp(λ

(r)
j )] and

ψ
(r+1)
2j =

√
−α(r)

j /γ
(r)
j + ψ

(r)
1j .

6) Stop if some convergence criterion is satisfied, otherwise, let r = r + 1 and repeat

steps 4-6.

This algorithm, adapted from Muggeo et al. (2014), essentially considers iterative fitting

of standard linear mixed models by (restricted) maximum likelihood. At convergence, we

expect a neglible difference between the third and fourth terms in the right hand side of (2)

and as a consequence, that the pseudo observations should well approximate the original

ones. Given the linear mixed model nature of the proposed fitting algorithm, we may

employ the diagnostic procedures outlined in Singer et al. (2017) to check whether the

adopted assumptions for the distribution of the random effects and of the random errors

are reasonable.

In practice, we noted that the quality of the fitted values depends on the initial values

ψ
(0)
1 and ψ

(0)
2 . We suggest that the algorithm should be applied for a set of initial values

(e.g., 25) for ψ
(0)
1 (e.g., ranging from the minimum to the maximum observed time points)
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with ψ
(0)
2 set at the maximum observed time point and that the starting points obtained

from the run with the smallest mean squared difference between individual observed and

last iteration predicted values should be chosen.

The algorithm may be applied to data with moderate sample sizes and in the last

step, produces approximate covariance matrices, V ar(θ̂i), of the fixed parameter estimators

θ̂i = (α̂i, γ̂i, λ̂i)
> which may be employed for inferential purposes. Since the interest lies in

the changepoint parameters ψ1i and ψ2i instead of in the auxiliary parameters λi we should

consider inferences on

h(θ̂i) = [α̂i, γ̂i, ψ1(λ̂i), ψ2(α̂i, γ̂i, λ̂i)]
>.

Approximate covariance matrices of the transformed estimators h(θ̂i) may be obtained via

the Delta method as

V ar[h(θ̂i)] = H(θ̂i)V ar(θ̂i)H(θ̂i)
>

with

H(θ̂i) =


1 0 0

0 1 0

0 0 (L2i − L1i) exp(λ̂i)/[1 + exp(λ̂i)]
2

(2α̂i)
−1(−α̂i/γ̂i)1/2 (2γ̂i)

−1(−α̂i/γ̂i)1/2 (L2i − L1i) exp(λ̂i)/[1 + exp(λ̂i)]
2


In particular, comparison among the fixed parameters to identify possible effects of

treatment, sex and their interactions may be carried out via Wald tests.

4 Results

Estimates of the parameters of model (1) obtained via fitting the approximation (2) along

with the corresponding standard errors are summarized in Table 1. Standard errors for
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the changepoint parameter estimates (ψ̂ij) were obtained via the Delta method from the

standard errors of the estimates of the auxiliary parameters λ̂ij.

Diagnostic plots for the male group treated with MSC are displayed in Figure 2 and do

not show evidences against the adopted assumptions. Diagnostic plots for the remaining

groups presented similar behaviour and may be reproduced via the R-function provided in

Singer et al. (2017).
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Figure 2: Diagnostic plots for males treated with MSC.
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Table 1: Estimates and standard errors for the parameters of model (1) obtained via fitting

the approximation (2) along with bootstrap and robust counterparts of the standard errors

Std error

Parameter Sex Treatment Estimate Model Bootstrap Robust

M HBSS 166.5 10.0 6.8 9.1

Stable level (α) M MSC 170.2 6.2 6.8 5.8

M Pericytes 164.6 6.5 2.4 6.1

F HBSS 156.3 6.2 5.7 6.2

Stable level (α) F MSC 167.5 3.8 4.0 3.7

F Pericytes 170.1 3.6 4.4 3.4

M HBSS -18.2 4.7 4.1 4.4

Acceleration (γ) M MSC -36.8 11.4 4.1 5.5

M Pericytes -23.4 12.3 20.3 10.7

F HBSS -3.9 1.4 1.6 1.4

Acceleration (γ) F MSC -25.6 6.1 23.1 5.9

F Pericytes -27.9 6.9 21.3 5.5

M HBSS 13.8 0.2 0.4 0.2

Changepoint 1 (ψ1) M MSC 13.3 1.0 0.4 0.8

M Pericytes 15.1 0.5 0.4 0.4

F HBSS 11.9 0.4 0.8 0.4

Changepoint 1 (ψ1) F MSC 15.4 0.5 1.0 0.5

F Pericytes 15.2 0.8 1.1 0.7

M HBSS 16.9 0.3 0.4 0.3

Changepoint 2 (ψ2) M MSC 15.5 0.7 0.4 0.6

M Pericytes 17.7 0.5 0.6 0.5

F HBSS 18.2 0.8 0.7 0.7

Changepoint 2 (ψ2) F MSC 18.0 0.4 1.0 0.4

F Pericytes 17.7 0.6 1.8 0.5
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The results of a Wald test for the homogeneity of the six changepoints ψ1 (χ2 =

40.69, df = 5, p < 0.001) suggests further analyses to identify the possible effects of treat-

ment, sex and their interaction. A significant interaction between treatment and sex with

respect to the ψ1 changepoints (χ2 = 12.96, df = 2, p = 0.002) may be analysed via the

multiple comparisons summarized in Table 2 and suggest that the onset of symptoms for

the “typical” male in the control group (HBSS) is delayed by 1.9 [CI(95%) = 1.0, 2.9]

weeks with respect to the “typical” female in the control group and that treatment with

Pericytes (both sexes) or MSC (females) delay the onset of symptoms for the “typical”

animals by 1.4 [CI(95%) = 0.6, 2.2] weeks with respect to the HBSS treated “typical”

male. The changepoint for the MSC treated “typical” male lies between those for HBSS

treated “typical” male and female but the small sample size does not lead to a significant

difference in either case.

Table 2: Comparison of changepoint (ψ1)

Changepoint

Comparison χ2 df p-value

Sex within HBSS 16.65 1 < 0.001

Sex within MSC 3.46 1 0.063

Sex within Pericytes 0.02 1 0.880

Pericytes = MSC(F) 0.25 2 0.880

Pericytes + MSC(F) = HBSS(M) 10.92 1 0.001

MSC(M) = HBSS(M) 0.25 1 0.620

MSC(M) = HBSS(F) 1.74 1 0.187
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The results for a similar analysis of the acceleration with which the symptom progresses

are displayed in Table 3 and suggest no difference between sexes and an increase in the

acceleration of 17.4 [CI(95%) = 16.5.5, 18.2] sec/week2 for the experimental treatments

(MSC and Pericytes) relatively to that of the control treatment (HBSS). Plots for the

Table 3: Comparison of post-changepoint symptom acceleration parameter (γ)

Acceleration coefficient

Comparison χ2 df p-value

Homogeneity 37.13 5 < 0.001

Sex × Treatment 1.56 2 0.458

Sex 1.12 1 0.289

Treatment 11.17 2 0.004

HBSS × MSC 8.53 1 0.003

MSC × Pericytes 0.34 1 0.561

estimates of male and female “typical” animal response curves for the three treatments

are displayed in Figure 3. Predicted animal specific response curves for male MSC and

female HBSS treated animals are presented in Figures 4 and 5. Similar plots for the

remaining groups are presented in the Supplementary Materials.
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Figure 3: Estimated response curves for “typical subjects”.

5 Discussion

We considered an extension of the algorithm proposed by Muggeo et al. (2014) to fit a

segmented regression model with smooth transition to data obtained from a study designed

to evaluate the effect treatment with stem cells on the delay of the onset of ALS symptoms.

The proposed model is appropriate for situations where the expected pre-changepoint re-

sponse is constant. Furthermore, it allows for a varying speed of symptom progress by
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including a second degree polynomial component post-changepoint, a feature suggested by

those authors.

Jacqmin-Gadda et al. (2006) employed a similar model with the random changepoint

governed by a log-normal distribution, independent of the distribution of the remaining

random effects. They mention that consideration of dependency lead to unstable results due

to numerical problems. This is also an issue raised by Segalas et al. (2019). In our case, the

relation between the random changepoint the subsequent variation in the response seems

reasonable since a delay in the symptom onset possibly accelerates the its deterioration.

We included such a dependency by considering an unstructured within-subject covariance

matrix for all random terms and did not have problems in the estimation process, given the

nature of the proposed algorithm that relies on iterative fitting of standard linear mixed

models. This feature also allows the use of the algorithm with moderately sample sized

data. Individual predicted responses are obtained with no additional effort.

Covariates may be included in model (1) along the lines outlined in Muggeo et al.

(2014).

The estimated covariance matrices of the fixed parameter estimates available in the

last step were employed for inferential purposes. This approach, however is not exempt

from controversy. In fact, Muggeo et al. (2014) comment that the corresponding standard

errors of the changepoint estimates underestimate the true standard errors and, based on

a simulation study, suggest that bootstrap estimates should be employed instead. They

consider a non-parametric bootstrap procedure and assume that the random effects are

independent, which does not picture the most common situation where the within subject

covariance matrix is unstructured. The nature of the parameters defining model (1) as

well as the estimated covariance components, presented in Table 4, tend to confirm this
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assumption.

Table 4: Estimates of the covariance components (G and σ2) obtained via model (1)

Covariance parameter

Treatment Sex σ2
α σ2

γ σ2
λ σαγ σαλ σγλ σ2

HBSS M 512.0 83.1 0.1 -78.0 -0.9 0.3 13.8

MSC M 247.4 849.8 0.8 211.7 -1.5 -24.1 12.4

Pericytes M 312.6 1013.3 0.2 -371.9 -1.7 -8.7 12.8

HBSS F 372.8 21.2 0.2 -38.1 4.9 -2.1 19.9

MSC F 148.3 349.7 0.3 -74.6 1.7 -7.0 14.1

Pericytes F 115.7 226.4 0.4 -51.6 1.0 -4.7 14.3

We used model estimated fixed and dispersion parameters, namely, α̂ij, γ̂ij, λ̂ij, Ĝ and

σ̂2 to generate 1000 samples each with the same number of profiles as the corresponding

groups, fitted model (1) model via the proposed algorithm and obtained bootstrap esti-

mates of the standard errors of the associated fixed parameters. We also considered a

robust version based on the suggestion of Liang and Zeger (1986). The estimated standard

errors of the fixed parameters obtained via the three approaches are presented in Table

1. Both the estimates obtained by using the proposed algorithm and the robust version

are quite similar with consistently smaller values for the latter. The bootstrapped version,

however, does not suggest a consistent pattern. We conjecture that this is a consequence of

assuming a trivariate normal distribution for the random effects ai, ci, `i. While this seems

appropriate for the individual stable level parameters and changepoints, it may not be so
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for the individual acceleration component, γ + `i which may be positive, a feature that is

not biologically expected. To bypass this problem, we may either impose the restriction

that γ + `i be positive in the fitting algorithm or adopt a different distribution for the

random effects, possibly by means of copulas. This is the object of further research.

The choice of initial values for the iterative procedures required to fit non-linear models

is usually problematic. Models that include transition functions like those proposed by

Bacon and Watts (1971) and considered in Morrell et al. (1995) are non-linear despite the

linearity of each component and therefore require additional attention, given the associated

numerical problems. Initialization of the algorithm described in Section 3 is simple since it

requires initial values only for the parameters ψ1 and ψ2. Although we chose these initial

values by fitting the model to a grid of values for ψ1 and ψ2 as described in Section 3,

a non-parametric bootstrap procedure as the one proposed by Wood (2001) and used in

Muggeo et al. (2014) could also be employed.

Finally, we mention that model (1) inherits the interpretational difficulty associated to

nonlinear mixed models: the fixed parameters correspond to the response for a “typical”

subject, i.e., one for which the random effects are null. The expected response must be

obtained by integrating out the random effects in the likelihood. This, however, does not

produce estimates of the population averaged parameters of interest (the changepoint and

the acceleration coefficient in our case). We considered the algorithm proposed by Muggeo

(2003) and fitted standard mixed segmented regression models with with a single random

effect corresponding to the changepoint to the individual data of each animal and averaged

the corresponding estimates to mimic the corresponding “population averaged” param-

eters. The results, also displayed in Table 5 present the same attenuation characteristic

(with the obvious exception of the stable level parameter) described by other authors under
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different nonlinear setups [see Diggle et al (2012) for example].

Plots of the predicted (via the segmented mixed model) and estimated profiles (via

mixed and individual segmented regression models) for animals in the MSC male and

HBSS female groups, respectively displayed in Figures (4) and (5). The similarity obtained

for the former (the curves for the “typical units” and for the approximate “population

averaged” ones the are practically superimposed) is probably due to the behavior of the

observed data which follows that dictated by the model for all units. This is not so for

the latter, where the observed data for units 3, 6, 8 and 10 do not follow the expected

pattern, implying that, perhaps, the proposed segmented mixed model should be modified

by requiring the acceleration parameter to be negative.
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Table 5: Estimates for the parameters of model (1) obtained via fitting the approxima-

tion (2) along with corresponding estimates of averaged individually fitted and marginal

parameters

Model

Parameter Sex Treatment Mixed (1) Individual Marginal

M HBSS 166.5 166.0 165.0

Stable level (α) M MSC 170.2 170.0 173.2

M Pericytes 164.6 164.2 162.9

F HBSS 156.3 154.9 155.0

Stable level (α) F MSC 167.5 168.4 165.5

F Pericytes 170.1 171.5 170.3

M HBSS -18.2 -30.2 -7.5

Acceleration (γ) M MSC -36.8 -61.1 -2.2

M Pericytes -23.4 -45.5 -9.9

F HBSS -3.9 -15.2 -2.2

Acceleration (γ) F MSC -25.6 -27.0 -6.1

F Pericytes -27.9 -30.6 -2.7

M HBSS 13.8 14.1 12.9

Changepoint (ψ1) M MSC 13.3 13.6 9.9

M Pericytes 15.1 14.2 14.2

F HBSS 11.9 13.4 12.3

Changepoint 1 (ψ1) F MSC 15.4 14.9 14.3

F Pericytes 15.2 14.5 12.1

M HBSS 16.9 16.4 17.6

Changepoint 2 (ψ2) M MSC 15.5 15.2 18.8

M Pericytes 17.7 16.1 18.3

F HBSS 18.2 16.6 20.6

Changepoint 2 (ψ2) F MSC 18.0 17.4 19.5

F Pericytes 17.7 16.9 20.1
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Figure 4: Predicted and estimated response curves (MSC males).
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Figure 5: Predicted and estimated response curves (HBSS females).
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SUPPLEMENTARY MATERIAL

Fitted curves: Fitted individual and “typical” subject curves for the six groups. (.zip

file)

R-function for model fitting: Contains the R-code to fit the segmented regression model

via the proposed algorithm. File ”seg2changepoint.R” contains a function used to im-

plement the fitting algorithm. File ”fittodata.R” fits the proposed model to specific

groups using function ”seg2changepoint.R”. (.zip file)

ALS data set: Contains the data considered in the article. (.xlsx file)
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