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Abstract

We present a collection of computational routines written in the R language (R
Development Core Team, 2007) for the analysis of categorical data with complete or
missing responses under a product-multinomial scenario. For complete data or in-
complete data generated by an ignorable missingness mechanism as defined in Little
and Rubin (2002, Wiley), linear and log-linear models may be fitted via maximum
likelihood (ML). Weighted least squares (WLS) methodology may as well be used to
fit more general functional linear models for complete data or for incomplete data
if a missing completely at random (MCAR) mechanism is assumed. The software
also allows a hybrid approach, where ML is used in a first stage, and the estimated
marginal probabilities of categorization and their covariance matrix are used in a
second stage to fit the model via WLS, in the spirit of functional asymptotic regres-
sion methodology described by Imrey, Koch, Stokes et al. (1981, 1982, International
Statistical Review) for complete data. The required computations are automati-
cally conducted for complete data or for incomplete data when missing at random
(MAR) or MCAR mechanisms are considered. For missing not at random (MNAR)
mechanisms, the first step must be programmed by the user via one of the built-in
optimization functions in the R software. Model formulation and use of the func-
tions are similar to GENCAT, a program developed by Landis, Stanish, Freeman and
Koch (1976, Computer Programs in Biomedicine), or by SAS’ PROC CATMOD. We
illustrate the procedures with three examples in the field of Biostatistics extracted
from Paulino and Singer (2006, Blücher). The first involves fitting a regular log-
linear model to a problem with complete data, the second deals with longitudinal
data and the third is focused on incomplete data.

Keywords: discrete data, log-linear models, missing data, product-multinomial model.

1 Introduction

The Catdata package is a collection of computational routines written in the R language (R

Development Core Team, 2007) for the analysis of categorical data with complete or missing re-

sponses under a product-multinomial scenario. In Figure 1 we present an outline of the available

features of the library of functions. We intend to document all the functions and submit them as a

contributed package to The Comprehensive R Archive Network (http://cran.r-project.org).

Meanwhile, the source code for the functions may be loaded inside R using the command
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source("http://www.poleto.com/Catdata.r"). It is also possible to download the file from

this site and load it using the source() command, specifying where the file was saved and its

label. A more detailed description of the functions is available in Poleto, Singer and Paulino

(2007a) and Poleto (2007); in the former we show how to perform the analyses of the exam-

ples considered in Poleto, Singer and Paulino (2007b, 2007c) while in the latter we examine

almost 40 examples discussed in Paulino and Singer (2006). The underlying theory is developed

in Paulino and Singer (2006) with the exception of the special case of missing data under a

product-multinomial setup, given in Poleto, Singer and Paulino (2007b).
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Figure 1: Types of analysis that can be conducted by the library of functions

In Figure 2 we present a flowchart representing the sequence in which the functions should

be used for analysis. A brief description of each function follows.

• readCatdata() inputs the categorical data; it accommodates complete or missing data;

• satMarML() performs maximum likelihood (ML) analyses for saturated models under the

missing at random (MAR) and missing completely at random (MCAR) mechanisms based

on a readCatdata() object; it can only be used in the context of missing data;

• satMcarWLS() performs weighted least squares (WLS) analyses for saturated models under

the MCAR mechanism based on a readCatdata() object; it can only be used in the context
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Figure 2: Sequence in which the functions are used for analysis

of missing data;

• linML() fits linear models by ML based on a readCatdata() object for complete data, or

on a satMarML() object for missing data;

• loglinML() fits log-linear models by ML based on a readCatdata() object for complete

data, or on a satMarML() object for missing data;

• funlinWLS() fits functional linear models by WLS based on a readCatdata() object

for complete data, on satMarML() or satMcarWLS() objects for missing data or based

on estimates of the probabilities of categorization (θ̂) and a consistent estimate of its

asymptotic covariance matrix (V̂θ̂) obtained, for example, by one of the built-in nonlinear

optimization functions of R under any missingness mechanism or even by other kinds of

models for the categorization probabilities;

• waldTest() performs Wald tests on linML(), loglinML() and funlinWLS() objects, when

the models are expressed in terms of freedom equations (Koch, Imrey, Singer, Atkinson

and Stokes, 1985).

In Sections 2, 3 and 4, we illustrate the use of the routines with three examples in the field of

Biostatistics extracted from Paulino and Singer (2006, Examples 9.12, 12.1 and 13.2). The first

involves fitting a standard log-linear model to a problem with complete data, the second deals

with longitudinal data and the third is focused on incomplete data. For a detailed analysis, the

reader is referred to Paulino and Singer (2006). Other references on the underlying theory are

Koch et al. (1985), Bishop, Fienberg and Holland (1975), Forthofer and Lehnen (1981), and

Agresti (2002).
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2 Log-linear model with complete data

The data in Table 1 are extracted from a study designed to evaluate the association between

gender (A), age (B), categorized as < or ≥ 55 years old, presence of hypertension (C), catego-

rized as yes (systolic blood pressure ≥ 140mmHg and/or diastolic blood pressure ≥ 90mmHg)

or no, and degree of obstructive coronary obstruction (D), categorized as ≥ 50% or < 50%.

Table 1: Observed frequencies of 1 448 cardiac patients

Sex (A) Age (B) Hypertension (C)
Degree of coronary obstruction (D)

< 50% ≥ 50%

female
< 55

no 31 17
yes 42 27

≥ 55
no 55 42
yes 94 104

male
< 55

no 80 112
yes 70 130

≥ 55
no 74 188
yes 68 314

The association among the four variables may be assessed by fitting log-linear models to

the parameters of a multinomial distribution with 24 = 16 categories. The probability that a

randomly selected patient is classified in the category (A = a,B = b, C = c,D = d), a, b, c, d =

1, 2 (following the order of appearance in Table 1) is {θabcd}. The corresponding vector of

parameters is θ = (θ1111, θ1112, . . . , θ2222)′. The log-linear model that includes only the first

order interactions (AB,AC,AD,BC,BD,CD) may be expressed as

ln(θabcd) = ν + uA
a + uB

b + uC
c + uD

d + uAB
ab + uAC

ac + uAD
ad + uBC

bc + uBD
bd + uCD

cd (1)

with some set of identifiability constraints. For example, if we use the cell (A = 1, B = 1, C =

1, D = 1) as a reference, the identifiability constraints may be expressed as uA
1 = uB

1 = uC
1 =

uD
1 = uAB

11 = uAB
12 = uAB

21 = uAC
11 = uAC

12 = uAC
21 = uAD

11 = uAD
12 = uAD

21 = uBC
11 = uBC

12 = uBC
21 =

uBD
11 = uBD

12 = uBD
21 = uCD

11 = uCD
12 = uCD

21 = 0, leading to the following interpretation of the

parameters:

• ν = ln(θ1111) is a component associated to the natural constraint of the multinomial

distribution that will not be estimated by the R routines;

• uA
2 = ln(θ2111/θ1111), uB

2 = ln(θ1211/θ1111), uC
2 = ln(θ1121/θ1111), uD

2 = ln(θ1112/θ1111) are

the marginal effects;

• uAB
22 = ln(θ11cdθ22cd/[θ21cdθ12cd]), c, d = 1, 2, uAC

22 = ln(θ1b1dθ2b2d/[θ2b1dθ1b2d]), b, d = 1, 2,

uAD
22 = ln(θ1bc1θ2bc2/[θ2bc1θ1bc2]), b, c = 1, 2, uBC

22 = ln(θa11dθa22d/[θa21dθa12d]), a, d = 1, 2,

uBD
22 = ln(θa1c1θa2c2/[θa2c1θa1c2]), a, c = 1, 2, uCD

22 = ln(θab11θab22/[θab21θab12]), a, b =

1, 2, correspond to the log odds ratios of each pair of variables, considered homogeneous

conditionally on all the categories of the other variables.

The commands to fit this model by ML and WLS are as follows.
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e912a.TF<-c(31,17,42,27,55,42,94,104,80,112,70,130,74,188,68,314)
e912a.catdata<-readCatdata(TF=e912a.TF)
e912a.X<-rbind(c(0,0,0,0),c(0,0,0,1),c(0,0,1,0),c(0,0,1,1),

c(0,1,0,0),c(0,1,0,1),c(0,1,1,0),c(0,1,1,1),
c(1,0,0,0),c(1,0,0,1),c(1,0,1,0),c(1,0,1,1),
c(1,1,0,0),c(1,1,0,1),c(1,1,1,0),c(1,1,1,1))

e912a.X<-cbind(e912a.X,e912a.X[,1]*e912a.X[,2],e912a.X[,1]*e912a.X[,3]
,e912a.X[,1]*e912a.X[,4],e912a.X[,2]*e912a.X[,3],e912a.X[,2]*e912a.X[,4]
,e912a.X[,3]*e912a.X[,4]) #A,B,C,D, AB,AC,AD,BC,BD,CD

e912a.loglinml<-loglinML(e912a.catdata,X=e912a.X)
e912a.loglinwls<-funlinWLS(model=c("lin","log"),obj=e912a.catdata,X=e912a.X)

We may compare the results either by using the command summary() having the label of

the object as argument or the brief version of print(), invoked by typing only the object label,

as indicated below.

> e912a.loglinml

Call: loglinML(obj = e912a.catdata, X = e912a.X)

Maximum likelihood estimates of the parameters of the log-linear model:
estimate std.error z-value p-value

[1,] 0.8603 0.1370 6.2780 0.0000
[2,] 0.4630 0.1369 3.3810 0.0007
[3,] 0.2306 0.1358 1.6977 0.0896
[4,] -0.9107 0.1524 -5.9770 0.0000
[5,] -0.5951 0.1341 -4.4379 0.0000
[6,] -0.4474 0.1268 -3.5298 0.0004
[7,] 1.2314 0.1255 9.8082 0.0000
[8,] 0.2806 0.1136 2.4698 0.0135
[9,] 0.6729 0.1203 5.5953 0.0000

[10,] 0.4089 0.1173 3.4873 0.0005

Goodness of fit of the log-linear model (d.f.=5):
statistic p-value

Likelihood ratio 3.0358 0.6945
Pearson 3.0666 0.6897
Neyman 2.9971 0.7004
Wald 3.0546 0.6916

> e912a.loglinwls

Call: funlinWLS(model = c("lin", "log"), obj = e912a.catdata, X = e912a.X)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.8553 0.1373 6.2313 0.0000
[2,] 0.4583 0.1372 3.3407 0.0008
[3,] 0.2273 0.1358 1.6734 0.0942
[4,] -0.9038 0.1513 -5.9721 0.0000
[5,] -0.5894 0.1328 -4.4378 0.0000
[6,] -0.4419 0.1263 -3.4981 0.0005
[7,] 1.2262 0.1252 9.7938 0.0000
[8,] 0.2837 0.1135 2.5004 0.0124
[9,] 0.6695 0.1197 5.5937 0.0000

[10,] 0.4050 0.1170 3.4604 0.0005

Wald goodness of fit statistic of the model (d.f.=5): 3.0546 (p-value=0.6916)
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Paulino and Singer (2006) show all the steps of the forward selection procedure that lead to

model (1). They also comment that from a clinical point of view it may be more appropriate to

consider the marginal totals of each combination of the categories of A, B, and C as fixed, so

these variables play the role of risk factors, the effects of which we want to investigate. We can do

this either by including the terms {uABC
abc } in model (1), or by assuming a product-multinomial

distribution and fitting appropriate logistic models.

Under this last setting, we are interested in the probabilities {θd(abc)} that a patient be

classified in the category (D = d) conditionally on the values of the explanatory variables

(A = a,B = b, C = c), or alternatively, in the corresponding logit functions {ln(θ1(abc)/θ2(abc))}.
Letting θ = (θ1(111), θ2(111), . . . , θ2(222))′, the functions of interest may be formulated as A ln(θ)

with A = I8 ⊗ (1,−1), where I8 indicates the identity matrix of order 8, ⊗ denotes the Kro-

necker product, and ln(θ) is the vector (natural) logarithmic operator, the elements of which

correspond to the natural logarithms of the elements of θ. The logistic model defined by

(ABC,AD,BD,CD) may be expressed as

ln
(
θ1(abc)

θ2(abc)

)
= λ+ αa + βb + γc (2)

with the identifiability constraints α2 = β2 = γ2 = 0. The commands to fit this model by ML

and WLS are as follows.

e912b.TF<-rbind(c(31, 17),c(42, 27),c(55, 42),c(94,104),
c(80,112),c(70,130),c(74,188),c(68,314))

e912b.catdata<-readCatdata(TF=e912b.TF)
e912b.XL<-rbind(c(1,1,1,1),

c(1,1,1,0),
c(1,1,0,1),
c(1,1,0,0),
c(1,0,1,1),
c(1,0,1,0),
c(1,0,0,1),
c(1,0,0,0))

e912b.loglinml<-loglinML(e912b.catdata,A=diag(8)%x%t(c(1,-1)),XL=e912b.XL)
e912b.loglinwls<-funlinWLS(model=c("lin","log"),obj=e912b.catdata,

A1=diag(8)%x%t(c(1,-1)),XL=e912b.XL)

The detailed results obtained via ML are generated by the command

> summary(e912b.loglinml)

Call: loglinML(obj = e912b.catdata, A = diag(8) %x% t(c(1, -1)), XL = e912b.XL)

Maximum likelihood estimates of the probabilities under the log-linear model (LLM):
[,1] [,2]

[1,] 0.7131 0.2869
[2,] 0.6229 0.3771
[3,] 0.5592 0.4408
[4,] 0.4573 0.5427
[5,] 0.4205 0.5795
[6,] 0.3253 0.6747
[7,] 0.2702 0.7298
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[8,] 0.1974 0.8026

Standard errors:
[,1] [,2]

[1,] 0.0312 0.0312
[2,] 0.0332 0.0332
[3,] 0.0325 0.0325
[4,] 0.0278 0.0278
[5,] 0.0273 0.0273
[6,] 0.0250 0.0250
[7,] 0.0214 0.0214
[8,] 0.0164 0.0164

Maximum likelihood estimates of the log-linear functions:
observed std.error under the LLM std.error

[1,] 0.6008 0.3018 0.9107 0.1524
[2,] 0.4418 0.2467 0.5018 0.1411
[3,] 0.2697 0.2049 0.2378 0.1316
[4,] -0.1011 0.1423 -0.1711 0.1120
[5,] -0.3365 0.1464 -0.3207 0.1121
[6,] -0.6190 0.1482 -0.7296 0.1140
[7,] -0.9324 0.1372 -0.9936 0.1086
[8,] -1.5299 0.1338 -1.4025 0.1036

Maximum likelihood estimates of the parameters of the log-linear model:
estimate std.error z-value p-value

[1,] -1.4025 0.1036 -13.5359 0.0000
[2,] 1.2314 0.1255 9.8081 0.0000
[3,] 0.6729 0.1203 5.5951 0.0000
[4,] 0.4089 0.1173 3.4870 0.0005

Fisher scoring attained the convergence criterion in 3 iterations.

Goodness of fit of the log-linear model (d.f.=4):
statistic p-value

Likelihood ratio 3.0353 0.5519
Pearson 3.0641 0.5472
Neyman 3.0002 0.5578
Wald 3.0506 0.5494

Estimated frequencies under log-linear model:
[,1] [,2]

[1,] 34.23 13.77
[2,] 42.98 26.02
[3,] 54.24 42.76
[4,] 90.55 107.45
[5,] 80.74 111.26
[6,] 65.06 134.94
[7,] 70.79 191.21
[8,] 75.42 306.58

Estimates for the odds ratios and the corresponding confidence intervals may be obtained

from the results via the commands
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> exp(e912b.loglinml$beta[2:4])
[1] 3.425991 1.959833 1.505168
> exp(e912b.loglinml$beta[2:4]-qnorm(0.975)*sqrt(diag(e912b.loglinml$Vbeta))[2:4])
[1] 2.678670 1.548299 1.196100
> exp(e912b.loglinml$beta[2:4]+qnorm(0.975)*sqrt(diag(e912b.loglinml$Vbeta))[2:4])
[1] 4.381806 2.480750 1.894098

The categorical data input function readCatdata() has the table of frequencies as the ar-

gument TF; when this argument is a vector, it assumes a multinomial distribution; when the

argument is a matrix, with each row representing one subpopulation, it assumes a product-

multinomial distribution. For each subpopulation, labeled s = 1, . . . , S, there are R response

categories, labeled r = 1, . . . , R. Hence, the resulting table of frequencies is a S ×R matrix.

The probability that a randomly selected unit from the subpopulation s is classified in the

response category r is denoted {θr(s)}. For subpopulation s = 1, . . . , S, these probabilities

are stacked in the vector θs =
(
θr(s), r = 1, . . . , R

)′, and then summarized in the vector θ =(
θ′s, s = 1, . . . , S

)′. All the (structural) models that we consider are expressed as functions of θ.

Model (1) is a special case of

ln(θ) = [IS ⊗ 1R] ν + Xβ, (3)

where ν = (ν1, . . . , νS)′ is a vector with S components associated to the natural constraints,

β = (β1, . . . , βp)′ is a p × 1 vector that embodies the p ≤ S(R − 1) unknown parameters, and

X = (X′1, . . . ,X
′
S)′ is a SR × p matrix with each R × p submatrix Xs having its columns

linearly independent from the vector 1R that defines the s-th natural constraint, 1′Rθs = 1, i.e.,

r(1R,Xs) = 1 + r(Xs), s = 1, . . . , S, and r(IS ⊗ 1R,X) = S + p, where 1R represents a R × 1

vector with all elements equal to 1, and r() is the rank operator.

Model (2) is a special case of a larger class of log-linear models expressed as

A ln(θ) = XLβ, (4)

where A is a u×SR matrix with rank r(A) = u ≤ S(R−1) such that A (IS ⊗ 1R) = 0u,S , where

0u,S denotes a u× S matrix with all elements equal to 0. The default choice of the routines for

log-linear models is A = IS ⊗ [IR−1,−1R−1]; this generates logits with the baseline category R.

The freedom equation formulations (3) and (4) are respectively equivalent to the constraint

formulations

U ln(θ) = 0S(R−1)−p, (5)

UL A ln(θ) = 0u−p, (6)

where U (UL) is a [S{R−1}−p]×SR ([u−p]×u) is a full rank matrix defining the S[R−1]−p
(u−p) constraints such that U[IS⊗1R,X] = 0(SR−p),p (ULXL = 0(u−p),p), where 0u−p represents

an (u− p)× 1 vector with all null elements.

The functions funlinWLS() [in the cases with the argument model=c("lin","log")] and

loglinML() are used to fit log-linear models by WLS and ML, respectively. The models may

be specified by any of the formulations (3), (4), (5) or (6). The arguments correspond to the
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label of the matrices used in the expressions, i.e., X, XL, U and UL, respectively, for X, XL, U

and UL. The only exception is the matrix A, which should be considered in the argument as

A1 for the WLS approach and as A, for the ML procedure.

3 Longitudinal data

The data in Table 2 are obtained from a study conducted with the objective of evaluating

the efficacy of a treatment for urinary infection with respect to one of its symptoms. Fifty

patients with this kind of infection were examined at three moments: right after the treatment

was administered, and 14 and 21 days after the first assessment. The observed characteristic was

the vaginal discharge level, classified as absent (0), light (1), moderate (2), or severe (3). Missing

data, commonly obtained in this kind of problem, were imputed for illustration purposes, and

are shown within parentheses; alternative approaches to accommodate the missing data must

consider the techniques discussed in Section 4. More details are given in Paulino and Singer

(2006).

Table 2: Vaginal discharge level in three assessments

Patient
Assessment

Patient
Assessment

initial 14 days 21 days initial 14 days 21 days
1 1 0 0 26 2 0 0
2 2 0 (0) 27 2 3 (3)
3 1 0 0 28 3 0 1
4 2 0 0 29 2 2 1
5 2 1 (1) 30 2 0 0
6 2 (2) (2) 31 3 (2) 0
7 2 (2) (2) 32 0 (0) 0
8 1 1 1 33 1 1 0
9 3 0 0 34 1 0 0
10 2 1 2 35 1 0 0
11 2 1 3 36 1 1 0
12 1 1 0 37 0 0 1
13 2 0 0 38 0 0 1
14 2 0 0 39 1 0 0
15 2 1 1 40 2 0 0
16 2 1 1 41 1 1 0
17 2 1 0 42 1 0 0
18 1 0 0 43 2 (2) (2)
19 1 0 0 44 2 2 (2)
20 2 0 0 45 2 0 1
21 1 1 0 46 2 (2) 0
22 3 1 0 47 3 1 0
23 3 0 0 48 3 0 0
24 2 1 1 49 2 1 1
25 2 0 0 50 3 0 0

Obs.: values shown within parentheses were imputed.

The questions of interest are: (i) to assess the temporal evolution of the response distribution,
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i.e., if the frequencies of patients with vaginal discharge of higher intensity are smaller after 14

days of treatment; (ii) to evaluate whether the treatment can be interrupted after 14 days, i.e.,

if some relevant characteristic e.g., the proportion of patients with vaginal discharge moderate

or severe remains unaltered after the second assessment.

Admitting that the patients correspond to a simple random sample of a (conceptual) popu-

lation for which we would like to draw conclusions, we may adopt a multinomial distribution for

inferential purposes. Observations on only 50 patients generate a sparse table for the 43 = 64

response categories associated to the probabilities {θabc}; here, θabc denotes the probability

that a randomly selected patient is classified in the a-th, b-th and c-th vaginal discharge levels

at the first, second and third assessments, respectively, where a, b, c = 0, 1, 2, 3. Despite the

sparseness of the table, the analyses may be focused on functions of the first-order marginal

distributions {θa·· =
∑

b,c θabc}, {θ·b· =
∑

a,c θabc}, and {θ··c =
∑

a,b θabc}; these 12 probabilities

θ·· = (θ0··, θ1··, . . . , θ··3)′ may be obtained from θ = (θ000, θ001, . . . , θ333)′ by considering the linear

function Aθ with A = (I4 ⊗ 116,14 ⊗ I4 ⊗ 14,116 ⊗ I4)′.

We may also direct our attention to the expected proportion of patients with vaginal dis-

charge moderate or severe. Here, the vector of functions of interest is

F1(θ) =

 θ2·· + θ3··
θ·2· + θ·3·
θ··2 + θ··3

 ,

where F1(θ) = A1θ with A1 = ([0, 0, 1, 1]′ ⊗ 116,14 ⊗ [0, 0, 1, 1]′ ⊗ 14,116 ⊗ [0, 0, 1, 1]′)′. Alter-

natively, if we assign scores (e.g., absent=0, light=1, moderate=2, severe=3) to the response

categories, we may compare the expected scores at each of the tree assessments. In this case,

the vector of functions of interest is

F2(θ) =

 0× θ0·· + 1× θ1·· + 2× θ2·· + 3× θ3··
0× θ·0· + 1× θ·1· + 2× θ·2· + 3× θ·3·
0× θ··0 + 1× θ··1 + 2× θ··2 + 3× θ··3

 ,

and may be expressed as F2(θ) = A2θ with A2 = ([0, 1, 2, 3]′ ⊗ 116,14 ⊗ [0, 1, 2, 3]′ ⊗ 14,116 ⊗
[0, 1, 2, 3]′)′. In both cases, a saturated model for the functions of interest may be specified in

the form F(θ) = Xβ with

X =

 1 0 0
1 1 0
1 0 1

 ,

so that the parameters β2 and β3 included in β = (β1, β2, β3)′ may be interpreted, respectively, as

the effects of the second and third assessments with regard to the expected proportion of patients

with response moderate or severe [F1(θ)], or with regard to the expected scores [F2(θ)]. These

linear models may be fitted by WLS with the following commands.

e121.raw<-data.frame(inicial=c(1,2,1,2,2,2,2,1,3,2,2,1,2,2,2,2,2,1,1,2,1,3,3,2,2,
2,2,3,2,2,3,0,1,1,1,1,0,0,1,2,1,1,2,2,2,2,3,3,2,3),

dias14 =c(0,0,0,0,1,2,2,1,0,1,1,1,0,0,1,1,1,0,0,0,1,1,0,1,0,
0,3,0,2,0,2,0,1,0,0,1,0,0,0,0,1,0,2,2,0,2,1,0,1,0),

dias21 =c(0,0,0,0,1,2,2,1,0,2,3,0,0,0,1,1,0,0,0,0,0,0,0,1,0,
0,3,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,2,2,1,0,0,0,1,0))

table(e121.raw[,1]);table(e121.raw[,2]);table(e121.raw[,3]) #marginal distributions
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e121.catdata<-readCatdata(TF=c(table(e121.raw[,3:1]))) #joint distribution
e121.v1<-c(0,0,1,1);e121.v2<-c(0,1,2,3)
e121.A1<-rbind(e121.v1%x%rep(1,16),rep(1,4)%x%e121.v1%x%rep(1,4),rep(1,16)%x%e121.v1)
e121.A2<-rbind(e121.v2%x%rep(1,16),rep(1,4)%x%e121.v2%x%rep(1,4),rep(1,16)%x%e121.v2)
e121.X<-rbind(c(1,0,0),c(1,1,0),c(1,0,1))
e121.propwls<-funlinWLS(model="lin",obj=e121.catdata,A1=e121.A1,X=e121.X)
e121.scorwls<-funlinWLS(model="lin",obj=e121.catdata,A1=e121.A2,X=e121.X)

Details of the fitted models, followed by Wald tests of the hypotheses of no treatment effect

(β2 = β3 = 0) and of equality of effects of the second and the third assessments (β2 = β3), may

be examined by means of the commands indicated in the sequel.

> e121.propwls

Call: funlinWLS(model = "lin", obj = e121.catdata, A1 = e121.A1, X = e121.X)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.6599 0.0670 9.8502 0.0000
[2,] -0.4998 0.0707 -7.0655 0.0000
[3,] -0.5198 0.0707 -7.3538 0.0000

Wald goodness of fit statistic of the model (d.f.=0): 0 (p-value=1)

> waldTest(e121.propwls,rbind(c(0,1,0),c(0,0,1)))

Call: waldTest(obj = e121.propwls, C = rbind(c(0, 1, 0), c(0, 0, 1)))

Wald statistic of the hypothesis (d.f.=2): 57.9457 (p-value=0)

> waldTest(e121.propwls,c(0,1,-1))

Call: waldTest(obj = e121.propwls, C = c(0, 1, -1))

Wald statistic of the hypothesis (d.f.=1): 0.2003 (p-value=0.6545)

> e121.scorwls

Call: funlinWLS(model = "lin", obj = e121.catdata, A1 = e121.A2, X = e121.X)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 1.7599 0.1116 15.7704 0.0000
[2,] -1.0996 0.1422 -7.7326 0.0000
[3,] -1.2195 0.1557 -7.8309 0.0000

Wald goodness of fit statistic of the model (d.f.=0): 0 (p-value=1)

> waldTest(e121.scorwls,rbind(c(0,1,0),c(0,0,1)))

Call: waldTest(obj = e121.scorwls, C = rbind(c(0, 1, 0), c(0, 0, 1)))

Wald statistic of the hypothesis (d.f.=2): 68.2345 (p-value=0)

> waldTest(e121.scorwls,c(0,1,-1))

Call: waldTest(obj = e121.scorwls, C = c(0, 1, -1))
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Wald statistic of the hypothesis (d.f.=1): 1.4209 (p-value=0.2333)

The results suggest that the treatment has an effective impact on the selected characteristics

of the response distribution during the first 14 days, but not after that period. To fit reduced

models that incorporate these conclusions, it suffices to consider the specification matrix X =

(13, [0,1′2]′). The results (not shown) suggest that

• the proportion of patients with vaginal discharge moderate or severe at the first assess-

ment is 66% [CI(95%) = (53%, 79%)] and this proportion decreases by 51% [CI(95%) =

(38%, 64%)] at the second assessment, remaining at the same level at the third assessment;

• the average score associated to the vaginal discharge at the first assessment is 1.74 [CI(95%)

= (1.53, 1.96)], and this average score decreases by 1.14 [CI(95%) = (0.86, 1.41)] at the

second assessment, remaining unaltered at the third assessment.

We may conduct an alternative analysis based on models for the cumulative logits, where

the marginal distributions are not summarized so drastically. The vector of functions of interest

and the corresponding specification matrix for a proportional odds model are

F3(θ) = ln



θ0··/(θ1·· + θ2·· + θ3··)
(θ0·· + θ1··)/(θ2·· + θ3··)
(θ0·· + θ1·· + θ2··)/θ3··
θ·0·/(θ·1· + θ·2· + θ·3·)

(θ·0· + θ·1·)/(θ·2· + θ·3·)
(θ·0· + θ·1· + θ·2·)/θ·3·
θ··0/(θ··1 + θ··2 + θ··3)

(θ··0 + θ··1)/(θ··2 + θ··3)
(θ··0 + θ··1 + θ··2)/θ··3


, X =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1


,

where F3(θ) = A32 ln(A31θ) with A32 = I9⊗[1,−1], A31 = (A30⊗116,14⊗A30⊗14,116⊗A30)′,

and A30 = ([1, 0, 0, 0]′, [0, 1, 1, 1]′, [1, 1, 0, 0]′, [0, 0, 1, 1]′, [1, 1, 1, 0]′, [0, 0, 0, 1]′)′. The first three

elements of β are interpreted as the logarithms of the odds of (i) vaginal discharge absent versus

vaginal discharge light, moderate or severe; (ii) vaginal discharge absent or light versus vaginal

discharge moderate or severe; (iii) vaginal discharge absent, light or moderate versus vaginal

discharge severe; all at the first assessment. The last two elements of β correspond to the

logarithm of the effects of the second and third assessments relatively to the first assessment for

the three odds simultaneously. We can fit this model by WLS using the commands

e121.A30<-rbind(c(1,0,0,0),c(0,1,1,1),c(1,1,0,0),c(0,0,1,1),c(1,1,1,0),c(0,0,0,1))
e121.A31<-rbind(e121.A30%x%t(rep(1,16)) , t(rep(1,4))%x%e121.A30%x%t(rep(1,4)) ,
t(rep(1,16))%x%e121.A30)
e121.A32<-diag(9)%x%t(c(1,-1))
e121.X3<-cbind(rep(1,3)%x%diag(3),cbind(c(0,1,0),c(0,0,1))%x%rep(1,3))
e121.propoddswls<-funlinWLS(model=c("lin","log","lin"),obj=e121.catdata,
A1=e121.A31,A2=e121.A32,X=e121.X3)

The output and Wald tests corresponding to hypotheses of interests may be obtained via

the following commands
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> e121.propoddswls

Call: funlinWLS(model = c("lin", "log", "lin"), obj = e121.catdata, ...)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] -2.0636 0.3337 -6.1847 0.0000
[2,] -0.5946 0.2893 -2.0551 0.0399
[3,] 1.4629 0.3544 4.1275 0.0000
[4,] 2.2650 0.3635 6.2306 0.0000
[5,] 2.5330 0.3840 6.5962 0.0000

Wald goodness of fit statistic of the model (d.f.=4): 5.248 (p-value=0.2628)

> waldTest(e121.propoddswls,rbind(c(0,0,0,1,0),c(0,0,0,0,1)))

Call: waldTest(obj = e121.propoddswls, C = rbind(c(0, 0, 0, 1, 0), c(0, 0, 0, 0, 1)))

Wald statistic of the hypothesis (d.f.=2): 45.9619 (p-value=0)

> waldTest(e121.propoddswls,c(0,0,0,1,-1))

Call: waldTest(obj = e121.propoddswls, C = c(0, 0, 0, 1, -1))

Wald statistic of the hypothesis (d.f.=1): 1.2974 (p-value=0.2547)

The results suggest that the proportional odds model is compatible with the data (p=0.26).

Conclusions about the effects of the second and the third assessments are similar to those of

the previous analyses. A reduced model that incorporates the restriction β4 = β5 may be fitted

with the following commands

e121.X4<-cbind(rep(1,3)%x%diag(3),c(0,1,1)%x%rep(1,3))
e121.propoddswls2<-funlinWLS(model=c("lin","log","lin"),obj=e121.catdata,
A1=e121.A31,A2=e121.A32,X=e121.X4)

To print the output, the following command is sufficient.

> e121.propoddswls2

Call: funlinWLS(model = c("lin", "log", "lin"), obj = e121.catdata, ...)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] -2.0324 0.3325 -6.1119 0.0000
[2,] -0.6029 0.2892 -2.0844 0.0371
[3,] 1.5193 0.3509 4.3292 0.0000
[4,] 2.3619 0.3534 6.6832 0.0000

Wald goodness of fit statistic of the model (d.f.=5): 6.5454 (p-value=0.2567).

The following commands allow us to obtain point and 95% interval estimates for the 3 odds of

having lower versus higher vaginal discharge levels at the first assessment as well as quantifying

the effect of the second and third assessments.

> exp(e121.propoddswls2$beta)
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[1] 0.1310143 0.5472298 4.5690852 10.6113164
> exp(e121.propoddswls2$beta-qnorm(0.975)*sqrt(diag(e121.propoddswls2$Vbeta)))
[1] 0.06827484 0.31043196 2.29668402 5.30814268
> exp(e121.propoddswls2$beta+qnorm(0.975)*sqrt(diag(e121.propoddswls2$Vbeta)))
[1] 0.2514066 0.9646574 9.0898614 21.2126994

The results suggest that after 14 days the three odds are multiplied by exp(2.36) = 10.61

[CI(95%) = (5.31, 21.21)] and that this remains unaltered at the third assessment.

Even though the results of the three analyses point to the same direction, the conclusions

should be faced with an exploratory spirit, since the sample size may not be sufficiently large to

warrant the asymptotic approximations required by the WLS approach.

Keeping this in mind, we may also focus on the estimation of the probability of change in the

level of the symptom between two consecutive assessments. First, we need to obtain the second-

order marginal distributions governed by the parameters {θab· =
∑

c θabc}, {θa·c =
∑

b θabc}, and

{θ·bc =
∑

a θabc}; these 48 probabilities grouped in the vector θ· = (θ00·, θ01·, . . . , θ·33)′ may be

obtained from θ via the linear function A41θ with A41 = (I16⊗14, I4⊗14⊗I4,14⊗I16)′. Then,

the vector F(θ) = A42 A41 θ = (
∑

a>b θab·,
∑

b>c θ·bc)
′ with

A42 =
(

1 0 0
0 0 1

)
⊗ ( 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 ),

contains the probabilities of change between consecutive assessments. This, along with appropri-

ate tests to compare the change from the first to the second assessments to that corresponding

to second and third assessments may be obtained via the following commands.

> e121.A41<-rbind(diag(16)%x%t(rep(1,4)),diag(4)%x%t(rep(1,4))%x%diag(4),
+ t(rep(1,4))%x%diag(16))
> e121.A42<-rbind(c(1,0,0),c(0,0,1))%x%rbind(c(0,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0))
> e121.improvprob<-funlinWLS(model=c("lin","lin"),obj=e121.catdata,A1=e121.A41,
+ A2=e121.A42,X=diag(2))
> e121.improvprob

Call: funlinWLS(model = c("lin", "lin"), obj = e121.catdata, A1 = e121.A41,...)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.6799 0.0660 10.3052 0.0000
[2,] 0.2201 0.0586 3.7559 0.0002

Wald goodness of fit statistic of the model (d.f.=0): 0 (p-value=1)

> waldTest(e121.improvprob,c(1,-1))

Call: waldTest(obj = e121.improvprob, C = c(1, -1))

Wald statistic of the hypothesis (d.f.=1): 20.0042 (p-value=0)

> e121.improvprob$beta-qnorm(0.975)*sqrt(diag(e121.improvprob$Vbeta))
[1] 0.5505801 0.1052200
> e121.improvprob$beta+qnorm(0.975)*sqrt(diag(e121.improvprob$Vbeta))
[1] 0.8092000 0.3348812
> cov2cor(e121.improvprob$Vbeta)

[,1] [,2]
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[1,] 1.0000000 -0.3602557
[2,] -0.3602557 1.0000000

The results suggest that the probability of change from the first to the second assessments,

68% [CI(95%) = (55%, 81%)], is significantly higher (p<0.01) than the probability of change

from the second to the third assessments, 22% [CI(95%) = (11%, 33%)]. Note also that these

estimates are negatively correlated, as a higher probability of change in the first 14 days naturally

is associated to a lower probability of change from the 14th to the 21st day.

4 Missing data

A sample of 97 children was evaluated with two methods for assessing susceptibility to dental

caries. The first, a standard method, is based on counts of Lactobacillus bacteria in salivary

samples and the second, a simplified method, in the reaction of saliva with resarzurine. In

both cases the children were classified as having high, medium, or low susceptibility to dental

caries. The objective of the study is to compare both marginal distributions of susceptibility

to dental caries and to evaluate the agreement between the classifications obtained with both

methods. Given the subjective characteristic of the second method, it did not allow a complete

classification of 46 children, highlighting the missing data nature of the response. The observed

frequencies are displayed in Table 3.

Table 3: Observed frequencies of susceptibility to dental caries

Simplified Standard method
method high medium low

high 7 11 2
medium 3 9 5

low 0 10 4
high / medium 8 7 3
medium / low 7 14 7

Firstly, we disregard the units with incomplete data and perform a complete case analysis

(CCA) on the data of 51 children. We assume a multinomial distribution with θij denoting the

probability that a randomly selected child be classified in the i-th category with the first method

and j-th category with the second. Here i, j = 1 (high), 2 (medium), 3 (low).

We can assess the homogeneity of the marginal distributions of susceptibility to dental caries

obtained under both methods via the linear model Aθ = Xβ where

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

 =
(

[I2,02]⊗ 1′3
1′3 ⊗ [I2,02]

)
, X =


1 0
0 1
1 0
0 1

 = 12 ⊗ I2,

θ = (θ11, θ12, . . . , θ33)′, and β = (β1, β2)′. If there is no interest in estimating β, we may use the

equivalent constraint formulation UAθ = 02, with U = ([1,−1]⊗ I2). The commands required

to fit this linear model (both formulations) by ML and WLS are
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e132.ccadata<-readCatdata(TF=c(7,11,2,3,9,5,0,10,4))
e132.A<-rbind(cbind(diag(2),c(0,0))%x%t(rep(1,3)),t(rep(1,3))%x%cbind(diag(2),c(0,0)))
e132.X<-rep(1,2)%x%diag(2);e132.U<-t(c(1,-1)%x%diag(2))
e132.linmlcca<-linML(e132.ccadata,A=e132.A,X=e132.X)
e132.linwlscca<-funlinWLS(model="lin",obj=e132.ccadata,A1=e132.A,X=e132.X)
e132.linmlcca2<-linML(e132.ccadata,A=e132.A,U=e132.U)
e132.linwlscca2<-funlinWLS(model="lin",obj=e132.ccadata,A1=e132.A,U=e132.U)

The results are printed by simply typing the following commands.

> e132.linmlcca

Call: linML(obj = e132.ccadata, A = e132.A, X = e132.X)

Maximum likelihood estimates of the parameters of the linear model:
estimate std.error z-value p-value

[1,] 0.2975 0.0501 5.9339 0.0000
[2,] 0.4663 0.0449 10.3855 0.0000

Goodness of fit of the linear model (d.f.=2):
statistic p-value

Likelihood ratio 7.6587 0.0217
Pearson 7.0594 0.0293
Neyman 11.6353 0.0030
Wald 8.5581 0.0139

> e132.linwlscca

Call: funlinWLS(model = "lin", obj = e132.ccadata, A1 = e132.A, X = e132.X)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.2741 0.0486 5.6382 0.0000
[2,] 0.4634 0.0453 10.2329 0.0000

Wald goodness of fit statistic of the model (d.f.=2): 8.5548 (p-value=0.0139)

> e132.linmlcca2

Call: linML(obj = e132.ccadata, A = e132.A, U = e132.U)

Goodness of fit of the linear model (d.f.=2):
statistic p-value

Likelihood ratio 7.6587 0.0217
Pearson 7.0594 0.0293
Neyman 11.6353 0.0030
Wald 8.5581 0.0139

> e132.linwlscca2

Call: funlinWLS(model = "lin", obj = e132.ccadata, A1 = e132.A, U = e132.U)

Wald goodness of fit statistic of the model (d.f.=2): 8.5548 (p-value=0.0139)

The results suggest that the marginal homogeneity hypothesis should be rejected (p<0.03).

In the context of the general structure with S subpopulations and R response categories
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under a product-multinomial distribution, the linear model presented above is a special case of

Aθ = Xβ, (7)

where A is an u × SR matrix defining the u linear functions of interest with rank r(A) = u ≤
S(R − 1), X is a u × p model specification matrix of rank r(X) = p ≤ u and β = (β1, . . . , βp)′

is a p × 1 vector that contains the unknown parameters. This model, may be expressed in the

alternative constraint formulation

UAθ = 0u−p, (8)

where U is an (u− p)× u matrix containing the u− p constraints with full rank and such that

UX = 0(u−p),p. In both cases, the rows of A must be linearly independent from the columns of

the matrix IS ⊗ 1R of natural constraints, i.e., r(A′, IS ⊗ 1R) = u + S. The default choice of

the sub-routines is A = IS ⊗ [IR−1,0R−1]; it selects the first R− 1 components of each of the S

multinomial distributions.

The functions funlinWLS() [with the argument model="lin"] and linML() fit linear models

by WLS and ML, respectively. The models may be specified under the formulation (7) or (8).

The arguments are the labels associated to the matrices used in the model expressions, i.e., X

and U, respectively, for X and U. The exception lies in the matrix A, which should be in the

argument as A1 for the WLS approach, and as A, for the ML procedure.

The agreement between the methods may be evaluated by the Cohen kappa index

κ =

3∑
i=1

θii −
3∑

i=1

θi·θ·i

1−
3∑

i=1

θi·θ·i

,

where {θi· =
∑

j θij} and {θ·j =
∑

i θij}. This index of agreement may be written as a functional

linear model F(θ) = π1 + exp(A4 ln{A3 exp[A2 ln(A1θ)]}) = Xβ with

A1 =


(1′2 ⊗ [1,0′3] , 1)

1′9
I3 ⊗ 1′3
1′3 ⊗ I3

 , A2 =
[

I2 02,6

03,2 1′2 ⊗ I3

]
,

A3 =
[
(1, 0)′,12,−(2, 1)′1′3

]
, A4 = [1,−1] , π1 = −1,

X = 1 and β = κ, with exp(a) denoting the vector exponential operator, the elements of which

correspond to the exponentials of the elements of a. We may fit this model by WLS via the

following commands.

e132.kA1<-rbind(c(diag(3)),rep(1,9),diag(3)%x%t(rep(1,3)),t(rep(1,3))%x%diag(3))
e132.kA2<-rbind(cbind(diag(2),matrix(0,2,6)),cbind(matrix(0,3,2),t(rep(1,2))%x%diag(3)))
e132.kA3<-cbind(c(1,0),c(1,1),-c(2,1)%*%t(rep(1,3)));e132.kA4<-t(c(1,-1))
e132.kappacca<-funlinWLS(model=c("add","exp","lin","log","lin","exp","lin","log","lin"),
obj=e132.ccadata,A1=e132.kA1,A2=e132.kA2,A3=e132.kA3,A4=e132.kA4,PI1=-1,X=1)

The output may be printed by typing
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> e132.kappacca

Call: funlinWLS(model = c("add", "exp", "lin", "log", "lin", "exp", "lin", "log", ...)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.0898 0.0998 0.8995 0.3684

Wald goodness of fit statistic of the model (d.f.=0): 0 (p-value=1)

The results suggest that the agreement between the simplified and the standard methods

does not appear to be better than what is expected by chance since the Wald test does not

reject the hypothesis that κ = 0 (p=0.37).

For partially classified categorical data, the user must also inform which are the response

categories associated to each of the response classes; this is accomplished via the arguments Zp

and Rp in the readCatdata() function as follows.

It is assumed that every missingness pattern has response classes that jointly constitute a

partition of the response categories. The dataset under study, for example, has two missingness

patterns: in the first, there is no distinction between the high and medium categories obtained

from the simplified method; in the second, there is no distinction between the medium and low

categories obtained by the simplified method. From Table 3 we notice that there are 3 frequen-

cies associated with the first missingness pattern: 8, associated to the parameters θ11 and θ21, 7,

to θ12 and θ22, and 3, to θ13 and θ23. As the 3 response classes do not constitute a partition of the

response categories, we define a last class with a null frequency associated to the parameters θ31,

θ32 and θ33. Following the order in θ = (θ11, θ12, θ13, θ21, θ22, θ23, θ31, θ32, θ33)′, the 4 response

classes, with frequencies (8, 7, 3, 0), are respectively informed via the response indicator vectors

(1, 0, 0, 1, 0, 0, 0, 0, 0)′, (0, 1, 0, 0, 1, 0, 0, 0, 0)′, (0, 0, 1, 0, 0, 1, 0, 0, 0)′ and (0, 0, 0, 0, 0, 0, 1, 1, 1)′,

where the components equal to 1 indicate that the corresponding response categories of θ

are in the response class being defined; otherwise, the components of the response indica-

tor vectors are equal to 0. Similarly, the second missingness pattern has 4 response classes,

with frequencies (0, 7, 14, 7), defined by the response indicator vectors (1, 1, 1, 0, 0, 0, 0, 0, 0)′,

(0, 0, 0, 1, 0, 0, 1, 0, 0)′, (0, 0, 0, 0, 1, 0, 0, 1, 0)′ and (0, 0, 0, 0, 0, 1, 0, 0, 1)′. These 8 vectors are

stacked side by side, forming the following 9× 8 matrix

1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1


=
[

12 ⊗ I3 06 13 03,3

03,3 13 06 12 ⊗ I3

]
,

which must be specified in the argument Zp. The argument Rp must receive a vector indicating

the number of response classes in each missingness pattern. For our example, Rp=(4,4). The

commands to input the incomplete categorical data are
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e132.TF<-c(7,11,2,3,9,5,1e-5,10,4, 8,7,3,0, 0,7,14,7)
e132.Zp<-cbind(rbind( cbind(kronecker(rep(1,2),diag(3)),rep(0,6)),

cbind(matrix(0,3,3),rep(1,3)) ),
rbind( cbind(rep(1,3),matrix(0,3,3)),

cbind(rep(0,6),kronecker(rep(1,2),diag(3))) ) )
e132.catdata<-readCatdata(TF=e132.TF,Zp=e132.Zp,Rp=c(4,4))

Note that the null frequency of the completed categorized pattern was substituted by a small

value (10−5) to avoid estimates on the boundary of the parameter space during the iteration

process. The summary() function applied to the object produced by the function readCatdata()

generates useful output to check if the function addresses the missingness patterns correctly.

> summary(e132.catdata)

Call: readCatdata(TF = e132.TF, Zp = e132.Zp, Rp = c(4, 4))

S=1 subpopulations x R=9 response categories with MISSING data

Table of frequencies of the complete data:
[1] 7.0e+00 1.1e+01 2.0e+00 3.0e+00 9.0e+00 5.0e+00 1.0e-05 1.0e+01 4.0e+00

Proportions of the complete data:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.1373 0.2157 0.0392 0.0588 0.1765 0.0980 0.0000 0.1961 0.0784

Standard errors of the proportions of the complete data:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.0482 0.0576 0.0272 0.0329 0.0534 0.0416 0.0001 0.0556 0.0376

Missing data frequencies and associated column vectors indicating
the relation with the original set of R response categories:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 8 1 0 0 1 0 0 0 0 0
[2,] 7 0 1 0 0 1 0 0 0 0
[3,] 3 0 0 1 0 0 1 0 0 0
[4,] 0 0 0 0 0 0 0 1 1 1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 1 1 1 0 0 0 0 0 0
[2,] 7 0 0 0 1 0 0 1 0 0
[3,] 14 0 0 0 0 1 0 0 1 0
[4,] 7 0 0 0 0 0 1 0 0 1

The output produced by readCatdata() always exhibits the observed proportions for the

complete data pattern. The function satMarML() is used to estimate θ by ML under the MAR

mechanism (default) or the MCAR mechanism (when the argument missing="MCAR").

> e132.satmarml<-satMarML(e132.catdata)
> e132.satmarml

Call: satMarML(catdataobj = e132.catdata)
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S=1 subpopulations x R=9 response categories

Maximum likelihood estimates of the probabilities:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.1061 0.1418 0.0260 0.1516 0.2188 0.1241 0.0000 0.1652 0.0664

Standard errors (MAR):
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.0358 0.0385 0.0179 0.0404 0.0520 0.0384 0.0001 0.0450 0.0302

Goodness of fit statistics of MCAR given MAR assumption (d.f.=6)
statistic p-value

Likelihood ratio 35.9325 0.0000
Pearson 24.4088 0.0004
Neyman 7854.1068 0.0000

The results suggest that the MCAR assumption is rejected (p<0.01). Comparing the last

two outputs, we notice that the marginal proportions obtained from the complete data may

be quite different from those obtained via the ML estimates of {θij} using all the available

data. The previous models for θ may be fitted again on the object generated by the function

satMarML(). The new fitted models will inherit the properties of the MAR mechanism from the

informed object. The necessary commands follow.

> e132.linmlmar<-linML(e132.satmarml,A=e132.A,X=e132.X)
> e132.linmlmar

Call: linML(obj = e132.satmarml, A = e132.A, X = e132.X)

Maximum likelihood estimates of the parameters of the linear model under MAR:
estimate std.error z-value p-value

[1,] 0.2649 0.0361 7.3332 0.0000
[2,] 0.5135 0.0372 13.7931 0.0000

Goodness of fit of the linear model given MAR (d.f.=2):
statistic p-value

Likelihood ratio 0.1287 0.9377
Pearson 0.1289 0.9376
Neyman 0.1287 0.9377
Wald 0.1285 0.9378

Goodness of fit of the linear model and MCAR given MAR (d.f.=8):
statistic p-value

Likelihood ratio 36.0612 0.0000
Pearson 24.7743 0.0017
Neyman 7327.0080 0.0000

> e132.linwlsmar<-funlinWLS(model="lin",obj=e132.satmarml,A1=e132.A,X=e132.X)
> e132.linwlsmar

Call: funlinWLS(model = "lin", obj = e132.satmarml, A1 = e132.A, X = e132.X)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.2649 0.0361 7.3363 0.0000
[2,] 0.5135 0.0373 13.7855 0.0000
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Wald goodness of fit statistic of the model (d.f.=2): 0.1285 (p-value=0.9378)

> e132.kappamar<-funlinWLS(model=c("add","exp","lin","log","lin","exp","lin","log","lin"),
+ obj=e132.satmarml,A1=e132.kA1,A2=e132.kA2,A3=e132.kA3,A4=e132.kA4,PI1=-1,X=1)
> e132.kappamar

Call: funlinWLS(model = c("add", "exp", "lin", "log", "lin", "exp", "lin", "log", ...)

Weighted least squares estimates of the parameters of the model:
estimate std.error z-value p-value

[1,] 0.0171 0.1015 0.1682 0.8664

Wald goodness of fit statistic of the model (d.f.=0): 0 (p-value=1)

In contrast to the results obtained under the CCA, there is no evidence against the marginal

homogeneity of the distributions associated to both methods under the MAR mechanism (p>0.90).

However, the previous conclusion about the κ index remains valid (p=0.87).

The reader may refer to Poleto (2007) for an example on how to fit MNAR mechanisms, and

to Poleto et al. (2007a) for an illustration on how to input partially classified categorical data

under a product-multinomial setting, where the subpopulations may have different missingness

patterns.
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