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Abstract. Based on a decomposition of a U -statistic, Nobre et al. (2008, Festschrift to

P.K. Sen, IMS Lectures Notes Monograph Series) proposed a test for the hypothesis that the

within-treatment variance component in a one-way random effects model is null, specially

useful when very mild assumptions are imposed on the underlying distributions. We con-

sider a bootstrap version of that U -test and evaluate its performance via simulation studies

in different scenarios. The bootstrap U -test has better statistical properties than the original

test even in small samples. Furthermore, it is easy to implement and has a low computa-

tional cost. We consider two examples with unbalanced small sample datasets, for illustrative

purposes.

1 Introduction

Consider the one-way random effects model

yij = µ+ bi + eij, i = 1, . . . k, j = 1, . . . , ni (≥ 2) (1)

with bi and eij denoting independent random variables with null means and variances σ2b and σ2e ,

respectively. The parameter µ is the mean response, bi represents the random effect associated

to the i-th treatment and eij represents a random measurement error associated with the j-th

observation obtained under the i-th treatment. Here, σ2b and σ2e are the between- and within-

treatment variance components, respectively.

In general, data analysis based on such a model focuses on the estimation of µ and on testing
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2 Nobre et al.

the hypothesis of no treatment effects, namely

H0 : σ
2
b = 0 vs H1 : σ

2
b > 0. (2)

Inference about variance components in random effects models and more specifically in linear

mixed models, has a long history in the statistical literature. In this context, McCulloch et al.

(2008) provide an excellent overview of estimation and prediction while Khuri et al. (1998) and

Demidenko (2013) present extensive reviews of this topic. With exception of some special situ-

ations (under the assumption of normality) there are no exact tests for the hypothesis of null

variance components, as discussed in Khuri et al. (1998), Lencina et al. (2005) and Demidenko

(2013), for example. Asymptotic tests are needed in more general situations as we will discuss.

Under the additional assumption that bi and eij follow normal distributions, the usual F -

statistic for testing (2) is

F =
SQ(b)/(k − 1)

SQ(e)/(n − k)
, (3)

where SQ(b) =
∑k

i=1 ni(yi. − y..)
2 and SQ(e) =

∑k
i=1

∑ni
j=1 y

2
ij −

∑k
i=1 niy

2
i. are, respectively,

the between- and within-treatment sums of squares with dots indicating over which indices the

averages are computed. The F -statistic (3) follows a central F distribution with k − 1 and n− k

degrees of freedom when H0 : σ2b = 0 is true. In the balanced case (i.e., when n1 = . . . = nk) the

test is uniformly most powerful invariant (UMPI). This optimality property does not hold in the

unbalanced case. Details may be found in Khuri et al. (1998), for example.

Nobre (2007) and Nobre et al. (2008) provide an alternative test based on the decomposition

of U -statistics in a nonparametric setup. Although it is not an exact test, it has good properties

for moderate sample sizes and does not require the normality assumption. The test is derived

under the assumption that E[e4ij ] <∞ and thus accommodates a large class of distributions (not

necessarily absolutely continuous) underlying the source of variation in model (1). The proposed

test is also valid for other situations, like for tests of null variance components in heteroskedastic

random effects as discussed in Nobre et al. (2008).

The class of U -statistics has its genesis in the papers of Halmos (1946) and Hoeffding (1948)

and is well known for its simple structure and for the weak assumptions required for its use in

statistical inference. It also provides a unified paradigm in the field of nonparametric Statistics

and has been used in many applications, as illustrated in Lee (1990), Kowalski et al. (2002), Schaid

et al. (2005), Sen (2006), Kowalski and Tu (2007), Nobre et al. (2008), Pinheiro et al. (2009) and

imsart-bjps ver. 2014/10/16 file: Nobre_etal2018BJPS_review.tex date: February 27, 2019



BJP
S -A

cc
ep

ted
 M

an
usc

rip
t

Improved U -tests for variance components in one-way random effects models 3

Nobre et al. (2013), among others. The related theory is available in many sources, among which

we mention Serfling (1980), Sen (1981), Lee (1990) or Sen et al. (2010), for example.

In the context under investigation, the derivation of tests for (2) may not follow the standard

procedures since the null hypothesis defines a point (or region) on the boundary of the parameter

space and this brings in some technical difficulties. Asymptotic tests for (2) or, more generally,

for testing the significance of variance components under linear mixed models are available in the

literature. Based on the ideas of Silvapulle and Silvapulle (1995), Verbeke and Molenberghs (2003)

obtained score-type tests under the assumption that the underlying probability distributions are

normal. Along the same lines, Savalli et al. (2006) extended the results to accommodate elliptical

underlying distributions. In particular, for the one-way random effects models, the corresponding

test statistic follows an asymptotic distribution given by a 50:50 mixture of χ2
0 and χ

2
1 distributions.

Tests based on generalized likelihood methods (that are asymptotically equivalent to score-type

tests) are considered in Self and Liang (1987), Stram and Lee (1994) and Silvapulle and Sen

(2005), for example. The main disadvantage of such tests is the difficulty in verifying the required

regularity conditions as shown in Giampaoli and Singer (2009). Other alternatives have been

suggested in the literature as in Lin (1997), Hall and Praestgaard (2001), Zhu and Fung (2004),

Zhang and Lin (2008), Crainiceanu and Ruppert (2004), Crainiceanu (2008), Greven et al. (2008)

and Sinha (2009). In practice, all these results are difficult to apply, specially when the dimension

of the vector of random effects is large; furthermore, they are only valid for some classes of

distributions. The derivation of the proposed U -test is not affected by such difficulties and we

envisage that it may serve as a building block for more general setups, as indicated in Nobre

(2007) and Nobre et al. (2008, 2013).

Although there exists an exact F -test with optimal properties for testing wheteher the between-

treatments variance component is null in a one-way random effects model with balanced data

under normality, we must rely on sub-optimal or approximate tests in unbalanced or nonnormal

settings. The asymptotic U -test that may be employed with unbalanced data and does not require

a specified form for the underlying distributions. Nobre et al. (2008) advocate that to test H0 in

situations where the distribution of the random effects and within-treatment errors are nonnormal,

the U -test is preferable even when the number of treatments is small. Simulation studies indicated

that the U -test is more powerful than the F -test, mainly for small and moderate samples. However,

for small samples, the U -test is very liberal, that is, the size of the test (the true probability of

falsely rejecting the null hypothesis) is greater than the nominal significance level. To bypass this

problem, we obtain the empirical distribution of the test statistic for H0 via bootstrap methods.
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4 Nobre et al.

This generates an exact test for (2) that does not depend on the normality of the bi and eij .

The key idea is to resample via the fitted model to create replicate datasets with the objective of

obtaining the exact (empirical) distribution of the U -test proposed by Nobre et al. (2008).

In Section 2, we summarize the decomposition of the U -statistic that underlies the test as in

Nobre et al. (2008). In Sections 3 and 4 we present the parametric and nonparametric versions of

the bootstrap U -test and present a simulation study to evaluate its properties. In Section 5 we

apply the proposed bootstrap test to small sample unbalanced nonnormal data. We conclude in

Section 6 with a brief discussion and future research proposals.

2 Outline of the U -test

Consider the one-way random effects model (1) and suppose that the focus is on testing the

hypothesis in (2). Let g(x, y) = (x − y)2/2 and note that, under model (1), E[g(yij , yij′)] =

E[(eij − eij′)
2]/2 = σ2e . An unbiased estimator of σ2e , based only on the ni observations obtained

under the i-th treatment (i = 1, . . . , k) is given by the following U -statistic

Ui =

(
ni
2

)−1 ∑

1≤j<j′≤ni

g(yij , yij′) = (ni − 1)−1
ni∑

j=1

(yij − yi.)
2 = S2

i . (4)

Since E[(bi−bi′)(eij−ei′j′)] = 0, it follows that E[g(yij , yi′j′)] = {2σ2b+2σ2e}/2 = σ2b+σ
2
e . Therefore,

an unbiased estimator of σ2b +σ
2
e , based only on the observations obtained under treatments i and

i′ is given by the following generalized U -statistic of order (1,1)

Uii′ = (nini′)
−1

ni∑

j=1

ni′∑

j′=1

(yij − yi′j′)
2

2
, 1 ≤ i < i′ ≤ k. (5)

Letting n =
∑k

i=1 ni, the lexicographically ordered observations,

y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , yk1, . . . , yknk
,

may be re-expressed as

y1, . . . , yn1 , yn1+1, . . . , yn1+n2 , . . . , yn1+...+nk−1+1, . . . , yn,

where the first n1 observations relate to treatment 1, the next n2, to treatment 2 and so on. The

uniformly minimum variance unbiased estimator (UMVUE) of the variance of the observations is
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Improved U -tests for variance components in one-way random effects models 5

given by the U -statistic

U0
n =

(
n

2

)−1 ∑

1≤r<s≤n

1

2
(yr − ys)

2 =

(
n

2

)−1




k∑

i=1

(
ni
2

)
Ui +

∑

1≤i<i′≤k

nini′Uii′





=
k∑

i=1

ni(ni − 1)

n(n− 1)
Ui + 2

∑

1≤i<i′≤k

nini′

n(n− 1)
Uii′ , (6)

that is a linear combination of generalized U -statistics. The first and second terms in (6) corre-

spond, respectively, to the within and between-treatment components. The U -statistic in (6) may

be re-expressed as

U0
n =

k∑

i=1

ni
n
Ui +

∑

1≤i<i′≤k

nini′

n(n− 1)
{2Uii′ − Ui − Ui′} =Wn +Bn, (7)

where

Wn =
k∑

i=1

ni
n
Ui and Bn =

∑

1≤i<i′≤k

nini′

n(n− 1)
{2Uii′ − Ui − Ui′} .

Note that E[Bn] ≥ 0, so E[Bn] = 0 if and only if σ2b = 0. This fact motivated Nobre et al.

(2008) to construct a test for (2) based on

Bn =

(
n

2

)−1 ∑

1≤r<s≤n

ηnrsψ(yr, ys), (8)

where

ηnrs =





n−ni
ni−1 , if yr and ys are both observed under the i-th treatment

−1 , otherwise.
(9)

and ψ(x1, x2) = (x1 − µ)(x2 − µ). Defining Mn =
∑

1≤r<s≤n η
2
nrs, Nobre et al. (2008), using the

martingale property exhibited by Bn as demonstrated in Pinheiro et al. (2009) in a different setup,

show that under H0 : σ
2
b = 0,

Jn =

(n
2

)
Bn

Wn

√
Mn

D−→N (0, 1) as k → ∞. (10)

Additionally, letting limn→∞Mn/n
3 = λ, and assuming that the fourth moment of the distribution

of the random effects is finite, they also showed that under the sequence of local hypotheses

H1n : σ2b = δ2/
√
n, (11)

it follows that

Jn
D−→N

(
δ2

2σ2e
√
λ
, 1

)
as k → ∞, (12)
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6 Nobre et al.

with δ representing a constant. Under the sequenceH1n, the limiting normal distribution is shifted

to the right by δ2/(2σ2e
√
λ). We may use Jn as a test statistic for (2), rejecting the null hypothesis

H0 with significance level α when Jn ≥ zα, where zα represents the (1−α)100% percentile of the

standard normal distribution. By (12), the power of the test is directly related to the magnitude of

the intraclass correlation coefficient ρ = σ2b/(σ
2
b + σ2e); more specifically, the power is a monotone

increasing function of ρ, as expected.

These results are all asymptotic and may not necessarily be appropriate for samples of small/moderate

sizes. In order to obtain a test with good properties even with small samples, we advocate using a

bootstrap U -test, where the idea is to obtain the empirical distribution of the statistic Jn under

H0 and use the fact that it suggests that the null hypothesis should be rejected for high values of

Jn. In the next sections we discuss parametric and nonparametric bootstrap procedures. For the

parametric bootstrap we will also study the effect of the misspecification of the conditional error

distribution in order to evaluate the robustness of the method. To evaluate the possible effect of

different distributions, we carry out simulations with asymmetric and heavy tailed distributions

standardized (i.e., with zero mean and variance 1) to make the results comparable.

3 A parametric bootstrap U -test

For the parametric bootstrap, we generate B pseudosamples under the null hypothesis as follows.

Let

y(bij) = µ̂+ σ̂eeij , i = 1, . . . k, j = 1, . . . , ni, b = 1, . . . , B,

where eij represents a sequence of independent and identically distributed (iid) random variables

with a given distribution. For each of B = 999 bootstrap pseudosamples, we obtain the statistics

J∗
1 , J

∗
2 , . . . , J

∗
B . Given the value of the statistic obtained from the original sample, Jn, the adjusted

p-value for the bootstrap test (Davidson and Hinkley, 1997, p. 175) is

p̂ =
1 +

∑B
i=1 1(J

∗
i > Jn)

B + 1
(13)

where 1(·) denotes the indicator function. To evaluate the behaviour of the proposed test for

small and moderate samples we considered 10,000 Monte-Carlo samples obtained under model

(1) with µ = 2, σ2e = 1, bi ∼ N (0, σ2b ), for different distributions of eij and numbers of treatments

(k = 5, 10, 30 and 100) in balanced studies. The within-treatment variance, σ2b , was set to 0

(to estimate the size of the test), 0.2, 0.5 or 1. The empirical power of the test under each
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Improved U -tests for variance components in one-way random effects models 7

setting was evaluated for significance levels equal to 0.01, 0.05 and 0.10. Initially, we simulated

data sets with different levels of imbalance, as in Nobre et al. (2008). Because the results did

not differ too much from the balanced case, we only show those for the latter (ni = m,∀i). To
evaluate the effect of misspecification of the generating distribution on the parametric procedure,

the bootstrap pseudosamples were generated under normality assumptions even though the true

underlying distribution was not normal.

We used both the REML estimator of σe obtained under of normality as well as the consistent

estimator Wn. Here, also, the results were practically identical and for that reason, we only show

the results based on Wn.

We repeated a similar simulation process considering bi ∼ {Yi−E[Yi]}/
√
Var[Yi]×σb, where the

iid random variables Y1, . . . , Yk follow a skew t distribution with 4.1 degrees of freedom, location

parameter 0, dispersion parameter 1 and asymmetry parameter λ = 1 (St(0,1,1,4.1)) with index of

skewness equal to 1.77. For details on the skew t distribution, see Azzalini and Capitanio (2003).

The results were very similar and for that reason they were omitted. In Table 1 we show the results

regarding the size and the empirical power of the test for different data generating distributions.

INSERT TABLE 1 HERE

The figures in Table 1 suggest that when the eij are normally distributed, the size of the bootstrap

parametric U -test is very close to the nominal level, with a 10% maximum relative difference for

the 1% significance level, less than 10% maximum relative difference for the 5% significance

level and less than 4% maximum relative difference for the for 10% significance level, even with

few treatments and few observations per treatment. The same conclusion holds when eij has an

asymmetric distribution, with a small increase in the relative difference, principally for the 1%

significance level. On the other hand, for heavy tailed distributions, the size of the bootstrap

parametric U -test obtained under normality is not close to the nominal when there are few

treatments and few repetitions per treatment (k = 5 and m ≤ 4), mainly for the 1% significance

level; in this case, the maximum relative difference increases to 20% in some settings. Otherwise,

the results are quite satisfactory.

4 A nonparametric bootstrap U -test

In this context, we generated B pseudosamples under the null hypothesis, so that the observa-

tions y
(b)
ij , b = 1, . . . , B are randomly sampled from the set of the original observations {yij , i =

1, . . . k, j = 1, . . . , ni}. For each of B = 999 bootstrap pseudosamples, we obtained the statistics
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8 Nobre et al.

J∗
1 , J

∗
2 , . . . , J

∗
B . Given the value of the statistic obtained from the original sample, Jn, the adjusted

p-value is given as in (13).

Chernick and LaBudde (2011, Chapter 8) comment that bootstrap statistics may be inconsistent

or unreliable; this occurs with the nonparametric bootstrap U -test mainly for the 1% significance

level with k = 5 and m = 2, where the rejection rates are less than 50% of the nominal value. In

a way, this is expected, since we are interested in an extreme case (α = 0.01) and the sample sizes

are small (only 10 observations). The same occurs when we consider few treatments. If we have

at least 4 observations per treatment, the results displayed in Table 2 suggest that the size of the

bootstrap nonparametric U -test is close to the nominal value, with maximum relative difference

less than 10% for the 5% and 10% significance levels; a maximum relative difference of 20% (few

cases) is observed for the 1% significance level, independently of the underlying distribution. As

in the previous section, we repeated the simulation considering a standardized skew t distribution

for the random effects obtaining very similar results (omitted here).

INSERT TABLE 2 HERE

5 Data examples

We consider an example originally presented in Snedecor and Cochran (1980) involving an exper-

iment on artificial insemination of cows; several semen samples from a bull were tested for their

ability to produce conceptions. The percentages of conceptions to services for successive samples

from six randomly sampled bulls are displayed in Table 3.

INSERT TABLE 3 HERE

A model suggested by Alkhamisi (2000) is

yij = µ+ bi + eij , i = 1, . . . 5, j = 1, . . . , ni

where yij represents the percentages of conceptions obtained from the jth sample taken from the

ith bull, µ designates the overall mean, bi designates the random effect due to the ith bull and

eij denotes a random error. Given the bounded nature of the response variable, normality does

not seem valid for either sources of variation. The objective of this example is to test whether the

within-bull variance may be dropped from the model, that is, to test (2).

Crainiceanu and Ruppert (2004) show that for testing that a variance component in a one-way

random effects model is null, the reference chi-bar-squared distributed is a poor approximation to
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Improved U -tests for variance components in one-way random effects models 9

the distribution of the likelihood ratio test (and consequently, to the distribution of the score test)

when there are few units and many observations per subject as in the example under discussion.

Besides that, with small sample sizes, standard asymptotic tests may not yield satisfactory results.

The Jn test for this example yielded a p-value equal to 0.0072. We applied both versions of the

bootstrap U -test obtaining p-values equal to 0.0390 and to 0.0388, respectively for the parametric

and nonparametric versions. The traditional F test provided a p-value equal to 0.04163, which

would lead us to a slightly different result at the 4% significance level, for example. At the 5%

significance level, both methods suggest that the variation within bulls is statistically significant.

However, different p-values may lead to incorrect inference in certain situations and, in these

cases, the bootstrap method seems more appropriate.

To further illustrate the advantage of the proposed test, consider a hypothetical data set gen-

erated via the following unbalanced model

yij = µ+ bi + eij , i = 1, . . . 5, j = 1, . . . , ni

with n1 = 5, n2 = 3, n3 = 4, n4 = 3 and n5 = 6. We set µ = 8, bi ∼ {Wi −E[Wi]}/
√
Var[Wi]× σb,

with σb =
√
0.5, and eij ∼ {Wij−E[Wij]}/

√
Var[Wij ], whereWi andWij are iid random variables

following St(0,1,1,4.1). The generated values are displayed in Table 4.

INSERT TABLE 4 HERE

The plot of the treatment means (± standard errors) displayed in Figure 1 suggest heteroskedas-

ticity, as expected, given the data were generation process.

INSERT FIGURE 1 HERE

An estimate of the mean µ is µ̂ = y.. = 7.92. Assuming normality, we obtain σ̂2b = 0.5961 and

σ̂2e = 1.0693, so that an estimate of the intraclass correlation coefficient is ρ̂ = 0.3579, which are

values close to the true values (0.5, 1 and 1/3, respectively). The estimate based on the consistent

estimator Wn is equal to 1.0241 which was the value used to implement the parametric Bootstrap

test. The objective is to test whether the within-treatment variance may be dropped from the

model, that is, to test (2).

For the generalized likelihood ratio test, we obtained a p-value of the 0.3575. The traditional F

test provided a p-value equal to 0.1024 suggesting an inconsistent conclusion with the generating

model. Here, for the Jn test, we obtained a p-value less than 10−7, which may not be realistic

given the small sample size. We applied both versions of the bootstrap U -test obtaining p-values

of 0.0112 and 0.0335, respectively for the parametric and nonparametric versions. At the 5%
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10 Nobre et al.

significance level, both suggest that the variation within treatment is statistically significant, as

opposed to the conclusion based on the competing tests.

6 Discussion and conclusion

Although there exists an exact F-test with optimal properties for testing the significance of the

between-treatments variance component in a one-way random effects model with balanced data

under normality, we must rely on sub-optimal or approximate tests in unbalanced or nonnormal

settings. Nobre et al. (2008) derived an asymptotic U-test that may be employed with unbalanced

data and does not require a specified form for the underlying probability distributions. The authors

conclude that the F-test is more affected by the lack of normality of the random effects and

within-treatment errors than by imbalance. Furthermore, the U -test seems to be less sensitive to

imbalance and to be more powerful than the F-test in general. Such conclusions must be viewed

with caution, given the liberal nature of the U -test, specially for small sample sizes.

Sinha (2009) obtains the exact distribution of the score statistic to test the hypothesis of null

variance of a random intercept in generalized linear mixed models using parametric bootstrap.

Under this setup, for each pseudosample it is necessary to estimate the set of parameters and to

obtain the score statistic. This requires a high computational cost given that matrix inversion,

for example, may be needed. Our proposal is relatively simple, free of distribution assumptions

besides presenting a very low computational cost. An extension of the U -test to more general

Linear Mixed Models is proposed in Nobre et al. (2013) but its structure is slightly different from

the one considered in Nobre et al. (2008) on which the bootstrap version is based. The bootstrap

procedure for the U-tests in this more general situation where even under the null hypothesis, the

dependent variables may not be identically distributed nor be independent is more complicated

and is the object of ongoing investigation. See Davison and Hinkley (1997) and Lahiri (2003),

among others, for details.

We propose bootstrap methods to obtain the empirical distribution an U -test statistic under

the null hypothesis. The statistic Jn suggests the null hypothesis to be reject when high values of

Jn are observed. Thus we use its easy structure to propose exact test versions using Bootstrap,

both in parametric and non-parametric approach. The simulation results suggest that even for

small sample sizes the test behaves well, despite a very small bias. Given that it is a test addressed

specifically at small sample sizes, computational effort is not really a problem. We also evaluated

the effect of misspecification of the distribution of conditional errors. We noticed that for the
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BJP
S -A

cc
ep

ted
 M

an
usc

rip
t

Improved U -tests for variance components in one-way random effects models 11

parametric bootstrap, the result does not vary too much even when pseudosamples are generated

from a normal distribution. The simulation codes can be obtained directly from the first author

upon request.
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Table 1 Rejection rates (%) for the parametric bootstrap U-test in balanced designs with bi ∼ N (0, σ2
b ) for different distributions of the conditional errors.

k = 5 k = 10 k = 30 k = 100

σ2

b
α m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10

eij ∼ N (0, 1)
1% 1.0 1.0 1.0 0.9 1.0 1.0 1.1 1.1 1.1 1.1 1.0 1.0 0.9 1.1 1.0 1.0

0 5% 5.4 5.0 5.1 5.0 5.4 5.0 5.0 5.1 5.3 5.1 5.0 4.9 5.0 5.0 5.1 5.0
10% 10.2 10.2 10.2 10.0 10.2 10.0 10.2 10.2 10.2 10.0 10.0 9.9 10.3 9.8 10.1 10.0
1% 2.2 7.1 10.5 30.5 3.0 13.1 20.9 56.6 7.8 38.8 56.8 95.5 25.8 90.5 98.2 100.0

0.2 5% 9.3 20.2 25.9 49.4 12.8 32.0 41.7 74.7 22.8 63.9 77.6 98.6 51.1 97.2 99.6 100.0
10% 17.3 30.9 37.2 60.1 22.1 45.1 54.4 82.6 35.0 75.3 86.6 99.3 65.5 98.5 99.9 100.0
1% 4.3 22.2 32.5 64.9 9.0 44.8 60.2 91.2 31.7 91.4 97.2 100.0 87.3 100.0 100.0 100.0

0.5 5% 16.2 43.6 53.5 79.1 26.9 67.6 78.6 96.6 58.3 97.2 99.4 100.0 96.3 100.0 100.0 100.0
0% 27.7 55.7 64.6 85.1 41.2 77.8 85.6 97.9 71.8 98.7 99.8 100.0 98.6 100.0 100.0 100.0
1% 9.0 45.9 58.3 85.1 23.2 77.3 88.3 98.8 74.1 99.8 100.0 100.0 99.9 100.0 100.0 100.0

1.0 5% 28.2 66.8 75.4 91.9 49.2 90.26 95.4 99.6 91.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10% 42.8 76.5 82.5 94.6 63.9 94.2 97.2 99.8 95.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

eij ∼ t5 ×

√
3/5

1% 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.8 0.9 0.9 1.0 1.1 0.9 1.0 1.0
0 5% 4.2 4.0 4.2 4.7 4.4 4.5 4.6 4.8 4.4 4.6 4.6 4.8 4.7 4.8 4.9 5.0

10% 8.7 8.8 9.2 9.5 9.3 9.4 9.6 9.9 9.4 9.5 9.6 9.9 10.1 9.9 10.1 10.1
1% 2.0 7.0 9.8 29.9 2.8 13.0 20.1 56.0 7.0 38.3 56.4 95.4 25.6 90.2 97.9 100.0

0.2 5% 9.0 20.1 25.4 49.2 12.1 31.7 40.7 74.4 22.4 62.9 77.2 98.3 50.6 97.1 99.6 100.0
10% 17.2 30.8 36.7 59.9 20.9 44.2 53.7 81.5 34.2 74.0 85.9 99.0 64.6 98.2 99.8 100.0
1% 4.1 21.3 32.2 64.0 8.6 44.0 58.5 91.0 31.2 91.1 97.1 100.0 87.0 100.0 100.0 100.0

0.5 5% 16.1 42.4 53.0 79.0 25.9 67.0 78.0 96.1 57.7 97.0 99.2 100.0 96.1 100.0 100.0 100.0
10% 27.1 54.6 64.1 84.5 39.8 77.2 85.2 97.2 71.1 98.5 99.7 100.0 98.4 100.0 100.0 100.0
1% 8.7 45.1 57.5 85.0 22.4 77.1 87.8 98.1 72.8 99.7 99.9 100.0 99.9 100.0 100.0 100.0

1.0 5% 28.0 66.0 75.4 91.6 49.1 89.7 95.2 99.6 90.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
10% 42.2 75.0 82.5 94.2 63.4 93.9 97.0 99.7 95.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

eij ∼ (χ2

2
− 2)/2

1% 1.2 1.2 1.1 0.9 1.2 1.1 1.1 0.9 1.2 1.1 1.1 0.9 1.1 0.1 0.9 1.0
0 5% 4.6 4.7 4.8 5.0 5.7 5.3 5.1 5.0 5.3 5.2 5.3 5.1 5.1 4.9 5.0 5.1

10% 9.5 9.5 9.6 10.3 10.4 10.3 10.2 10.1 10.3 10.3 10.2 10.2 10.2 9.9 10.2 9.9
1% 2.0 7.0 10.1 29.3 3.0 12.9 20.2 55.5 7.8 38.6 55.7 95.4 25.5 90.2 98.1 100.0

0.2 5% 9.1 19.9 25.1 48.6 12.1 31.4 41.2 74.3 22.7 63.2 77.5 98.5 50.9 97.1 99.6 100.0
10% 16.8 30.3 36.8 59.3 20.9 44.3 54.3 82.2 34.9 75.0 86.1 99.1 64.5 98.4 99.8 100.0
1% 4.2 22.0 31.2 64.5 8.9 44.6 58.1 91.1 31.3 90.9 97.1 100.0 87.1 100.0 100.0 100.0

0.5 5% 15.7 43.3 52.0 78.9 26.5 66.9 78.3 96.2 58.0 97.1 99.2 100.0 96.2 100.0 100.0 100.0
10% 27.0 55.2 63.1 84.4 40.3 76.7 85.3 97.8 71.4 98.7 99.6 100.0 98.4 100.0 100.0 100.0
1% 8.8 44.8 57.9 84.7 22.6 77.2 87.8 98.7 73.5 99.7 100.0 100.0 99.8 100.0 100.0 100.0

1.0 5% 27.4 65.8 75.2 91.9 48.9 89.8 94.8 99.4 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10% 42.1 75.0 82.4 94.3 63.3 93.7 97.0 99.7 95.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 2 Rejection rates (%) for the nonparametric bootstrap U-test in balanced designs with bi ∼ N (0, σ2
b ) for different distributions of the conditional

errors.

k = 5 k = 10 k = 30 k = 100

σ2

b
α m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10 m = 2 m = 4 m = 5 m = 10

eij ∼ N (0, 1)
1% 0.5 1.0 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.1 1.3 1.0 1.1 1.1

0 5% 4.2 4.5 4.7 5.3 4.6 4.9 5.1 5.2 5.1 5.3 5.2 5.1 5.4 4.9 5.2 5.1
10% 9.9 9.8 10.0 10.4 9.7 9.8 10.0 10.1 10.2 10.2 10.3 10.0 10.4 10.0 9.8 9.9
1% 1.0 6.8 10.3 31.5 3.0 13.1 20.2 55.1 7.5 39.1 56.2 94.9 25.5 90.4 97.7 100.0

0.2 5% 8.2 20.5 26.2 49.8 11.6 32.3 41.0 72.8 22.8 63.7 77.4 98.4 50.9 97.1 99.5 100.0
10% 16.9 32.2 37.3 60.5 21.3 45.1 54.0 81.0 35.0 75.1 86.2 99.2 65.4 98.4 99.7 100.0
1% 1.8 22.0 31.4 64.6 8.0 44.6 59.5 91.0 31.4 91.0 97.1 100.0 87.1 99.9 100.0 100.0

0.5 5% 13.5 42.9 51.6 78.8 25.8 67.0 77.9 96.2 59.3 97.0 99.3 100.0 96.3 100.0 100.0 100.0
0% 27.7 55.4 62.6 84.2 39.7 77.2 85.5 97.8 71.3 98.3 99.8 100.0 98.5 100.0 100.00 100.0
1% 4.5 44.2 57.9 84.9 21.1 77.1 87.3 98.6 72.6 99.6 99.9 100.0 99.9 100.0 100.0 100.0

1.0 5% 25.2 65.6 75.2 91.7 48.3 90.0 94.5 99.7 90.5 99.9 100.0 100.0 100.0 100.0 100.0 100.0
10% 40.0 76.0 82.3 94.1 62.9 93.9 96.7 99.7 95.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

eij ∼ t5 ×

√
3/5

1% 0.4 0.9 1.1 1.2 0.7 1.1 1.1 0.9 1.3 1.2 1.3 1.1 1.2 1.0 1.2 1.2
0 5% 4.0 4.3 5.4 5.5 4.8 5.6 5.2 5.0 5.3 4.5 5.6 4.9 5.2 4.7 5.3 5.2

10% 8.7 9.3 10.1 10.4 9.6 10.9 9.8 10.4 10.4 9.9 10.6 10.3 10.4 9.5 10.4 10.2
1% 1.1 8.3 12.6 32.2 3.0 14.9 22.0 56.7 7.6 39.8 57.5 95.1 25.8 91.0 98.0 100.0

0.2 5% 7.8 23.0 27.4 50.9 13.0 34.0 43.3 74.4 23.7 64.2 78.5 98.9 51.5 97.3 99.7 100.0
10% 16.7 34.4 38.6 61.4 23.1 46.3 55.2 83.0 36.5 75.6 86.1 99.6 66.9 98.8 99.9 100.0
1% 2.5 24.2 33.1 66.2 9.4 48.1 62.6 91.1 33.5 92.1 97.2 100.0 87.6 100.0 100.0 100.0

0.5 5% 16.8 44.6 54.2 79.4 29.0 69.7 79.8 97.0 60.7 98.0 99.7 100.0 96.8 100.0 100.0 100.0
10% 29.7 56.7 65.2 85.0 44.1 79.8 86.6 98.3 73.6 99.0 100.0 100.0 98.9 100.0 100.0 100.0
1% 5.5 47.1 60.0 85.8 22.8 78.9 87.6 98.7 73.3 99.8 100.0 100.0 100.0 100.0 100.0 100.0

1.0 5% 26.9 67.7 76.8 92.0 50.9 90.5 94.7 99.7 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10% 42.3 77.4 83.3 94.4 64.3 94.1 97.0 99.8 95.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0

eij ∼ (χ2

2
− 2)/2

1% 0.3 1.0 1.0 0.9 0.7 0.9 1.0 1.2 1.0 1.0 1.1 1.0 1.09 1.1 1.1 0.9
0 5% 4.4 4.7 4.7 4.7 4.6 5.1 4.7 4.8 4.8 5.1 4.9 4.9 4.66 5.4 5.3 4.9

10% 9.2 9.3 9.5 9.5 9.6 10.2 9.3 9.8 10.5 10.3 9.8 9.9 10.40 9.7 10.3 9.9
1% 1.3 9.3 13.2 34.3 4.0 16.4 23.7 59.0 8.2 41.0 58.7 95.3 26.0 90.5 98.9 100.0

0.2 5% 9.9 24.9 29.9 52.6 14.4 36.3 44.9 76.2 23.9 65.8 78.9 98.9 51.7 97.1 99.8 100.0
10% 18.7 37.4 42.2 62.2 23.8 48.7 57.9 83.3 37.0 76.5 86.7 99.6 67.2 98.4 100.0 100.0
1% 3.3 27.6 36.1 66.8 11.6 49.1 62.9 91.3 35.5 93.9 98.3 100.0 87.7 100.0 100.0 100.0

0.5 5% 18.7 46.2 56.3 80.0 31.2 71.0 80.2 97.0 62.3 98.7 99.9 100.0 97.2 100.00 100.0 100.0
10% 32.5 58.9 66.1 85.8 45.5 80.4 87.3 98.8 75.8 99.4 100.0 100.0 99.0 100.00 100.0 100.0
1% 7.6 49.4 61.3 86.3 25.6 79.7 87.9 98.8 76.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1.0 5% 30.1 69.4 77.5 92.8 52.2 92.0 95.0 99.9 92.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10% 46.5 77.9 84.0 94.9 66.9 95.3 97.2 100.0 96.1 100.0 100.0 100.00 100.0 100.0 100.0 100.0
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Table 3 Percentage of conceptions to services for sucessive samples.

Bulls
1 2 3 4 5 6

46 70 52 47 42 35
31 59 44 21 64 68
37 57 70 50 59
62 40 46 69 38
30 67 14 77 57

64 81 76
70 87 57

29
60

Table 4 Hypothetical data.

Treatment
1 2 3 4 5

8.05 6.66 8.51 11.10 6.03
9.73 7.32 8.03 7.32 9.11
8.63 8.45 8.52 7.94 6.15
8.25 7.56 6.89
8.31 6.61

7.05

4
6

8
10

12
14

Treatment

y

1 2 3 4 5

n=5 n=3 n=4 n=3 n=6

Figure 1 Mean by treatment± standard error of the mean.
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