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Abstract: We consider parametric joint modelling of longitudinal measurements

and survival times, motivated by a study conducted at the Heart Institute (Incor),

São Paulo, Brazil, with the objective of evaluating the impact of B-type Natriuretic

Peptide (BNP) collected at different instants on the survival of patients with con-

gestive heart failure (CHF). We employ a linear mixed model for the longitudinal

response and a Birnbaum-Saunders model for the survival times allowing the inclu-

sion of subjects without longitudinal observations. We derive maximum likelihood
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estimators of the model parameters and consider their statistical properties. We also

conduct a simulation study to compare the true survival probabilities with dynamic

predictions obtained from the fit of the proposed joint model and to evaluate the

robustness of the method for estimating the parameters with respect to misspecifi-

cation of the parametric distribution of the survival response. Finally, the proposed

joint model is applied to the cohort of 1609 patients with CHF, of which 1080 have

no BNP measurements. The parameter estimates and their standard errors obtained

via i) the traditional approach, where only individuals with at least one measure-

ment of the longitudinal response are included and ii) the proposed approach, which

includes survival information from all individuals are compared with those obtained

via marginal (longitudinal and survival) models. The results suggest that an increase

in the number of subjects with measurements of the longitudinal response lead to an

increase in the precision of parameter estimates, including those related to the asso-

ciation between the longitudinal and survival responses as well as an improvement in

the quality of survival predictions.

Key words: Birnbaum-Saunders model; linear mixed model; repeated measure-

ments

1 Introduction

In many studies, repeated measurements of one or more variables (longitudinal re-

sponses), time until the occurrence of one or more events (survival responses) and

additional observations on explanatory variables are collected on a set of subjects in
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order to characterize their relationship. This is the case of a study conducted at the

Heart Institute (Incor), São Paulo, Brazil, where data related to i) longitudinal mea-

surements of B-type Natriuretic Peptide (BNP) levels (pg/mL), ii) the time between

admission to the study and the date of death or censoring (in months) as well as

iii) the values of basal covariates were collected on patients with Congestive Heart

Failure (CHF) to identify prognostic factors for the time to death.

In practical situations, data with this nature are often analyzed considering the lon-

gitudinal and survival responses separately as noted in Rizopoulos (2010), among

others. However, there are two scenarios in which it is more appropriate to perform a

joint modelling: when interest is to analyze the behavior of the longitudinal response,

considering a possible dependence of time to dropout, potentially informative, treated

as the survival response [Hogan and Laird (1997ab), Diggle, Farewell and Henderson

(2007)] and when interest is to analyze the time-to-event considering the effect of

the longitudinal response measurements [Wulfsohn and Tsiatis (1997), Henderson,

Diggle, Dobson (2000), Rizopoulos (2010), Crowther, Abrams and Lambert (2012)].

Different authors suggest that in these cases joint modelling can facilitate the under-

standing of the mechanisms underlying the phenomenon under investigation and can

improve the properties of parameter estimators, being an appealing alternative that

has attracted the attention of recent research [Tsiatis and Davidian (2004), Yu et al.

(2004), Diggle, Sousa and Chetwynd (2008), Wu et al. (2012), Rizopoulos (2012a) or

Gould et al. (2014)].

A naive approach when the interest lies exclusively in the survival component, is to

consider the longitudinal response as a time-dependent covariate in the Cox model,

which requires that the time-dependent covariate values be known exactly at each
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instant of failure and further, that the time-dependent covariates are external, as

described by Kalbfleisch and Prentice (2002). This approach may not be appropriate

because the longitudinal observations are usually measured intermittently and sub-

ject to errors. Additionally, it may be influenced by the occurrence of the event under

investigation [Hu, Tsiatis and Davidian (1998), Greene and Cai (2004), Rizopoulos

(2010)]. An alternative is the two-stage approach, where a model for longitudinal

response is initially fitted to the data and, using the values of the first stage esti-

mated individual longitudinal, are subsequently incorporated as a time-dependent

covariate in the Cox model [Tsiatis, DeGruttola and Wulfsohn (1995), Yu, Lin and

Taylor (2008), Albert and Shih (2010)]. Despite the advantage of its simple compu-

tational implementation, this method has the limitation of not considering the effect

of the survival response on the modelling of the longitudinal data. Another alter-

native is to estimate the model parameters by maximizing the likelihood function

corresponding to the joint distribution of longitudinal and survival responses [Wulf-

sohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000), Hsieh, Tseng and

Wang (2006), Crowther, Abrams and Lambert (2012), Rizopoulos (2010, 2012a)].

Although the computational implementation of this approach is more complex, it has

the advantage of using longitudinal and survival data simultaneously in the process

of estimating model parameters. This approach is adopted in this paper.

In this context, most authors consider the Cox model to describe survival times

[see Wulfsohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000), Rizopoulos

(2010, 2012a), among others] although log-normal and Weibull parametric models

have also been considered for such purposes in Schluchter (1992), Pawitan and Self

(1993), DeGruttola and Tu (1994). Linear mixed models are commonly employed to

represent the longitudinal component. The usual methods, however, only use data for
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subjects that have at least one measurement of the longitudinal response. In studies

where such measurements are not recorded for some participants, the corresponding

estimates may be biased or less efficient.

We propose a joint modelling methodology that incorporates the survival data of

subjects without measurements of the longitudinal response using linear mixed models

to describe such response and Birnbaum-Saunders models to describe the survival

response. Birnbaum-Saunders distributions seem appropriate in the context of CHF

because in chronic cardiac diseases, a cumulative damage caused by several risk factors

may lead to a degradation and to a consequent failure, an inherent feature of such

models, as described in Galea, Leiva and Paula (2004), Leiva et al. (2007), Barros,

Paula and Leiva (2008), Balakrishnan et al. (2009) or Leiva et al. (2011).

In Section 2, we present the model and discuss inferential aspects including the dy-

namic prediction of the survival probability based on the available data up to the

instant when we want to make the prediction. In Section 3, we summarize the re-

sults of a simulation study designed to compare the true survival probabilities with

dynamic predictions obtained from the fitted model and to evaluate the robustness

of the method for estimating model parameters with respect to the misspecification

of the time-to-event distribution. In Section 4 we analyze the data that motivated

our research. We conclude with a discussion and suggestions for future research in

Section 5.
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2 Methodology

Consider a set of n subjects followed over the time interval [0, τ), τ > 0, and suppose

that for the i-th subject (i = 1, . . . , n) we observe: i) a sequence of measurements of a

longitudinal response yij = {yi(tij), j = 1, . . . , ni} summarized in yi = (yi1, . . . , yini
)>

and occurring at times tij represented in ti = (ti1, . . . , tini
)>, ii) a record of the time

between admission to the study and the occurrence of the event of interest (Ti) or

censoring (Ci), summarized in Zi = min(Ti, Ci) and δi = I(Ti ≤ Ci), where I(·)

denotes the indicator function and iii ) values of ph explanatory variables expressed

as xhi(t) = [1, xhi1, . . . , xhiah , xhiah+1(t), . . . , xhiph(t)]>, the first ah of which are inde-

pendent of time. The subscript h = 1, 2 indicates whether they correspond to the

longitudinal or to the survival components, respectively.

The longitudinal response for the i-th subject at time t ≥ 0 is modelled as

yi(t) = mi(t) + ei(t) (2.1)

where mi(t) = µ1i(t) + w1i(t) denotes the true value of the longitudinal response,

specified as a function of a mean response µ1i(t) = x1i(t)
>β1, with β1 representing

the fixed effects corresponding to p1 explanatory variables in x1i(t) and the process

w1i(t), characterized in terms of a specific time invariant random intercept for the

i-th subject, b0i ∼ N(0, σ2
0) and ei(t) ∼ N(0, σ2

e) denotes the measurement error,

considered independent of b0i, for all t ≥ 0.

We assume that the survival or censoring time observed for the i-th subject follows
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the log-linear Birnbaum-Saunders regression model

Vi = log(Zi) = x>2iβ2 + εi, (2.2)

where β2 contains the fixed effects corresponding to p2 explanatory variables in x2i

and the model errors εi ∼ SinhN(α, 0, 2) with SinhN(α, ψ, σ) denoting the Normal

hyperbolic sine distribution with α, ψ and σ representing the shape, location and

scale parameters, respectively. The associated density and survival functions are,

respectively

fV (v) =

(
2

ασ
√

2π

)
cosh

(
v − ψ
σ

)
exp

{
− 2

α2
sinh2

(
v − ψ
σ

)}
, v ∈ <. (2.3)

and

SV (v) = 1− Φ

[
2

α
sinh

(
v − ψ
σ

)]
, v ∈ <. (2.4)

For details on the relation between the Birnbaum-Saunders and the SinhN distribu-

tions, see Leiva et al. (2007).

In this set-up we develop the likelihood function corresponding to the joint distribu-

tion of longitudinal and survival responses. The random effects b0i (i = 1, . . . , n) take

into account both the association between the longitudinal and survival responses and

the correlation between the longitudinal observations. Considering that the censoring

mechanism and the observation times of the longitudinal response are not informa-

tive and assuming independence between survival and censoring times [see Rizopoulos
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(2012a)], the joint likelihood function is

L(θ) =
n∏
i=1

[∫
p(vi, δi|b0i;θz,β1)

[ ni∏
j=1

p(yi(tij)|b0i;θy)
]
p(b0i; θb)db0i

]ωi

× [p(vi, δi;θz0)]
(1−ωi), (2.5)

where ωi = 1 if the i-th subject has at least one observation of the longitudinal

response and ωi = 0, otherwise, θ = (θ>z ,θ
>
y , θb)

>, with θz = (θ>z0, γ)> and θz0 =

(α,β>2 )> denoting the vectors containing the parameters for the survival responses for

subsets of subjects that have or have not measurements of the longitudinal outcome,

respectively, θy = (β>1 , σ
2
e)
> denotes the vector containing the longitudinal response

parameters and θb = σ2
0. Additionally, letting Mi(t) = {mi(u), 0 ≤ u ≤ t} denote the

history of the true unobserved longitudinal process up to time t, we assume that

p(vi, δi|b0i;θz,β1) = [fi(vi|Mi(vi);θz,β1)]
δi [Si(vi|Mi(vi);θz,β1)]

(1−δi), (2.6)

where fi(·) and Si(·) respectively denote the probability density and survival functions

of the SinhN distribution with shape parameter α > 0, scale parameter σ = 2 and

location parameter

ψγi = x>2iβ2 + γmi(vi) = x>2iβ2 + γ[x1i(vi)
>β1 + b0i], (2.7)

p(yi(tij)|b0i;θy) and p(b0i; θb) representing Normal probability density functions for the

longitudinal response and the random effects, respectively. The parameter γ measures

the association between the longitudinal and survival processes. Furthermore, we

assume that

p(vi, δi;θz0) = [fi(vi;θz0)]
δi [Si(vi;θz0)]

(1−δi), (2.8)
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where fi(·) and Si(·) are as in (2.6) with location parameter ψ0i = x>2iβ2.

Explicit expressions for the terms composing the likelihood function (2.5) are given

in the Appendix.

Maximum likelihood (ML) estimates of the model parameters are obtained by direct

maximization of (2.5) using a quasi-Newton algorithm implemented via the PORT

routines in the R optimizer nlminb [see Gay (1990)], one of the algorithms employed

in the JM library (Rizopoulos, 2012b). Numerical integration is required because

the integrals with respect to the random effects b0i, i = 1, . . . , n in (2.5) have no

analytical solution. For such purposes, we use Gauss-Hermite quadrature methods as

suggested by Wulfsohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000) or

Rizopoulos (2010), among others, for situations where the random effects vector for

each subject has low dimension. In particular, this is the default method employed in

the JM library (Rizopoulos, 2012b), except in cases where a large number of random

effects per subject is available. In such cases, Rizopoulos, Verbeke and Lesaffre (2009)

recommend Laplace approximations. Explicit expressions for the elements of the ML

estimating equations U(θ) = ∂(logL(θ)/∂θ = 0 may be obtained in Franco-Soto

(2014, Appendix D).

Confidence intervals and tests of hypotheses about the parameters of interest are

based on empirical large sample results as suggested by Rizopoulos (2012a).

An additional interest is to predict the survival probabilities for a new subject with

longitudinal measurements Yi(t) = {yi(s); 0 ≤ s ≤ t} and values of baseline covariates

contained in the vector xi based on the fit of a joint model to a random sample Dn =

{Zi, δi,yi; i = 1, . . . , n}. In other words, interest lies in the conditional probability
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of surviving time u > t, given survival up to time t, πi(u|t) = P (Ti ≥ u|Ti >

t, Yi(t),xi, Dn;θ). For such purpose we consider the estimator proposed by Rizopoulos

(2011), namely

π̃i(u|t) =
Si{u|Mi(u, b̃

(t)

i , θ̂); θ̂}

Si{t|Mi(t, b̃
(t)

i , θ̂); θ̂}
, (2.9)

where θ̂ corresponds the maximum likelihood estimates of θ and b̃
(t)

i denotes the

mode of log p(b|Ti > t, Yi(t); θ̂), where

p(b|Ti > t, Yi(t); θ̂) =
P (Ti > t, Yi(t), b; θ̂)

P (Ti > t, Yi(t); θ̂)

=
P (Ti > t|b; θ̂)p(Yi(t)|b; θ̂)p(b; θ̂)∫

P (Ti > t|bi; θ̂)p(Yi(t)|bi; θ̂)p(bi; θ̂)dbi
,

P{Ti > t|bi; θ̂} = Si{t|Mi(t, bi; θ̂); θ̂} is the survival function and

p(Yi(t)|bi; θ̂) =

ni(t)∏
j=1

p[yi(tij)|bi; θ̂],

with ni(t) denoting the number of longitudinal measurements of the i-th unit up to

time t. The performance of (2.9) for finite samples depends on the quality of the ML

estimates of θ and on the prediction of the random effects bi.

The methodology proposed in this paper was fully implemented in R (R Development

Core Team, 2013). The codes may be obtained from the authors.

3 Simulation

We conducted an extensive simulation study to compare the true survival probabilities

with dynamic predictions based on the longitudinal data collected up to different
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instants and to evaluate the robustness of the method for estimating the parameters

of the proposed joint model with respect to the misspecification of the parametric

distribution of the survival response. Additionally, we evaluated the performance of

estimators in terms of variance and mean squared errors when the fitted model was

the same as the one used to generate the data.

The longitudinal response for the i-th subject at time t ≥ 0, yi(t) was generated

by (2.1) under Normal distributions for both the random effects and error terms

considering observation time and dichotomized CHF etiology (Chagas disease = 0

or Other cardiomyopathies = 1) as covariates. The survival response was generated

either by a log-linear Birnbaum-Saunders regression model (2.2) or by a log-linear

Weibull regression model including only CHF etiology as a covariate. To predict the

survival probabilities, we considered only individuals with at least one measurement

of the longitudinal response, i.e., those for which ωi = 1 in (2.5). For the log-

linear Weibull survival model, the functions fi(·) and Si(·) in (2.6) correspond to

the probability density and survival functions of the Extreme Value distribution [see

Kalbfleisch and Prentice (2002)] with scale parameter ς > 0 and location parameter

(2.7). In the Birnbaum-Saunders case, the location parameter can be expressed as

ψγi = β20 + β21CHFi + γ[β10 + β11vi + β12CHFi + b0i] (3.1)

and the variance components are σ2
0 and σ2

e .

The parameter values were taken as the estimates obtained by fitting the joint models

to the 529 patients with at least one longitudinal observation in the Incor data.

First we generated the longitudinal observations for each patient and then considered



12 Franco-Soto et al.

the corresponding mean observation as well as the CHF etiology covariate to generate

the survival data, inducing an association between the two types of response. To

mimic the set-up in the Incor data, the survival times were right censored either by

specifying a Type I censoring scheme with a maximum follow-up time of τ = 180

or by randomly selecting censoring times from a Uniform distribution in the [0, τ ]

interval.

Thirty two different scenarios resulting for the combination of the 2 time-to-event dis-

tributions (Birnbaum-Saunders or Weibull), 4 sample sizes (n = 100, 250, 500, 1000)

and 4 censoring percentages (pc = 0%, 25%, 50%, 75%) were considered. For each sce-

nario we generated 500 samples and, for each sample, we randomly selected 95% of

the subjects to fit both the joint models (the first with a Birnbaum-Saunders time-to-

event component and the second with a Weibull component); the remaining 5% were

considered to estimate the conditional survival probabilities based on the estimator

π̃i(t + ∆t|t) in (2.9), as a function of the longitudinal response observation times

t = 0, 24, 48, 72, 96 and the time increments ∆t = 12, 24, 36. The true probabilities

πi(t+∆t|t) were computed using the true parameter and the true (generated) random

effects values. The comparison was carried out in terms of the absolute differences

between estimated conditional survival probabilities and their true values. For the

scenarios where the survival model considered to generate the data was the same as

the one used to fit the data, the performance of estimators was evaluated via the bias

(θ̂ − θ) with θ̂ = 500−1
∑500

l=1 θ̂l, the relative bias [(θ̂ − θ)/θ] as well as via the square

root of the mean squared error (MSE), [500−1
∑500

l=1(θ̂l − θ)2]1/2.

For each scenario, we constructed histograms for such differences based on the 500

samples and computed the corresponding 95-th percentile for each combination of t
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and ∆t.

We show the results obtained for a sample of size n = 1000. Results for the remaining

scenarios may be obtained in

http://www.ime.usp.br/∼acarlos/Diana/ApendiceF.pdf.

In Table 1 we present these values for the case where the data were generated and

fitted according to a Birnbaum-Saunders model, no random censoring and 7% Type

I censoring. The number of differences corresponds to the available longitudinal

measurements for the 50 subjects selected for prediction in the 500 samples.

Table 1: 95-th percentile and number of differences between true and estimated sur-
vival probabilities, Birnbaum-Saunders generated and fitted model, n = 1000, Type I
censoring = 7%, random censoring = 0%

95-th percentile Number
∆t = 12 ∆t = 24 ∆t = 36 of differences

t = 0 0.25 0.34 0.35 25000
t = 24 0.18 0.24 0.27 18354
t = 48 0.12 0.18 0.21 11736
t = 72 0.09 0.15 0.18 7761
t = 96 0.08 0.12 0.15 5364

The results indicate that for a fixed time t, the differences between the true and

estimated probabilities increase as ∆t increases. This is justified by the increasing

distance between the time up to which longitudinal data are available and the instant

for which the prediction is made. Furthermore, for ∆t fixed, there is a decrease in

these differences as t increases. A possible explanation is that availability of more
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longitudinal measurements for each subject improves the predictions of the random ef-

fects involved in the proposed estimator. To verify this, we computed 95-th percentile

of the empirical distribution (based on the 500 generated samples) of the differences

between the true and predicted random effects. The results for the scenario described

above are displayed in Table 2 and confirm our conjecture.

Table 2: 95-th percentile and number of differences between true and estimated random
effects, Birnbaum-Saunders generated and fitted model, n = 1000, Type I censoring
= 7%, random censoring = 0%

95-th percentile Number of differences
t = 0 1.33 25000
t = 24 0.99 18354
t = 48 0.84 11736
t = 72 0.76 7761
t = 96 0.71 5364

We also computed the mean and median of the maximum (among patients) differences

between the true and estimated survival probabilities for the 500 generated samples.

The results, displayed in Table 3 also confirm our previous conclusions.

Table 3: Mean and median of the maximum (among patients) differences between
the true and estimated survival probabilities, Birnbaum-Saunders generated and fitted
model, n = 1000, Type I censoring = 7%, random censoring = 0%

∆t = 12 ∆t = 24 ∆t = 36
Mean Median Mean Median Mean Median

t = 0 0.30 0.28 0.41 0.37 0.43 0.40
t = 24 0.21 0.19 0.29 0.26 0.33 0.30
t = 48 0.14 0.12 0.20 0.18 0.24 0.22
t = 72 0.11 0.09 0.16 0.14 0.19 0.17
t = 96 0.08 0.07 0.13 0.11 0.16 0.14
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Moreover, regarding the dynamic prediction of the conditional survival probabilities,

the methods for estimating model parameters for Birnbaum-Saunders and the Weibull

models were robust with respect to the wrong specification of the survival response

distribution, more evidently when more subjects have a larger number of longitudinal

measurements. However, as expected, better results were obtained when the fitted

model was the same as the one used to generate the survival data. In these cases,

the bias, the relative bias and the square root of the MSE of the parameter estimates

decrease as the sample size increases or the percentage of censoring decreases. In

Table 4 we present the average mean and median of the maximum (among patients)

differences between the true and estimated survival probabilities for the 500 generated

samples for all combinations of t and ∆t values, weighted by the number of maxima

in each case.

Table 4: Weighted mean of mean and median of the maximum (among patients)
differences between the true and estimated survival probabilities, Birnbaum-Saunders
generated and Birnbaum-Saunders or Weibull fitted models

Percent BS generated / BS fitted BS generated / Weibull fitted
n censored Mean Median Mean Median

0% 0.22 0.20 0.25 0.24
1000 25% 0.20 0.18 0.22 0.21

50% 0.23 0.23 0.26 0.26
75% 0.50 0.49 0.37 0.37

0% 0.22 0.20 0.21 0.20
500 25% 0.19 0.17 0.19 0.18

50% 0.20 0.20 0.22 0.22
75% 0.42 0.41 0.32 0.32

0% 0.19 0.17 0.18 0.16
250 25% 0.16 0.14 0.16 0.15

50% 0.18 0.17 0.19 0.18
75% 0.35 0.34 0.28 0.28

0% 0.16 0.13 0.14 0.12
100 25% 0.13 0.11 0.14 0.12

50% 0.14 0.13 0.15 0.14
75% 0.26 0.25 0.23 0.23
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In Table 5, we present the bias, relative bias and square root of the MSE for the case

where data were generated from a Birnbaum-Saunders model, n = 1000, no random

censoring, 7% Type I censoring time and were also analyzed under a Birnbaum-

Saunders model.

Table 5: Bias, relative bias and square root of the MSE of estimators for Birnbaum-
Saunders generated and fitted model, n = 1000, Type I censoring = 7%, random
censoring = 0%

True Simulation Relative Square root
Parameter value mean Bias bias of MSE

log(α) -0.460 -0.396 0.064 0.140 0.104
β20 6.140 5.480 -0.660 -0.108 0.928
β21 0.100 0.479 0.379 3.792 0.561
γ -0.460 -0.436 0.024 0.053 0.065
β10 5.800 5.670 -0.130 -0.022 0.218
β11 0.010 0.009 -0.001 -0.127 0.002
β12 -1.100 -1.073 0.027 0.024 0.183
log(σ0) 0.450 0.382 -0.068 -0.152 0.091
log(σe) -0.320 -0.276 0.045 0.139 0.061

Comparing the results from the different scenarios, we observed that the longitudinal

component parameter estimates are more stable than those associated to the survival

component which have a poor performance for small (n = 100) sample sizes. In

summary, we conclude that the performance of the proposed model is better when

i) the survival model used to generate and fit the data is the same; ii) the sample

size is larger and iii) the right censoring is smaller. In particular when the right

censoring percentage is large, the parameter estimates have a poor performance and

the prediction of the random effects are not as good as those obtained when more

longitudinal measurements are available. This leads to a decrease in the quality of the

prediction of the dynamic survival probabilities. Therefore the Birnbaum-Saunders
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joint model is recommended for situations where the underlying rationale for such

model is reasonable, the sample size is large and there is little right censoring.

4 Analysis of the Incor data

The proposed joint model was applied to the cohort of 1609 patients with CHF, of

which 1080 have no BNP measurements.

An initial analysis involved a selection of “acceptable” models for the longitudinal

and for the survival data fitted separately via standard techniques as suggested by

Wu et al. (2012). The 529 patients with at least one longitudinal observation were

considered for the former and the complete set of 1609 patients was used for the

latter. In this process, each of 24 covariates were fitted individually along with CHF

etiology (as suggested by the physicians) and the significant ones were subsequently

fitted simultaneously to either the longitudinal or the survival component. The sep-

arate longitudinal and survival component models were sequentially refitted with the

removal of the non-significant variables or grouping levels with non-significant effects

in each step. The (significant) variables in the last step were chosen to compose the

joint model. Observation time, CHF etiology and left atrium diameter were used as

covariates for the longitudinal component of the model whereas CHF etiology and left

ventricular ejection fraction were considered as covariates for the survival response.

The longitudinal component was modelled via (2.1) with

x1i(t) = [1, x1i1(t), x1i2, x1i3, x1i4, x1i5, x1i6, x1i7, x1i8]
>,
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where x1i1(t) denotes the time at which the response was observed, x1i2, x1i3, x1i4,

x1i5, x1i6 are dummy variables associated to the categories of CHF etiology (dilated,

ischaemic, hypertensive, alcoholic or other cardiopathies), x1i7, x1i8 are dummy vari-

ables associated to the categories of left atrium diameter (augmented or missing) and

w1i(t) consisting of a random intercept b0i ∼ N(0, σ2
0).

The survival component was modelled via (2.2) with

x2i = [1, x2i1, x2i2, x2i3, x2i4, x2i5, x2i6, x2i7, x2i8]
>,

where x2i1, x2i2, x2i3, x2i4, x2i5 are dummy variables associated to the categories of

CHF etiology, x2i6, x2i7, x2i8 are dummy variables associated to the categories of left

ventricular ejection fraction (very low, low or missing) and εi ∼ SinhN(α, 0, 2).

Finally, the association between both components was imposed by (2.7).

Maximum likelihood parameter estimates and their standard errors obtained via i)

the proposed joint model approach, which accommodates survival information of all

individuals [likelihood given by (2.5)] and ii) the traditional joint model approach,

where only individuals with at least one measurement of the longitudinal response

are included [likelihood given by the first component of (2.5)] were compared with

those obtained via marginal (longitudinal and survival) models in each set-up. The

results are summarized in Tables 6 - 9.

In case i), although standard errors are slightly smaller under the joint model, no

relevant differences between the joint and marginal models longitudinal parameter

estimates were detected with the exception of the time coefficient for which non-

significance is more evident under the former model (p = 0.1100 versus p = 0.0586).
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Estimates of the survival parameters and corresponding standard errors are compara-

ble for both models and the association parameter estimate is positive and marginally

significant (p = 0.0609).

In case ii), the standard errors of the longitudinal parameter estimates are consistently

smaller under the joint model, enhancing the significance of the time coefficient (p <

0.0001 versus p = 0.0586). Survival parameter estimates and corresponding standard

errors obtained under the marginal and joint models are relatively different, leading

to changes in the significance in some cases. The association parameter estimate is

negative and highly significant (p < 0.0001).
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5 Discussion

We propose a methodology for joint modelling of longitudinal and survival data,

which differs from the methods proposed in the literature by considering a Birnbaum-

Saunders model to describe the survival response and incorporating the survival in-

formation of subjects without observations of the longitudinal response.

The results of the simulation and practical application to the Incor data when only

individuals with at least one measurement of the longitudinal response are included

in the joint model, suggest that the inclusion of longitudinal measurements of an

appropriate response may be employed to improve the analysis of survival data. In

particular, an increase in the number of subjects with measurements of the longitu-

dinal response can improve the evidence of the association between the longitudinal

and survival responses and can lead to an increase in the precision of parameter es-

timates. In addition, an increase in the number of observations of the longitudinal

response collected in a subject can improve the quality of the prediction of survival.

The results were not so evident in the practical application to the Incor data when

survival information of all individuals is considered in the joint model, probably be-

cause of the observational nature of the study, carried out during 8 years with no

fixed protocol for data collection. The large proportion (67%) of patients with no

measurements of the longitudinal response may have masked the association between

the two components of the joint model.

Future research is definitely needed before this approach can be routinely employed

in practical problems. In particular, we mention diagnostic techniques and simulation

studies to determine the effect of the proportion of units with missing longitudinal
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data on the parameter estimates with special attention to the one relating the asso-

ciation between the longitudinal and survival processes.
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Appendix

Explicit expressions for the terms composing the likelihood function (2.5)

fi(vi|Mi(vi);θz,β1) =

(
1

α
√

2π

)
cosh

(
vi − ψγi

2

)
exp

{
− 2

α2
sinh2

(
vi − ψγi

2

)}

= exp

{
log[κi1(vi)]−

1

2

[
log(8π) + κ2i2(vi)

]}
,

Si(vi|Mi(vi);θz,β1) = 1− Φ

[
2

α
sinh

(
vi − ψγi

2

)]
= 1− Φ[κi2(vi)],

where

κi1(vi) =
2

α
cosh

(
vi − ψγi

2

)
and κi2(vi) =

2

α
sinh

(
vi − ψγi

2

)
,
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p(yi(tij)|b0i;θy) =
1

(2πσ2
e)

1/2
exp

{
− [yi(tij)−mi(tij)]

2

2σ2
e

}

=
1

(2πσ2
e)

1/2
exp
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− [yi(tij)− (x1i(tij)
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2

2σ2
e

}
,

p(b0i; θb) =
1

(2πσ2
0)1/2

exp

{
− b20i

2σ2
0

}
.

fi(vi;θz0) =

(
1

α
√

2π

)
cosh

(
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)
exp

{
− 2

α2
sinh2

(
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1
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[
log(8π) + ξ2i2(vi)

]}
,

and

Si(vi;θz0) = 1− Φ

[
2

α
sinh

(
vi − ψ0i

2

)]
= 1− Φ[ξi2(vi)],

where

ξi1(vi) =
2

α
cosh

(
vi − ψ0i

2

)
and ξi2(vi) =

2

α
sinh

(
vi − ψ0i

2

)
.

The Gauss-Hermite quadrature approximation of the logarithm of (2.5), namely,

l(θ) =
n∑
i=1

ωi log[p(vi, δi,yi;θ)] +
n∑
i=1

(1− ωi) log[p(vi, δi;θz0)]

=
n∑
i=1

ωi log

[∫
p(vi, δi|b0i;θz,β1)

{ ni∏
j=1

p[yi(tij)|b0i;θy]
}
p(b0i; θb)db0i

]

+
n∑
i=1

(1− ωi) log[p(vi, δi;θz0)],

is given by

l(θ) ≈
n∑
i=1

ωi log

[
Q∑
k=1

wk√
π
Aik(θ)Bik(θ)Cik(θ)

]
+

n∑
i=1

(1− ωi) log[Ei(θ)Fi(θ)],
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where

Aik(θ) = exp

{
δi

[
log(κik1(vi))−

1

2

(
log(8π) + κ2ik2(vi)

)]}
,

Bik(θ) = exp
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,
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with

κik1(vi) =
2

α
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(
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√
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,
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with sk denoting the k-th root of the Q-th order Hermite polynomial and wk the

corresponding weight,

Ei(θ) = exp

{
δi

[
log(ξi1(vi))−

1

2

(
log(8π) + ξ2i2(vi)

)]}
,

Fi(θ) = exp

{
(1− δi) log[1− Φ(ξi2(vi))]

}
.
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