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Abstract

The standard assumptions considered for fitting Linear Mixed Models (LMM) to lon-
gitudinal data include Gaussian distributions and homoskedastic conditional independence.
In many situations, however, these assumptions may not be adequate. From a frequentist
point of view, adopting different distributions along with more general within subjects co-
variance structure can be nontrivial because the integrals involved in the estimation process
do not allow analytical expressions. Under a Bayesian approach, however, the estimation
process can be facilitated by using posterior conditional distributions, which are generally
more treatable than posterior marginal distributions. We use diagnostic tools to show that
a Gaussian distribution for the random effects is not acceptable for fitting a LMM with
AR(1) structure for the within subjects covariance matrix to a dataset involving lactation of
dairy cows. We consider alternative Bayesian models adopting t distributions with different
degrees of freedom for the random effects. The results indicate that the fixed effects are
not considerably affected by the different models, but the corresponding standard errors are
smaller when heavier tailed distributions are adopted.

Keywords: linear mixed models, residual analysis, Bayesian analysis, Wood function, Incomplete Gamma,

milk production, dairy cow.

1 Introduction

The current standard approach to analyze repeated measurements data considers linear mixed

models (LMM) under the frequentist paradigm, for which the theory has been well documented

(Henderson, 1984; Laird & Ware, 1982; Verbeke & Lesaffre, 1987) and software is widely available

(Pinheiro et al., 2015). Usual adopted assumptions include Gaussian distributions for the random

effects as well as homoskedastic independent Gaussian random errors. In practice such assumptions

may not be adequate, leading to vulnerable inference. This is where diagnostic procedures play

an important role [Nobre & Singer (2007); Singer et al. (2017)].
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Under the frequentist paradigm, assuming other distributions for the random effects and/or

for the random errors may not be trivial, since the integrals involved in the estimation process of

the model parameters generally do not allow analytical expression. Under a Bayesian approach,

the estimation process can be facilitated by the possibility of using full conditional posterior

distributions that are generally more treatable than marginal posterior distributions.

Several authors have obtained full conditional posterior distributions for the model param-

eters assuming different distributions for the errors and/or for random effects. Seltzer (1993),

Wakefield et al. (1994) and Seltzer et al. (1996), consider t-distributions for the random effects

while Strandén & Gianola (1998) consider t-distributions for both errors and random effects.

Rosa et al. (2003), propose univariate and multivariate versions of the t, Slash and Contami-

nated Gaussian distributions for the random errors, and Rosa et al. (2004) extend the results to

random errors and random effects. Arellano-Valle et al. (2007) propose asymmetric Gaussian dis-

tributions for the random errors and random effects. Jara et al. (2008), assuming that the error

covariance matix is known, consider multivariate asymmetric elliptic distributions (which include

t-Symmetric, Asymmetric Gaussian, t and Gaussian distributions as special cases) for both er-

rors and random effects. In all these models, however, the authors consider that the within unit

observations are independent and homoskedastic.

In the literature there are few applications with models that flexibilize the distributions of

the errors and/or of the random effects and also use more general structures for the within unit

covariance matrix (Lin & Lee, 2007). Our purpose is to show how Bayesian methods can be easily

adapted for the analysis of longitudinal data for which the random effects do not follow Gaussian

distributions and for which a conditional independence homoskedastic model is not adequate.

In Section 2 we describe the study that motivated our approach. In Section 3 we present the

models under investigation. Results are detailed in Section 4. We consider a discussion in Section

5. Details are given in the Appendix.

2 The study

We considered data from a study conducted at the Universidad Nacional de Rosario, Argentina

(Garcia, Rapelli, Koegel, 2009, paper presented at the Workshop on Mixed Models, Tucuman,

Argentina, 2010) with the objective of investigating the effects of season and parity in milk pro-

duction. A total of 2250 weekly milk production records from 150 Dutch dairy cows was collected

along 15 weeks postpartum. For each cow, parity (first, second and third or more) and season

of calving (fall and spring) were collected. Different cows were observed at each combination of
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parity and season. The lactation curves according to season or parity are displayed in Figure 1.
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Figure 1: Lactation curves of Dutch dairy cows along 15 weeks according to season (A) and parity
(B).

3 The model

The most used function for modeling lactation curves is the incomplete gamma function (Figure

2) also known as Wood model (Wood, 1967) in the context of dairy science, expressed as

y(t) = φ1t
φ2 exp−φ3t (1)

where y(t) is the milk production at time t, φ1 > 0 is a parameter related to the initial milk

production, 0 < φ2 < 1 and 0 < φ3 < 1 respectively represent the rate of increase in milk

production before and after the peak production (occurring at t = φ2/φ3).

The specification of a multiplicative version of the Wood mixed model for the data under

investigation may be expressed as
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Figure 2: Wood’s function with parameters φ1 = 51, φ2 = 0.8 e φ3 = 0.1

yij|φij = φ1it
φ2i
ij exp (−φ3itij)eij, i = 1, . . . , n and j = 1, . . . ,mi (2)

φ1i = exp(β1 + β2Eij + β3P2ij + β4P3ij + β5EP2ij + β6EP3ij + b1i)

φ2i = β7 + β8Eij + β9P2ij + β10P3ij + β11EP2ij + β12EP3ij + b2i

φ3i = β13 + β14Eij + β15P2ij + β16P3ij + β17EP2ij + β18EP3ij + b3i

where

yij is the milk production of the i-th cow on the j-th week;

φ1i is the initial milk production parameter for the i-th cow (φ1i > 0);

φ2i denotes the rate of increase in production before peak production for the i-th cow (0 < φ2i < 1);

φ3i denotes the rate of decrease in production after peak production for the i-th cow (0 < φ3i < 1);

tij corresponds to the week where the j-th milk production for the i-th cow was observed;

Eij assumes the value 0 when j-th observation for the i-th occurs in the fall or 1 when it occurs

in spring;

Pkij: assumes the value 1 when j-th observation for the i-th occurs for cows at the k-th parity

level, k = 2, 3 and 0 otherwise, ;

EP2ij and EP3ij are Season × Parity interaction terms;

bi = (b1i, b2i, b3i)
> is a random effect vector related to the i-th cow;

eij is a random error related to the j-th milk production outcome of the i-th cow.

4



For the data under evaluation we have n = 150 and mi = m = 15; the model includes

q = 3 random effects. Under this formulation we are assuming that, at each season, the initial

production, the rate of increase (decrease) in production before (after) peak production depends

on parity and season.

Model (2) may be linearized, yielding

y∗ij|φij = φ∗1i + φ2it
∗
ij − φ3itij + e∗ij (3)

φ∗1i = β1 + β2Eij + β3P2ij + β4P3ij + β5EP2ij + β6EP3ij + b1i

φ2i = β7 + β8Eij + β9P2ij + β10P3ij + β11EP2ij + β12EP3ij + b2i

φ3i = β13 + β14Eij + β15P2ij + β16P3ij + β17EP2ij + β18EP3ij + b3i

where y∗ij = log(yij), φ
∗
1i = log(φ1i), t

∗
ij = log(tij) and e∗ij = log(eij).

Letting y∗i = [log(yi1), . . . , log(yimi
)]>, β = [β1, β2, . . . , β18]

>, v = [log(ti1), . . . , log(timi
)]>,

t = [−ti1, . . . ,−timi
]>, bi = [b1i, b2i, b3i]

>, e∗i = [log(ei1), . . . , log(eimi
)]>,

Wi =


1 Ei1 P2i1 P3i1 EP2i1 EP3i1

1 Ei2 P2i2 P3i2 EP2i2 EP3i2
...

...
...

...
...

...
1 Eimi

P2imi
P3imi

EP2imi
EP3imi

 ,
X∗i = [Wi ◦ 115 Wi ◦ v Wi ◦ t] ,

where A ◦ c indicates that each element of the i-th row of the matrix A is multiplied by the

corresponding element in the vector c,

Zi = [115 v t], G =

 σ2
b1

σb1b2 σb1b3
σb1b2 σ2

b2
σb2b3

σb1b3 σb2b3 σ2
b3

 and Ri = σ2Ci

where Ci is a ( mi ×mi) matrix with elements

cijj′ =

{
1 if j = j′,

ρ|j−j
′| if j 6= j′

, j, j′ = 1, . . . ,mi. (4)

we can write model (3) as

y∗i = X∗iβ + Zibi + e∗i , i = 1, . . . n (5)

where the random effects bi follow independent Gaussian distributions with mean vector 0 and

covariance matrix G, the e∗i follow independent Gaussian distributions with mean 0 and covariance

matrix Ri and bi and e∗i are all independent. According to this model, a first order autorregressive

structure [AR(1)] with correlation coefficient ρ is assumed for the conditional errors.
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Model (5) may be classified as a standard linear mixed model and may be expressed as a

two-stage hierarchical model (Laird & Ware, 1982) as

y∗i |β,bi = X∗iβ + Zibi + e∗i (6)

bi ∼ Nq(0,G). (7)

In the first stage, for fixed random effects bi, we have e∗i ∼ Nmi
(0,Ri). In the second stage, we

let bi be random, mutually independent and independent of e∗i .

Under the frequentist paradigm, model (5) may be fitted via standard linear mixed models

methodology outlined in Dey et al. (2000) or Demidenko (2013), for example. In the context of

Bayesian analysis, estimation of model (5) parameters is based on the joint posterior distribution,

p(β,Ri,G,b|y), where y∗ = [y∗1
>, . . . ,y∗n

>]> that can be decomposed as

p(β,Ri,G,b|y∗) ∝
n∏
i=1

p(y∗i |β,Ri,G,bi)
n∏
i=1

p(β)p(Ri)p(bi|G)p(G) (8)

where p(y∗i |β,Ri,G,bi) is the likelihood function of y∗i and p(·) denote prior density functions

specified for the different parameters.

Marginal posterior distributions of the parameters, p(θ|y), may be obtained by integrating

(8). Metropolis-Hastings (Hastings, 1970; Metropolis et al., 1953) or Gibbs sampler algorithms

(Gelfand & Smith, 1990; Geman & Geman, 1984), two of the most popular Markov Chain Monte

Carlo (MCMC) methods may be employed to generate (8). The idea is to generate samples of

conditional posterior distributions (conditioned on the data, y, and on the other parameters), a

generally easier process than to generate samples directly from the marginal posterior distribution.

Assuming that the errors and random effects follow Gaussian distributions with Ri = σ2Imi

and that the remaining components of variance are known, Lindley & Smith (1972) and Fearn

(1975) have shown analytically that the fixed effects also follow Gaussian distributions. When the

components of variance are unknown, computation of the conditional posterior distribution can

be found in Seltzer (1993), Seltzer et al. (1996), Sorensen (2002) or Congdon (2010), for example.

Bayesian approaches to LMM with other covariance structures for Ri are scarce in the literature

(Lee & Lien, 2001; Lee et al., 2005). Fitting models that combine different covariance structures

for G and Ri is generally a challenge under either the frequentist or the Bayesian paradigms

(Lesaffre & Lawson, 2012). Under the Bayesian approach, to generate samples from posterior dis-

tributions with more complicated models, we may use software such as WinBUGS (Lunn et al.,

2000; Spiegelhalter et al., 2003), JAGS (Plummer, 2015) or STAN (Stan Development Team,

2014) in which the most popular MCMC algorithms are implemented. When conjugate prior
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distributions are specified, the full conditional distributions are known and the software will use

standard sampling algorithms to generate samples from the posterior distributions. Otherwise, the

software will use one of the following algorithms: Gibbs sampler (Geman & Geman, 1984), adap-

tive rejection (Gilks & Wild, 1992), slice sampler (Neal, 1997) or Metropolis-Hastings (Hastings,

1970; Metropolis et al., 1953).

4 Results

First, model (5) was fitted via standard LMM methodology using the package nlme (Pinheiro et al.,

2015) in the R software (R Core Team, 2014). Due to a software limitation for fitting the Bayesian

models (to be discussed later), we did not consider a random effect associated with the rate of

increase in production before peak production in model (9). The strategy used to reduce model

(5) was as follows:

i) Test whether the AR(1) structure for the conditional errors could be replaced by an inde-

pendence structure in the model, using a likelihood ratio test (Pinheiro & Bates, 2000).

ii) Test the significance of the interaction effects, that is, test whether β5 = β6 = β11 = β12 =

β17 = β18 = 0, using conditional F tests (Pinheiro & Bates, 2000).

iii) In the absence of interaction effects, test the significance of Season and Parity main effects,

that is, test whether β2 = β3 = β4 = 0, β8 = β9 = β10 = 0 and β14 = β15 = β16 = 0, using

conditional F tests.

iv) Fit a model that incorporates the conclusions obtained in i)-iii).

The linearized version of the reduced model

yij = φ1it
φ2i
ij exp(−φ3itij)eij (9)

φ1i = exp(β1 + β2Eij + β3P2ij + β4P3ij + b1i)

φ2i = β7 + β8Eij

φ3i = β13 + β14Eij + β15P2ij + β16P3ij + β17EP2ij + β18EP3ij + b3i

was fitted to the data and the results are displayed in Table 1.
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Table 1: Estimates (standard errors - SE) of the fixed effects and 95% confidence intervals (CI)
for the covariance components of model (9)

Interpretation Parameter Estimate (SE) or CI

initial milk production (intercept) ∗β1 14.507 (0.709)
Spring effect ∗β2 1.187 (0.060)
Parity=2 effect ∗β3 1.344 (0.079)
Parity≥ 3 effect ∗β4 1.465 (0.086)

Rate of increase before peak production (intercept) β7 0.305 (0.029)
Spring effect β8 0.168 (0.044)

rate of decreasing after peak production (intercept) β13 -0.059 (0.007)
Spring effect β14 -0.066 (0.011)
Parity=2 effect β15 -0.033 (0.007)
Parity≥ 3 effect β16 -0.026 (0.007)
Spring × Parity=2 interaction β17 0.002 (0.001)
Spring × Parity≥ 3 interaction β18 0.001 (0.001)

Covariance components σb1 [0.173; 0.303]
σb3 [0.011; 0.025]
σb1.b3 [-0.655; 0.657]
σe [0.207; 0.236]
ρ [0.416; 0.553]

∗: Estimates computed as exp(βi); SE computed via the Delta method

The initial milk production tend to increase in spring as well as when cows have more calvings.

Only Season affects the rate of increase in production before peak production. The Parity effect

on the rate of decrease in production after peak production depends on the season (Table 1).

To evaluate if the assumption of Gaussian distributions for random errors or random effects

in model (9) is adequate, we considered the diagnostic plots described in (Singer et al., 2017).

A plot of the standardized least counfounded residuals displayed in Figure (3) does not suggest

violation of the Gaussian assumption for the random errors. On the other hand, the QQ-plot of

the Mahalanobis Distance (Figure 4) suggests that the assumption of Gaussian distribution for

the random effects is not reasonable.
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Considering a Bayesian approach we fitted model (9) assuming multivariate t-distributions

tq(0,∆, ν) for the random effects, where

∆ =

[
δ2b1 δb1b3
δb1b3 δ2b3

]
is the corresponding dispersion matrix and ν denotes the degrees of freedom. Under that assump-

tion, it is not difficult to obtain samples of the conditional posterior distributions of parameters

of model (9), since the multivariate t-distribution can be viewed as a mixture of Gaussian dis-

tributions. In this context, samples from a multivariate t-distribution with dimension q and

parameters ∆ and ν can be generated in two steps: the first consists in generating w from a

Gamma(ν/2, ν/2) distribution and the second, in generating a vector x from a Nq(µ,∆/w) dis-

tribution (Gamerman & Lopes, 2006). With this in mind, model (5) can be rewritten as

y∗i |β,bi = X∗iβ + Zibi + e∗i

bi|∆ ∼ tq(0,∆, ν).
(10)

In this case the joint posterior distribution is given by

p(β,Ri,∆,b,w|y∗) ∝
n∏
i=1

p(y∗i |β,Ri,∆,bi)
n∏
i=1

p(β)p(Ri)p(bi|∆, wi)p(∆|wi)p(wi) (11)

Samples of the tq(0,∆, ν) distribution are generated as follows

wi ∼ Gamma(ν/2, ν/2)

bi|(∆, wi) ∼ Nq(0,∆/wi).
(12)

Model (9) was fitted considering four distributions for the random effects, namely, M1: N2(0,G),

M2: t2(0,∆, ν = 3), M3: t2(0,∆, ν = 7) and M4: t2(0,∆, ν = 30). In all models, locally uniform

prior distributions were assigned to the parameters associated with initial milk production, rate

of increase/decrease in production before/after peak production and to the parameters associated

with the elements of the covariance structure. The full conditional posterior distributions either

under Gaussian or multivariate t-distributions for the random effects with an AR(1) covariance

structure for the random errors are presented in Appendix.

We used the JAGS software (Plummer, 2015) through the interface available in the runjags

package (Denwood, In Review) available in the R package (R Core Team, 2014). Three chains of

length 20000 with different initial values were generated and the first 10000 iterations (burn-in) of

each chain were excluded. The estimates were based on the remaining 30000 iterations. In order

to evaluate the convergence of the chains for each parameter, traceplots were constructed and the

Gelman-Rubin statistic (Gelman & Rubin, 1992) was computed. A laptop computer (Intel Core
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i5 processor with 8GB of RAM) was used to fit the models and the computing time ranged from

4 to 4.5 hours.

It was not possible to include more than two random effects in the models. Software like

WinBUGS, JAGS or STAN use the precision matrix (inverse of the covariance matrix) during the

MCMC estimation process and the corresponding matrix with dimension higher than three is not

always invertible. This justification was found in online forums for JAGS users and no solution

for this limitation was found.

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), Watanabe-Akaike’s Infor-

mation Criterion (WAIC) (Watanabe, 2010), Leave-One-Out Cross Validation Criterion (LOOCV )

(Gelman et al., 2014) and Pseudo-Marginal Likelihood (Ntzoufras, 2011) computed during the

MCMC estimation process were used to compare models M1-M4. Models with smaller values of

DIC, WAIC, LOOcv and higher value of LVPM have a better fit.

Estimates and the HPD 95% credibility intervals for the parameters of models M1-M4 are

presented in Table 2. Estimates associated with the initial milk production and the rates of in-

crease/decrease in production before/after peak production did not differ much across the models,

suggesting that the inference about these parameters is robust to the non-normality of random

effects. Estimates associated with the elements of the random effects covariance structure differed

very little when models M2 and M3 are compared with model M1.

A small decrease in the DIC, WAIC and LOOCV values were observed when models M2-M4 are

compared with model M1, indicating an improvement of fit when multivariate t-distributions are

assumed for the random effects. The same can be concluded when comparing the LVPM values,

since a small increase in the values of this statistic was observed.

5 Discussion

We analyze weekly milk production data of Dutch dairy cows. This type of data is a typical

example of repeated measurements data and the linear mixed models are, in general, the stan-

dard option in statistical analysis. Evaluate assumptions of the model fitted to data is extremely

important since under incorrect specifications the inference is impaired. In particular, when the

assumption of normality of either the random effects and/or random errors is not suitable, a

Bayesian approach can be considered to fit the model. With this in mind, we developed a hi-

erarchical Bayesian model under the assumption that the random effects follow a multivariate

t-distribution. In addition we consider a first order autorregressive correlation structure for the

within sample units covariance matrix, more suitable to longitudinal data.
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Our results showed that under the assumption of a multivariate t-distribution for the random

effects there was a improvement of fit to the data. The estimates of the fixed effects did present

considerable differences among models but there was an improvement in the estimates of the

covariance structure elements.
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Appendix

Results based on multivariate Gaussian distributions for the random effects

Let y∗ = [y∗1
>, . . . ,y∗n

>]>, X∗ = [X∗1
>, . . . ,X∗n

>]>, Z = ⊕Zi, b = [b>1 , . . . ,b
>
n ]>, Ri =

R(σ2, ρ) = σ2Ci where Ci is defined in (4) and G = G(σ2
b1, σ

2
b2, σb1b2). Also consider the joint

posterior distribution of the model (8) given by

p(β,Ri,G,b|y∗) ∝
n∏
i=1

p(y∗i |β,Ri,bi)p(bi|G)
n∏
i=1

p(β)p(Ri)p(G). (A1)

where

p(y∗i |β,Ri,bi) ∝
1

σ2
|Ci|−1/2 exp

[
− 1

2σ2
(y∗i −X∗iβ − Zibi)

>C−1i (y∗i −X∗iβ − Zibi)

]
, (A2)

p(bi|G) ∝ |G|−1/2 exp

[
−1

2
b>i G−1bi

]
, (A3)

p(β), p(Ri) = p(σ2, ρ), p(G) = p(σ2
b1, σ

2
b3, σb1b3) and p(bi|G) are the prior distributions for β, Ri,

G e bi, respectively. We consider independent uniform prior distributions for β, Ri as well as for

the elements of G.

1) Full conditional distribution for β: p(β|σ2, ρ,b,y∗).

Given σ2, ρ,b and y∗, it follows that p(β|σ2, ρ,b,y∗) is proportional to the product of

independent Gaussian distributions with unknown means and known variances.

p(β|σ2, ρ,b,y∗) ∝
n∏
i=1

p(y∗i |β, σ2, ρ,bi)p(β) ∝
n∏
i=1

p(y∗i |β, σ2, ρ,bi) (A4)

We want to find the posterior distribution of β, vector of parameters of the regression

of y∗ = y − Zb in X∗. We know that the likelihood estimator of β, namely, β̂MV , is

a sufficient statistic for β and follows a Np[β, V ar(β̂MV )] distribution. Following Lemma

1.4.1 in Box & Tiao (1973), we have

p(β|σ2, ρ,b,y) ∝ Np[β̂MV , V ar(β̂MV )] (A5)

where

β̂MV =

(
n∑
i=1

X∗i
>R−1i X∗i

)−1 n∑
i=1

X∗i
>R−1i y∗i (A6)

and

V ar(β̂MV ) =

(
n∑
i=1

X∗i
>R−1i X∗i

)−1
(A7)
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2) Full conditional distribution of σ2: p(σ2|β, ρ,b,y∗).

Given β, ρ,b, y∗ and letting θi = X∗iβ − Zibi, we have

p(σ2|β, ρ,b,y∗) ∝
n∏
i=1

p(y∗i |β, ρ,bi)p(σ2)p(ρ) ∝
n∏
i=1

p(y∗i |β, ρ,bi)

=
n∏
i=1

(
1

σ2

)1/2

|Ci|−1/2 exp

[
− 1

2σ2
(y∗i − θi)

>C−1i (y∗i − θi)

]

∝
(

1

σ2

)n/2
exp

[
− 1

2σ2

n∑
i=1

(y∗i − θi)
>C−1i (y∗i − θi)

]

=

(
1

σ2

)n/2
exp

[
−
∑n

i=1(y
∗
i − θi)

>C−1i (y∗i − θi)

2σ2

]
(A8)

From (A8), disregarding a constant term, 1/σ2 follows a Gamma distribution. Applying the

Jacobian method, it follows that

p(1/σ2|β, ρ,b,y∗) ∝ p(σ2|β, ρ,b,y∗)
∣∣∣∣∂ (1/σ2)

∂ (1/σ2)

∣∣∣∣ (A9)

where σ2 = g(1/σ2) = (1/σ2)
−1

. Hence

p(1/σ2|β, ρ,b,y∗) ∝ p(σ2|β, ρ,b,y∗)
(
1/σ2

)−2
=

(
1

σ2

)(n/2−1)−1

exp

[
−
∑n

i=1(y
∗
i − θi)

>C−1i (y∗i − θi)

2σ2

]
(A10)

that is a Gamma
[
n/2− 1, 2/

∑n
i=1(y

∗
i − θi)

>C−1i (y∗i − θi)
]

distribution. Inverting the val-

ues obtained from p(1/σ2|β, ρ,b,y∗) is equivalent to sampling values from p(σ2|β, ρ,b,y∗).

3) Full conditional distribution of G: p(G|b)

Given b, we have

p(G|b) ∝
n∏
i=1

p(bi|G)p(G) ∝
n∏
i=1

|G−1|1/2 exp

[
−1

2
b>i G−1bi

]

= |G−1|n/2 exp

[
−1

2
tr

(
G−1

n∑
i=1

bib
>
i

)]
(A11)

where tr(A) represents the trace of A. From (A11), disregarding a constant term, we have

that G−1 follows a Wishart distribution. Applying the Jacobian method,

p(G−1|b) ∝ p(G|b)

∣∣∣∣∂g(G−1)

∂ (G−1)

∣∣∣∣ (A12)
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From Box and Tiao (1973, p.426), it follows that∣∣∣∣∂g(G−1)

∂ (G−1)

∣∣∣∣ =
∣∣G−1∣∣−(q+1)

. (A13)

Hence

p(G−1|b) ∝ p(G|b)
∣∣G−1∣∣−(q+1)

= |G−1|
n
2
−q−1 exp

[
−1

2
tr

(
G−1

n∑
i=1

bib
>
i

)]

= |G−1|
1
2
[(n−q−1)−q−1] exp

[
−1

2
tr

(
G−1

n∑
i=1

bib
>
i

)]
, (A14)

a Wishart
(
n− q − 1,

∑n
i=1 bib

>
i

)
distribution. Note that the process of inverting the values

of p(G−1|b,y∗) is equivalent to sampling from p(G|b,y∗).

4) Full conditional distribution for b: p(b|β, σ2, ρ,G,y∗).

Given β, σ2, ρ,G e y∗, we have

p(b|β, σ2, ρ,G,y∗) ∝
n∏
i=1

p(y∗i |β, σ2, ρ,bi)p(bi|G)

∝
n∏
i=1

exp

[
− 1

2σ2
(y∗i −X∗iβ − Zibi)

>C−1i (y∗i −X∗iβ − Zibi)

]
× exp

[
−1

2
b>i G−1bi

] (A15)

which an unspecified distribution.

5) Full conditional distribution for ρ: p(ρ|β, σ2,b,y∗).

Given β, σ2,b and y∗, we have

p(ρ|β, σ2, ρ,b,y∗) ∝
n∏
i=1

p(y∗i |β, σ2, ρ,bi)p(ρ) ∝
n∏
i=1

p(y∗i |β, σ2,bi)

=
n∏
i=1

(
1

σ2

)1/2

|Ci|−1/2 exp

[
− 1

2σ2
(y∗i − θi)

>C−1i (y∗i − θi)

]

∝
n∏
i=1

|Ci|−1/2 exp

[
− 1

2σ2

n∑
i=1

(y∗i − θi)
>C−1i (y∗i − θi)

]
(A16)

which has an unspecified distribution.

The MCMC algorithm to fit the proposed models is:
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a) Draw β from p(t)(β|σ2(t−1), ρ(t−1),b(t−1),y∗) defined in (A5).

b) Draw 1/σ2 from p(t)(σ2|ρ(t−1),b(t−1),β(t),y∗) defined in (A10).

c) Draw G−1 from p(t)(G−1|b(t−1)) defined in (A14).

d) Draw b from p(t)(b|β(t), σ2(t),G(t), ρ(t−1),y∗) defined in (A15), using one of the following

three algorithms: Rejection-adaptive, Sliced Sampler or Metropolis-Hastings.

e) Draw ρ from p(t)(ρ|b(t),β(t), σ2(t),y∗) defined in (A16), using one of the aforementioned

algorithms.

Results based on multivariate t distributions for the random effects

Let y∗ = [y∗1
>, . . . ,y∗n

>]>, X∗ = [X∗1
>, . . . ,X∗n

>]>, Z = ⊕Zi, b = [b>1 , . . . ,b
>
n ]>, Ri =

R(σ2, ρ) = σ2Ci where Ci is defined in (4) and ∆ = ∆(δ2b1 , δb1b3 , δ
2
b3

). Also consider the joint

posterior distribution of the model (11) given by

p(β,Ri,∆,b|y∗) ∝
n∏
i=1

p(y∗i |β,Ri,bi)p(bi|∆, wi)
n∏
i=1

p(β)p(Ri)p(∆|wi)p(wi). (A17)

where

p(y∗i |β,Ri,bi) ∝
1

σ2
|Ci|−1/2 exp

[
− 1

2σ2
(y∗i −X∗iβ − Zibi)

>C−1i (y∗i −X∗iβ − Zibi)

]
, (A18)

p(bi|∆, wi) ∝ w
q/2
i |∆|−1/2 exp

[
−1

2
b>i ∆−1wibi

]
, (A19)

p(β), p(Ri) = p(σ2, ρ), p(∆) = p(δ2b1, δ
2
b3, δb1b3) and p(bi|∆, wi) are the prior distributions for β,

Ri, ∆ e bi, respectively. We consider independent uniform prior distributions for β, Ri as well

as for the elements of ∆. Like in (12), p(wi) ∼ Gamma(ν/2, ν/2).

1) Full conditional distribution for β: p(β|σ2, ρ,b,y∗).

The form of this distribution is identical to (A5).

2) Full conditional distribution of σ2: p(σ2|β, ρ,b,y∗).

The form of this distribution is identical to (A10).
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3) Full conditional distribution of ∆: p(∆|b, wi)

In this case, (A14) is expressed as

|∆−1|
1
2
((n−q−1)−q−1) exp

[
−1

2
tr

(
∆−1

n∑
i=1

wibib
>
i

)]
, (A20)

a Wishart
(
n− q − 1,

∑n
i=1wibib

>
i

)
distribution.

4) Full conditional distribution for b: p(b|β, σ2, ρ,G, wi,y
∗).

In this case, (A15) is proportional to

n∏
i=1

exp

[
− 1

2σ2
(y∗i −X∗iβ − Zibi)

>C−1i (y∗i −X∗iβ − Zibi)

]
exp

[
−1

2
b>i ∆−1wibi

]
(A21)

which is also an unspecified distribution.

5) Full conditional distribution for ρ: p(ρ|β, σ2,b,y∗).

The form of this distribution is identical to (A16).

6) Full conditional distribution for w: p(w|b,∆,y∗).

Given b e ∆, we have

p(w|b,∆) ∝
n∏
i=1

p(bi|∆, wi)p(wi)

=
n∏
i=1

w
q/2
i exp

[
−1

2
b>i ∆−1i wibi

]
w
ν/2−1
i exp

[
−ν

2
wi

]
=

n∏
i=1

w
(q/2+ν/2)−1
i exp

[
−wi

2

(
b>i ∆−1i bi + ν

)]
=

n∏
i=1

w
(q/2+ν/2)−1
i exp

[
− wi

2/b>i ∆−1i bi + ν

]
,

(A22)

a Gamma
[
(ν + q)/2, 2/(b>i ∆−1i bi + ν)

]
distribution.

The MCMC algorithm to fit the proposed models is:

a) Draw β from p(t)(β|σ2(t−1), ρ(t−1),b(t−1),y∗) defined in (A5).

b) Draw 1/σ2 from p(t)(σ2|ρ(t−1),b(t−1),β(t),y∗) defined in (A10).
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c) Draw ∆−1 from p(t)(∆−1|b(t−1), w
(t−1)
i ) defined in (A20).

d) Draw b from p(t)(b|β(t), σ2(t),∆(t), ρ(t−1), w
(t−1)
i ,y∗) defined in (A21), using one of the fol-

lowing three algorithms: Rejection-adaptive, Sliced Sampler or Metropolis-Hastings.

e) Draw ρ from p(t)(ρ|b(t),β(t), σ2(t),y∗) defined in (A16), using one of the aforementioned

algorithms.

f) Draw w from p(t)(w|b(t),∆(t)) defined in (A22).
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