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Abstract

Estimation of microorganism concentration in ballast water tanks

is important to evaluate and possibly to prevent the introduction of

invasive species in stable ecosystems. For such purpose, the number of

organisms in ballast water aliquots must be counted and used to esti-

mate their concentration with some precision requirement. Poisson and

negative binomial models have been employed to describe the organism

distribution in the tank, but determination of sample sizes required to

generate estimates with pre-specified precision is still not well estab-

lished. A Bayesian approach is a flexible alternative to accommodate

adequate models that account for the heterogeneous distribution of

the organisms and may provide a sequential way of enhancing the esti-

mation procedure by updating the prior distribution along the ballast

water discharging process. We adopt such an approach to compute

sample sizes required to construct credible intervals obtained via two

optimality criteria that have not been employed in this context. Such
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intervals may be used in the decision with respect to compliance with

the D-2 standard of the Ballast Water Management Convention. We

also conduct a simulation study to verify whether the credible intervals

obtained with the proposed sample sizes satisfy the precision criteria.

Keywords: average coverage criterion, average length criterion, Pois-

son/gamma distribution, negative binomial/Pearson Type VI distribu-

tion.

1 Introduction

Evaluation of ballast water discharges from ships is a topic of current interest

because the possible introduction of invasive species in stable ecosystems

may bring serious environmental and economic consequences. Estimates of

damage costs of invasive species may vary from 0.4 to 220 billion USD per year

in 2008 prices (Marbuah et al., 2014, Table 1). Among other requirements,

the D-2 standard of the Ballast Water Management (BWM) Convention

requires that deballasted water should contain less than 10 viable organisms

(referred to simply as organisms in the remainder) per mL, sized ≥ 10 and

< 50 µm in minimum dimension (IMO, 2004). This class of organisms

comprise zooplankton and phytoplankton. An overview of research in ballast

water in the last thirty years is presented in Bailey (2015).

Given the large amount of ballast water (up to thousands of tons) trans-

ported by big vessels, one has to rely on sampling methods to verify whether

the standard is satisfied. This is a difficult task, especially for organisms

sized ≥ 10 and < 50 µm in minimum dimension. Recently, Jang et al. (2019)

mention that there is no established sampling methodology for such microor-

ganisms. Although this topic has attracted the attention of many researchers,
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very few papers deal with sample sizes required to verify compliance with the

D-2 norm. Exceptions are Basurko & Mesbahi (2011), Miller et al. (2011)

and Frazier et al. (2013), who discuss the problem but do not provide a

formal solution. Costa et al. (2015, 2016) attacked the problem with a more

formal approach, defining the sample as a set of n aliquots (sub-samples)

in each of which the number of organisms is counted. The volume of each

sample, say w, depends on the specific counting procedure (Casas-Monroy

et al., 2020). The sampling process is based on a probabilistic model and on

a criterion according to which one must compute the number of aliquots of

ballast water with volume w mL needed to decide with a certain margin of

error whether the D-2 standard is complied with. One of the difficulties with

this approach relates to the heterogeneous nature of the organism concen-

tration in the ballast water tank (Murphy et al., 2002; Carney et al., 2013;

Casas-Monroy et al., 2020). Based on frequentist methods, Costa et al. (2015,

2016) adopted models that take this heterogeneity into account. In particular,

Costa et al. (2015) consider Poisson and negative binomial distributions and

specify probabilities for Type I and II errors to test the hypothesis that the

mean organism concentration in the tank is smaller than 10 organisms per

mL. Costa et al. (2016), on the other hand, consider the same probability

distributions and specify a lower bound to the probability that the difference

between the mean concentration and its estimate be less than a fixed value.

Costa (2017) suggests the adoption of more flexible models that may possibly

incorporate knowledge acquired over time. Bayesian models are excellent

candidates to incorporate such characteristics because that information may

be considered in the prior distribution which may also be updated when

more data is obtained.

Two criteria are widely used in the Bayesian literature, but not in
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the setup under investigation for sample size determination, namely, the

average coverage and the average length of credible intervals (ACC and

ALC, respectively). In both cases, we choose the smallest sample size that

satisfies the condition imposed on some specified average characteristic of

the posterior distribution of the parameter of interest.

For the ACC we compute the posterior probability of a highest posterior

density (HPD) interval with fixed length for each sample xn of size n and

weigh it by the marginal distribution of the data. This average probability

must be not smaller than a specified lower bound. For the ALC, on the other

hand, we compute the length of an interval with fixed credible degree for

each (xn, n) and weigh it by the same marginal distribution. The average

length must not be larger than a specified upper bound.

Adcock (1987, 1988) uses the ACC (with a different label) to determine

sample sizes required to estimate multinomial probabilities under Dirichlet

prior distributions as well as to estimate the mean and the variance of normal

distributions with prior normal or chi-squared distributions for the cases

where the variance is known or unknown, respectively. Joseph et al. (1995)

and Joseph et al. (1997) use both the ACC and the ALC, among other

Bayesian criteria for estimating the proportion and the difference between

two proportions under binomial distributions with beta prior distributions.

Wang & Gelfand (2002) use the same criteria to determine the sample size

for the estimation of parameters of distributions belonging to the exponential

family, of parameters in Weibull survival models as well as of parameters

in logistic regression models. M’Lan et al. (2006) use the ACC and ALC

criteria in the context of case-control studies; Stamey et al. (2006) also

consider these criteria to estimate the parameters of Poisson distributions as

well to estimate the difference or the ratio of the parameters of two Poisson
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distributions. We may also cite Joseph & Bélisle (1997), Joseph & Wolfson

(1997), Rahme et al. (2000), De Santis (2007), M’Lan et al. (2008) for related

work.

We consider a Bayesian approach to compute minimum sample sizes

required to obtain lower and upper limits of credible intervals for the mean

organism concentration in a ballast water tank with specified average coverage

or average length. Letting xn denote a sample of size n determined according

to the proposed approach, the credible intervals defined by the lower [say,

a(xn)] and upper [say, b(xn)] limits will have in average, the specified coverage

or length. Given this interval, the ship from which the sample was collected

is declared not compliant with the D-2 standard if a(xn) ≥ 10 or compliant,

if b(xn) < 10. Otherwise, if a(xn) < 10 ≤ b(xn), more data are needed to

make a decision.

In Section 2 we describe the adopted Bayesian models. Sample size

determination under both the ACC and the ALC criteria is discussed and

implemented in Section 3. A simulation study to evaluate whether HPD

intervals constructed with the proposed sample sizes satisfy the adopted

optimality criteria is presented in Section 4. The last section discusses the

results obtained from the computation of the minimum sample sizes as well

as from the simulation study. Algorithms for sample size computations,

written with the R language (R Core Team, 2016), are presented in the

Supplementary Material.
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2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Given that the expected organism concentration (per unit of volume) in the

tank is λ, let X be the number of organisms in an aliquot of volume w; in

this aliquot, we expect to find E [X|λ] = wλ organisms. Suppose that the

organisms are homogeneously distributed in the ballast water tank, and that,

given λ, X follows a Poisson distribution with mean wλ.

The natural (conjugate) choice for the prior distribution is a gamma

distribution with parameters θ0 and λ0, namely λ ∼ G(θ0, θ0/λ0), for which

the probability density function is

h(λ) ∝ λθ0−1 exp(−θ0λ/λ0).

This implies that E [λ] = λ0 and Var [λ] = λ20/θ0. In this context, λ0

represents a prior expected concentration and θ0 controls the variability of

λ around λ0. The gamma distribution provides ample flexibility to model

the shape of the prior knowledge on the mean concentration λ. In Figure

S1 of the Supplementary Material we present gamma density functions with

different shapes.

Consider a random sample xn = (x1, . . . , xn) of size n of X|λ and a

gamma prior distribution for λ. We may write the Bayesian Poisson/gamma

model hierarchically as follows

Xi|λ
iid∼ Poi(wλ), i = 1, 2, . . . , n; (1)

λ ∼ G(θ0, θ0/λ0). (2)

The posterior distribution of λ is also gamma, with parameters θ0 + sn
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and nw+θ0/λ0, where sn =
∑n

i=1 xi, i.e., λ|xn ∼ G(θ0+sn, nw+θ0/λ0). An

example of prior and posterior densities is presented in Figure 1. The effect

of the observed data is clearly observed to lead to a posterior distribution

more concentrated than the prior distribution.
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Figure 1: Prior gamma distribution G(θ0, θ/λ0) and posterior gamma dis-
tribution G(θ0 + sn, nw + θ0/λ0) with w = 1, λ0 = 10, θ0 = 12, n = 20 and
sn = 240.

2.2 Negative binomial model with a Pearson Type VI prior

distribution

In contrast with the homogeneity assumption for the organism distribution

in the tank inherent to the Poisson model, consider a more realistic situation

where the organisms are distributed heterogeneously. A reasonable model for

the organism distribution in this case is the negative binomial distribution,

which may be motivated as follows.

Suppose that the organism concentration varies in the tank according

to a gamma distribution with parameters φ and φ/λ. Consider n aliquots
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with volume w randomly selected from the tank and let λi denote the

corresponding organism concentration, i = 1, . . . , n. Assume that given λi,

the corresponding number of organisms, Xi, follows a Poisson distribution

with mean wλi. Thus, given λ and φ, Xi follows a negative binomial

distribution with E [Xi|λ, φ] = wλ and Var [Xi|λ, φ] = wλ+ (wλ)2/φ, where

φ is a shape (or agglomeration) parameter. This is denoted as Xi|λ, φ ∼

NB(wλ, φ) and the probability function can be written as

f(xi|λ, φ) =
Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

(
w

φ
λ

)xi (
1 +

w

φ
λ

)−φ−xi
.

For inferences on the parameter of interest λ we consider φ fixed (taking

on several values in the following analysis). A natural conjugate prior

distribution for the parameter λ of the negative binomial distribution is a

Pearson Type VI distribution (Johnson et al., 1994a,b), also known as a

generalized beta prime distribution with a further scale factor φ/w, for which

the kernel of the probability density function is

h(λ) ∝ w

φ

(
w

φ
λ

)θ0−1(
1 +

w

φ
λ

)−θ0−(θ0/λ0+1)

,

with location parameter 0, scale parameter φ/w and shape parameters

θ0 and θ0/λ0 + 1, where λ0 and θ0 are known positive fixed constants

(hyperparameters). We use the notation λ ∼ PV I(0, φ/w, θ0, θ0/λ0 + 1). In

this case, E [λ] = (φ/w)λ0 and Var [λ] = (λ20/θ0)[φ2(λ0 + 1)/(w2(1−λ0/θ0))],

for λ0 < θ0.

In the Poisson model with gamma prior distribution, we have E [X] =

E [E [X|λ]] = E [wλ] = wλ0, i.e., the expected number of organisms when

collecting an aliquot depends only on the hyperparameter λ0. This makes

sense since we are assuming homogeneity for the concentration, and regardless
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of the location where we collect an aliquot in the ballast water tank, we expect

to find the same number of organisms. On the other hand, if we consider the

negative binomial model with a Pearson Type VI prior distribution, we have

E [X] = φλ0 so that the expected number of organisms in an aliquot depends

on the parameter φ that controls the heterogeneity of the organisms in the

tank. Note that φ is also a scale parameter for the prior distribution and

the larger its value, the more spread out is the distribution with the other

parameters fixed, indicating a vague prior knowledge about the parameter of

interest. Furthermore, we can set the other parameters in such a way that

the prior distribution may represent cases where there is high probability

associated to an interval even when the value of φ increases. When λ0

and θ0 are fixed and φ increases, we have distributions representing cases

with large variability. Examples are presented in Figures S2 and S3 of the

Supplementary Material.

Consider a random sample of size n from X|λ, φ, and a Pearson Type VI

prior distribution for λ. We may write the model hierarchically as follows

Xi|λ, φ
iid∼ NB(wλ, φ), i = 1, 2, . . . , n; (3)

λ ∼ PV I(0, φ/w, θ0, θ0/λ0 + 1). (4)

The posterior distribution of λ is Pearson Type VI, with the same location

and scale parameters as the prior distribution, and shape parameters θ0 + sn

and θ0/λ0 + nφ+ 1, i.e., λ|xn ∼ PV I(0, φ/w, θ0 + sn, θ0/λ0 + nφ+ 1).

We must emphasize that φ plays two roles in model (3)-(4). In (3), it

plays the role of a dispersion (or agglomeration) parameter. The larger is

φ, the more homogeneous is the organism concentration in the tank. In the

prior distribution (4), φ plays the role of scale parameter. Keeping the other

9



parameters fixed, the larger is φ, the less precise is the prior knowledge about

the parameter of interest (see Figure S2 of the Supplementary Material). This

does not mean that if φ (previously known) is large we may only assign prior

distributions with large variability, because we may specify the parameters

λ0 and θ0 to adjust the precision of the prior knowledge even with large

values of φ (see Figure S3 of the Supplementary Material).

3 Sample size determination

We consider two criteria to determine the minimum sample size, i.e., minimum

number of aliquots, required to estimate λ with a pre-specified precision.

3.1 Average coverage criterion (ACC)

The objective is to obtain the minimum sample size n such that the credible

interval R(xn) for λ has a pre-specified length with posterior probability at

least equal to 1− ρ, i.e.,

∫
R(xn)

h(λ|xn)dλ ≥ 1− ρ,

where xn is a sample of size n and R(xn) is a subset (an interval in our case)

of the parameter space. Since the sample size determination precedes the

actual sampling, we must consider all possible outcomes for xn to achieve the

objective. In this direction we may weigh each outcome by its probability,

i.e., ∫
Xn

[∫
R(xn)

h(λ|xn)dλ

]
g(xn)dxn ≥ 1− ρ,

where X n is the sample space associated to xn and g(xn) is the marginal

probability function of the outcomes.
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For models (1)-(2) and (3)-(4), the credible region in general is an interval

and in this case, we consider the highest posterior density (HPD) interval to

define R(xn) = [a(xn), b(xn)]. We fix the length ` > 0 of the desired HPD

intervals for λ, specify the minimum Bayesian coverage probability, 1 − ρ

and determine the minimum sample size as well as the bounds a(xn) and

b(xn) = a(xn) + ` such that

∫
Xn

[∫ b(xn)

a(xn)
h(λ|xn)dλ

]
g(xn)dxn ≥ 1− ρ. (5)

Given a(xn), b(xn) and the parameters of the posterior distribution, the

inner integral in (5) may be obtained computationally; the outer integral

may be estimated via Monte Carlo simulation. An algorithm to obtain the

minimum sample size satisfying the criterion is outlined in the Supplementary

Material.

In Tables 1 and 2 we present sample sizes computed via ACC (5) setting

the length of the required credible interval ` = 2 for models (1)-(2) and

(3)-(4), respectively. In Tables S1 and S2 of the Supplementary Material we

present the same scenario for ` = 4. Note that for model (3)-(4) we consider

λ0 = 10(w/φ) to make the prior expected value equal to 10 in order to allow

a comparison with model (1)-(2) for which we fixed λ0 = 10. The values

considered for the parameter φ were chosen to cover the range of estimates

obtained from real data and reported in Casas-Monroy et al. (2020) as well

as more extreme cases to mimic low and high aggregation of the organisms in

the ballast water tank. For the Poisson/gamma model, the values considered

for θ0 were chosen to cover its parameter space in such a way that large and

small prior variances were contemplated. For the negative binomial/Pearson

Type VI model the values for θ0 were chosen according to the constraint
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imposed by the prior variance, λ0 < θ0.

Table 1: ACC (5) based minimum sample size (n) computed under the
Poisson/gamma model (1)-(2) with λ0 = 10, ρ = 0.05 and ` = 2.

Aliquot Shape parameter (θ0)
volume (w) 1.0 2.5 5.0 7.5 10.0

0.5 77 77 76 76 75
1.0 39 39 38 38 38

Table 2: ACC (5) based minimum sample size (n) computed under the
negative binomial/Pearson Type VI model (3)-(4) with λ0 = 10(w/φ), ρ =
0.05 and ` = 2.

Aliquot
φ

Shape parameter (θ0)
volume (w) 11 25 50 75

0.5

1 465 458 452 445
8 123 121 116 110
13 104 102 97 92
22 93 90 85 80
30 88 85 80 75

1.0

1 430 424 420 417
8 86 84 82 79
13 68 66 64 61
22 55 54 52 49
30 51 49 47 44

3.2 Average length criterion (ALC)

An alternative criterion used to determine sample sizes is based on the

average length of the posterior credible intervals. The rationale here is to set

the minimum Bayesian coverage probability 1− ρ and obtain the minimum

sample size n by requiring that the length of the posterior credible region

`′(xn, n) = b(xn)− a(xn) be such that

∫
Xn

`′(xn, n)g(xn)dxn ≤ `max, (6)
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where `max is the maximum admissible length for the posterior credible

region. The lower and upper bounds of the desired HPD interval may be

obtained via numerical methods and the integral by Monte Carlo simulation.

An algorithm to obtain the minimum sample size satisfying this criterion is

outlined in the Supplementary Material.

Based on the ideas of M’Lan et al. (2008), who used a binomial model

with a beta prior distribution, we may obtain the sample size using the ALC

under the model (1)-(2) with no need for numerical methods via the following

result.

Theorem 1 Consider the Poisson/gamma model and (1)-(2) the average

length criterion (6). Based on large sample approximation, the minimum

n, to guarantee that the posterior credible interval average length is smaller

than `max is the smallest integer such that

n ≥ θ0
wλ0

{[
λ0
θ0

2zρ/2

`max

Γ(θ0 + 1/2)

Γ(θ0)

]2
− 1

}
,

where zρ/2 is the quantile of order 1−ρ/2 of the standard normal distribution.

The proof of Theorem 1 is presented in the Supplementary Material. In

Tables 3 and 4 we present sample sizes computed using ALC (6) setting

`max = 2 for models (1)-(2) and (3)-(4); in Table 3 (and S3 of the Supplemen-

tary Material) we present corresponding sample sizes (within parentheses)

computed using Theorem 1. In Tables S3 and S4 of the Supplementary

Material we present the same scenario for `max = 4.

The results displayed in both subsections of Section 3 are commented in

Section 5.
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Table 3: ALC (6) based minimum sample size (n) computed under the
Poisson/gamma model (1)-(2) (and also using Theorem 1) with λ0 = 10,
ρ = 0.05 and `max = 2.

Aliquot Shape parameter (θ0)
volume (w) 1.0 2.5 5.0 7.5 10.0

0.5 77 (61) 77 (70) 76 (73) 76 (73) 75 (73)
1.0 38 (31) 38 (35) 38 (37) 38 (37) 38 (37)

Table 4: ALC (6) based minimum sample size (n) computed under the
negative binomial/Pearson Type VI model (3)-(4) with λ0 = 10(w/φ), ρ =
0.05 and `max = 2.

Aliquot
φ

Shape parameter (θ0)
volume (w) 11 25 50 75

0.5

1 459 453 450 445
8 123 120 115 110
13 104 101 97 92
22 92 90 85 79
30 88 85 80 75

1.0

1 424 419 418 414
8 85 84 82 79
13 67 66 63 61
22 56 54 51 49
30 50 49 46 44

4 Simulation study

We conduct a simulation study to verify whether the credible intervals

obtained with the sample sizes proposed in Section 3 satisfy the precision

criteria.

For each (prior distribution) scenario and sample size obtained via the

ACC (5) displayed in Table 1 (and S1 of the Supplementary Material) we

drew 1000 samples from a Poisson/gamma model (1)-(2) with values of λ

fixed at the quantiles of order 1/6, 2/6, 3/6. 4/6 and 5/6 of the corresponding

prior distribution. Then, for each sample we obtained the lower [a(xn)] and
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upper [b(xn)] limits of the HPD credible interval for the mean organism

concentration in a ballast water tank with pre-specified average coverage

probability (1−ρ = 0.95) and computed the proportion of intervals containing

the fixed value of λ. The results are displayed in Tables 5 and S5. We expect

that the estimates of the HPD Bayesian coverage probability to be at least

0.95.

Under the same model, but using sample sizes displayed in Tables 3 and

S3, obtained via the ALC (6), we conducted a similar simulation study, the

results of which are displayed in Tables 6 and S6. In this case, we expect

that the estimates of length of the HPD intervals to be at most 2 (or 4).

The same strategy was conducted for data obtained via the negative

binomial/Pearson Type VI model (3)-(4) using the sample sizes provided in

Tables 2, 4, S2 and S4. The results are provided in Table 7, 8 and in Tables

S7-S10 of the Supplementary Material.

Table 5: ACC based Bayesian coverage probability of HPD intervals estimated
via simulation for some scenarios under the Poisson/gamma model (1)-(2)
using sample sizes displayed in Table 1 for ` = 2.

Aliquot
θ0 n

Probability quantile used to fix λ
volume (w) 1/6 2/6 3/6 4/6 5/6

0.5

1.0 77 1.00 1.00 0.98 0.94 0.85
2.5 77 0.99 0.99 0.97 0.95 0.88
5.0 76 0.99 0.98 0.95 0.94 0.92
7.5 76 0.98 0.97 0.96 0.94 0.91
10.0 75 0.97 0.98 0.95 0.95 0.93

1.0

1.0 39 1.00 1.00 0.98 0.95 0.86
2.5 39 0.99 0.99 0.97 0.93 0.88
5.0 38 0.99 0.98 0.97 0.94 0.90
7.5 38 0.98 0.98 0.95 0.94 0.90
10.0 38 0.98 0.96 0.95 0.96 0.92
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Table 6: ALC based length of HPD intervals estimated via simulation for
some scenarios under the Poisson/gamma model (1)-(2) using sample sizes
displayed in Table 3 for `max = 2.

Aliquot
θ0 n

Probability quantile used to fix λ
volume (w) 1/6 2/6 3/6 4/6 5/6

0.5

1.0 77 0.85 1.27 1.66 2.09 2.66
2.5 77 1.30 1.60 1.86 2.13 2.49
5.0 76 1.52 1.75 1.93 2.12 2.37
7.5 76 1.61 1.79 1.94 2.10 2.30
10.0 75 1.67 1.83 1.96 2.10 2.27

1.0

1.0 38 0.86 1.28 1.67 2.10 2.68
2.5 38 1.31 1.61 1.87 2.14 2.50
5.0 38 1.52 1.74 1.93 2.12 2.37
7.5 38 1.61 1.80 1.95 2.10 2.30
10.0 38 1.66 1.82 1.95 2.08 2.26

For illustrative purposes, we consider two sets of hypothetical data and

obtain the corresponding HPD intervals under both proposed models. The

first set mimics a case with extreme heterogeneity in the organism concen-

tration and the second, a case with where the organisms are homogeneously

distributed. This kind of severe aggregation occurs when individuals of

the same species are physically attached to each other forming colonies as

indicated in Rajakaruna et al. (2018).

We first determined the sample size required to satisfy the ACC with

` = 2 assuming a Poisson/gamma model with a prior distribution having

λ0 = 10 and θ0 = 0.01. This choice corresponds to a large prior variance.

Setting w = 1 and ρ = 0.01, the required sample size is nP = 104. We

then generated 104 observations from a negative binomial model with λ = 9,

φ = 0.1 and w = 1. The generated counts are displayed in Table 9 where the

heterogeneity induced by the negative binomial model is evident.

The sum of the counts is snP = s104 = 1173 so that the corresponding

HPD intervals (obtained via the algorithms described described in Subsections
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Table 7: ACC based Bayesian coverage probability of HPD intervals estimated
via simulation for some scenarios under the negative binomial/Pearson Type
VI model (3)-(4) using sample sizes displayed in Table 2 setting w = 0.5 and
` = 2.

φ θ0 n
Probability quantile used to fix λ
1/6 2/6 3/6 4/6 5/6

1

11 465 0.999 0.996 0.989 0.963 0.853
25 458 0.998 0.990 0.983 0.947 0.843
50 452 0.992 0.989 0.970 0.946 0.878
75 445 0.986 0.975 0.968 0.938 0.881

8

11 123 0.994 0.975 0.962 0.956 0.892
25 121 0.978 0.972 0.959 0.943 0.905
50 116 0.969 0.979 0.968 0.958 0.920
75 110 0.967 0.971 0.961 0.955 0.927

13

11 104 0.984 0.976 0.942 0.944 0.916
25 102 0.977 0.959 0.961 0.950 0.908
50 97 0.968 0.965 0.953 0.958 0.929
75 92 0.961 0.976 0.959 0.955 0.937

22

11 93 0.976 0.964 0.964 0.926 0.909
25 90 0.975 0.964 0.968 0.938 0.928
50 85 0.962 0.973 0.976 0.947 0.930
75 80 0.967 0.957 0.979 0.962 0.944

30

11 88 0.982 0.973 0.954 0.935 0.903
25 85 0.971 0.963 0.959 0.948 0.926
50 80 0.970 0.964 0.962 0.949 0.933
75 75 0.961 0.972 0.969 0.958 0.948

1.1.1 and 1.2.1 of the Supplementary Material) are, respectively, (10.3, 12.3)

for the Poisson/gamma model setting λ0 = 10 and θ0 = 0.01, and (8.81,

10.81) for the negative binomial/Pearson Type VI model [for which we set

φ ≈ 0.1213 (obtained via maximum likelihood), λ0 = 10(w/φ) ≈ 82.4 and

θ0 = λ0 + 1, in order to obtain a large variance]. The first interval does not

contain the organism concentration (λ = 9) used to generate the data and

suggest (erroneously) non-compliance with the D-2 regulation. The second

interval, on the other hand, contains the value λ = 9 (even with the sample

size obtained under the Poisson/gamma model) and suggests (correctly)
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Table 8: ALC based length of HPD intervals estimated via simulation for
some scenarios under the negative binomial/Pearson Type VI model (3)-(4)
using the sample sizes in Table 4 with w = 0.5 and `max = 2.

φ θ0 n
Probability quantile used to fix λ
1/6 2/6 3/6 4/6 5/6

1

11 459 0.909 1.202 1.526 1.990 2.845
25 453 1.211 1.488 1.768 2.126 2.723
50 450 1.425 1.655 1.877 2.143 2.549
75 445 1.529 1.730 1.922 2.142 2.458

8

11 123 1.489 1.705 1.911 2.139 2.465
25 120 1.666 1.820 1.956 2.107 2.311
50 115 1.769 1.884 1.979 2.083 2.221
75 110 1.818 1.906 1.984 2.068 2.174

13

11 104 1.559 1.758 1.934 2.130 2.402
25 101 1.718 1.852 1.972 2.099 2.272
50 97 1.800 1.900 1.980 2.067 2.178
75 92 1.840 1.918 1.985 2.052 2.136

22

11 92 1.608 1.790 1.950 2.119 2.348
25 90 1.745 1.866 1.970 2.081 2.224
50 85 1.825 1.907 1.983 2.056 2.151
75 79 1.872 1.940 1.996 2.052 2.126

30

11 88 1.626 1.799 1.949 2.111 2.319
25 85 1.760 1.879 1.976 2.078 2.214
50 80 1.836 1.920 1.986 2.054 2.142
75 75 1.874 1.936 1.990 2.042 2.110

compliance with the D-2 regulation.

For the second scenario, we generated 104 observations via a Poisson

model with λ = 9 and w = 1. The generated counts are displayed in Table

9 and shows the more homogeneous distribution of the organisms. The

sum of the corresponding counts is snP = s104 = 859 so that the associated

HPD intervals are (7.29, 9.29) for both the Poisson/gamma model with

parameters λ0 = 10 and θ0 = 0.01 and the negative binomial/Pearson Type

VI model with parameters φ ≈ 233 (obtained via maximum likelihood),

λ0 = 10(w/φ) ≈ 0.043 and θ0 = λ0 + 0.01. Both intervals contain the

organism concentration λ = 9 suggesting (correctly) compliance with the
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Table 9: Simulated counts of the example via the negative binomial (NB)
model (φ = 0.1, λ = 9 and w = 1) and via Poisson (P) model (λ = 9 and
w = 1).

NB

0 0 2 65 0 0 0 19 0 6 0 1 2 0 10 27 4 0 41 0 53
0 0 0 0 0 0 0 72 6 0 1 1 55 0 12 1 0 0 0 0 0
4 0 3 0 0 248 20 1 0 5 0 0 16 0 0 7 208 0 94 0 0
1 0 0 0 0 13 0 0 0 4 0 2 1 1 2 0 0 0 0 6 0

75 0 50 6 0 0 5 0 8 1 0 0 4 0 0 8 0 2 0 0

P

5 10 10 10 12 10 3 7 10 9 10 9 7 13 7 12 7 7 6 7 7
7 6 4 7 12 9 13 12 4 9 7 7 9 6 11 6 7 17 12 9 10
7 10 8 9 10 9 7 11 5 7 11 9 6 9 9 11 6 12 12 4 7
3 7 11 7 9 4 9 6 13 3 11 5 9 8 5 7 10 14 9 6 9
6 13 8 7 6 13 6 13 6 6 5 9 7 4 7 11 4 9 7 6

D-2 regulation.

These examples suggest that the negative binomial/Pearson Type VI

model accommodates both homogeneous and extreme heterogeneous situ-

ations while the Poisson/gamma model fails in the latter case. We must

recognize, however, that both models behave quite similarly when hetero-

geneity is not extreme. This raises the question of eliciting prior information

on the organism aggregation, but this depends on historical data which is

not yet available.

5 Discussion

The results in Tables 1 and S1 obtained under the Poisson/gamma model

indicate that the sample size does not decrease much when θ0 increases,

i.e., when the variance of the prior distribution decreases. This may be

explained by the homogeneity assumption for the expected concentration

which is intrinsic to the adopted model. Unless we consider a precise prior

distribution, the sample size required to satisfy the ACC will not change

much. This feature is also visible when we compute the sample size under

the same model using the ALC (see Tables 3 and S3).

On the other hand, under model (3)-(4) using either the ACC or the
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ALC with a fixed value for φ, the precision of the prior knowledge, controlled

by θ0 here, directly affects the required sample size. This also happens when

we consider a fixed θ0 and vary φ, that plays the role of a scale parameter in

the prior distribution (see Tables 2, 4, S2 and S4).

Assuming that φ is known may be a disadvantage but we can circumvent

this problem in a practical manner without considering a prior distribution

for this parameter. The first and simpler way is to consider φ as small as

possible, e.g., φ = 1. Since the sample size n decreases as φ increases, when

we take φ as the minimum, we are being conservative, in the sense that the

corresponding n is enough or more than enough to achieve the pre-specified

criteria settings. The second alternative is to consider a naive sequential

procedure in which samples are selected one by one (or by lots). Observe

that sample sizes obtained under a Poisson/gamma model (nP ) are always

smaller than those obtained by a negative binomial/Pearson VI model (nNB),

with respective parameters fixed and write nNB = nP + K, where K is a

positive integer. For fixed w, ` (or `max) and fixed hyperparameters, we may

compute the sample size under a Poisson model, proceed with the sample

collection obtaining nP organism counts (xnP). Using these nP organism

counts we may compute an estimate for φ by maximum likelihood or by the

method of moments (see Ludwig & Reynolds, 1988, eq. 3.5, for example)

and with this estimate we may obtain nNB and consequently K, which is the

required number of additional aliquots. Since the prior distributions used

in both models are different, we must choose the hyperparameters for the

Pearson Type VI distribution which represent “equivalent prior knowledge”

to those fixed in the gamma distribution. Given w, λ0 and the estimate of φ,

we may choose θ0 such that the plot of the Pearson Type VI distribution is

similar to the plot of the gamma distribution with previous hyperparameters
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used to obtain nP.

The standard approach, on the other hand, would be to consider a prior

distribution for φ which implies including at least an additional hyperpa-

rameter so that we must deal with another integral in order to obtain the

marginal distribution of λ. This introduces further computational effort and

is object of future research.

As in Inoue et al. (2005), we compare sample sizes obtained under different

perspectives. Under the Bayesian approach fixing either ` or `max (Tables 2,

4, S2 and S4), the sample sizes are, in general, smaller than those computed

under a frequentist approach with εa (maximum absolute error estimation)

equal to 1 or 2 (see Tables 2 and 3 in Costa et al., 2016). This may be

justified by the additional information provided by the prior distribution

relatively to that considered in the frequentist approach, where only lower

and upper bounds for the parameter of interest are given.

For the ALC we also present a result (Theorem 1) which allows the

computation of sample sizes under model (1)-(2) without the need for nu-

merical and/or simulation methods. The corresponding sample sizes are

consistently smaller than those obtained via Monte Carlo replicates, although

the differences are not large. Note that since this theorem is based on large

sample approximations, we expect a difference between the corresponding

sample sizes and those obtained directly from the proposed criterion.

The simulation results (Tables 5-7 and Tables S5-S10 of the Supplemen-

tary Material) show similar results to those obtained under the simulation

study presented in Costa et al. (2016). For smaller values of λ, the cover-

age criterion is attained well above the limit but the results are reversed

for the larger values and the minimum fixed coverage is not attained. A

similar conclusion holds when using the ALC. We also note that for values
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of λ smaller or equal to the median, the estimated coverage probability is

larger than the proposed one. This is expected, but may not happen for

values of λ greater than the median, mainly for the quantiles of order 5/6 or

higher, i.e., in some cases the posterior interval does not contain λ, and this

happens with estimated coverage probability smaller than the specified one.

To justify this, note that for the Poisson/gamma model, given λ, Sn follows

a sampling Poisson distribution with mean and variance nwλ. When the

value of λ (i.e., the prior quantile) increases, the variance of Sn also increases

and consequently the variability of the posterior expected value increases,

generating more HPD intervals that do not contain the true value of λ. The

same happens for the negative binomial/Pearson Type VI model, where the

sampling variance of Sn is nwλ+ n(wλ)2/φ. When λ increases we observe

the same behavior as in the Poisson/gamma model, but here, additionally,

when φ increases, the sampling variance of Sn decreases. This may explain

the increase (decrease) of the coverage probability (length) of HPD intervals

when λ is fixed at the the 5/6 quantile of the prior distribution. Also, note

that φ is scale and shape parameter of the posterior distribution and this

may explain the reversed behavior for the other quantiles (see Tables 7, 8, S7

and S8). This suggests that in practice, if the goal is a minimum coverage

with probability 1− ρ, we should consider a sample size n corresponding to

a minimum coverage probability greater than 1− ρ in order to prevent or

minimize this problem.

Although, for simplicity, we mention only one of the requirements of the

D-2 standard, the proposed procedure is also valid for the requirement that

deballasted water should contain less than 10 viable organisms per m3, sized

≥ 50 µm in minimum dimension, provided the aliquot volume w is changed

accordingly.
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Practical issues related to the actual collection of the ballast water aliquots

have been addressed by many authors (Carney et al., 2013; First et al., 2013;

Gollasch & David, 2017). In a recent paper, Casas-Monroy et al. (2020)

compares different methods for obtaining the sample, concluding that among

three available competitors the in-line method may be the best one. Given

that the BWM Convention requires ships to install a sampling port after

their ballast water treatment system, the pipes within the required machinery

may be used to collect aliquots along the entire deballasting process. The

aliquots (with, say, 10 mL) are then integrated into a single volume from

which the organisms are counted and the corresponding credible interval is

computed.
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