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Abstract

We employ a nonparametric Bayesian approach to compute sample

sizes for estimating the organism concentration in ballast water. As a

criterion to obtain the sample size we use the total cost minimization,

which is the sum of the Bayes risk and a sampling cost function,

under a Dirichlet process mixture based on a Poisson model for the

concentration of organisms in aliquots of ballast water taken from

the ship tank. This semiparametric model provides greater flexibility

in modeling the organism distribution and robustness against the

misspecification than allowed by parametric models. Credible intervals

obtained via the proposed model may be used to verify compliance

with international standards.

1 Introduction

The determination of the sample volume to verify the compliance of a ship

with the D-2 standard of the International Maritime Organization requires
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careful statistical analysis. An important feature of this problem is the

inherent heterogeneous nature of the organism concentration in the ballast

tank (Murphy et al., 2002). Recently, Costa et al. (2015, 2016) proposed

methodologies to compute the sample size for evaluate ballast water standards

controlling the probabilities of Type I and II errors and the estimation error,

respectively, in a frequentist approach using a negative binomial model. On

the other hand, Costa et al. (2019a,b) also use a negative binomial model but

in a Bayesian approach to compute the sample size with criteria controlling

summaries of the credible intervals and the Bayes risk. The advantage of

the latter approach is that we may incorporate (if available) prior knowledge

acquired over the time.

Assume that we collect n aliquots of ballast water and that the i-th

aliquot has a λi organism concentration with a correspondent number of

organisms, which we denote by Xi, i = 1, . . . , n. Then, in the i-th aliquot

we expect to find wλi organisms, i.e. E
[
Xi

∣∣λi] = wλi. For i = 1, . . . , n,

suppose that, given λi, Xi follows a Poisson distribution with mean wλi

and that given a probability measure F , yet unknown wholly or partly, λi

follows such a distribution. In Costa et al. (2019a,b) the authors suppose

that F is the probability measure of a gamma distribution, but instead of

specifying a known form for F , we may establish a set of possible distributions

in which F may vary, which allows greater flexibility in the modeling and

robustness against the misspecification. A way to avoid the specification

of a parametric form for F is using random probability measures (RPM),

which are probability distributions under a space of probability measures

(here in R+), and a example of a RPM is the Dirichlet process. Ferguson
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(1973) introduced the Dirichlet process as a possible solution for the problem

of prior specification in a nonparametric Bayesian approach, where the prior

space is a set of probability distributions under a given sample space. See

Phadia (2016), for example.

2 The semiparametric Bayesian model

Suppose that F follows a Dirichlet process with parameters α and F0, sym-

bolically F ∼ DP(α, F0). Under this setting we have E [F (A)] = F0(A) and

Var [F (A)] = F0(A)[1− F0(A)]/(α + 1), where A is an element of the σ-field

of Λ (parameter space of λi), F0 is called base-distribution and α a preci-

sion parameter. In our problem we consider F0 to be a gamma distribution

function with mean λ0 and shape parameter θ0, both known.

Its properties and the fact that the posterior distribution is easily obtained

show why the Dirichlet process is so attractive when analyzed under a Bayesian

perspective. Note that in our case the Dirichlet process is the prior assigned

to the distribution of the concentrations associated with the conditional

Poissonian observations. In this sense, we may write the model hierarchically

as follows

Xi|λi
ind∼ Poisson(wλi), i = 1, 2, . . . , n; (1)

λi|F
iid∼ F, i = 1, 2, . . . , n; (2)

F ∼ DP(α, F0). (3)

The parameter of interest is the mean, say λR, of the (unknown) real
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concentration distribution in the tank, F . If we consider the prior Dirichlet

process for F , the corresponding prior (random) mean

λ =

∫
Λ

uF (du),

is known as a functional of the Dirichlet process. For example, see Cifarelli &

Regazzini (1990), Cifarelli & Melilli (2000), James et al. (2008), Regazzini

et al. (2002), among others, for how to obtain the probability distribution

function of functionals of the Dirichlet process and its properties. In our case

we do not need to know the probability distribution function of the functional,

it is sufficient to know how to draw samples of λ (given an observed sample)

and we may use the result in Hjort & Ongaro (2005, Proposition 2) whose

obtained a stochastic representation for functionals of the Dirichlet process

from the stick-break representation. In our case, for λ we have

λ =d Bξ + (1−B)λ,

if E [log(1 + |ξ|)] <∞, where ξ ∼ F0 and B ∼ Beta(1, α), a beta distribution

with mean 1/(1 + α). In the right side of the equation the terms B, ξ and λ

are independents. The notation ‘=d’ means the same distribution. Since in

our case F0 is the gamma distribution function then E [|ξ|] is finite and using

Jensen’s inequality we conclude that E [log(1 + |ξ|)] is finite and we may use

the stochastic representation. The simulation strategy for λ is exploiting a

Markov chain of the form

λt = Btξt + (1−Bt)λt−1, t ≥ 2.
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In our case we have that λt → λ in distribution as t→∞, in addition λt

is geometrically ergodic (Guglielmi & Tweedie, 2001, Theorem 1). Using this

chain and the algorithm in Guglielmi et al. (2002) we may draw samples of

λ. Given a random sample xn = (x1, . . . , xn) consider the posterior random

mean

λ
(n)

=

∫
Λ

uF (n)(du),

with

F (n) = (F |xn) =

∫
Λn

DP(α + n,Gn)ν(dλn|xn),

where λn = (λ1, . . . , λn) and Gn = (αF0 +
∑n

i=1 δλi)/(α+ n) with δλi(A) = 1,

if λi ∈ A, and δλi(A) = 0, otherwise. In addition, we have

ν(dλn|xn) ∝
n∏
i=1

g(xi|λi)

[
αF0(dλi) +

i−1∑
j=1

δλi(dλj)

]
,

where g(·|λ) is the probability function of a Poisson distribution with mean

wλ.

Taking into account the inherent clustering of the λi’s in the Dirichlet

process, we concentrate the conditioning quantities λj ’s on n∗ ≤ n−1 distinct

values λ∗j , with nj quantities taking this common value. Then, we may use the

following full conditional probability (Escobar & West, 1998, Section 1.3.1)

ν(dλi|λ(−i),xn) ∝ q0g(xi|λi)F0(dλi) +
n∗∑
j=1

njq
∗
j δλ∗j (dλi), (4)
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where λ(−i) = {λj|j 6= i, j = 1, . . . , n} with

q0 ∝ α

∫
Λ

g(xi|λi)F0(dλi) and q∗j ∝ g(xi|λ∗j),

such that q0 +
∑

j njq
∗
j = 1. In our problem for q0 we have the mixture of

a Poisson distribution and a gamma distribution, which arises a negative

binomial distribution. Hence, we may use a Gibbs sampling to draw samples

of ν(dλn|xn). Escobar & West (1998) comment that when we use the above

conditional distribution in a Markov chain Monte Carlo algorithm, there may

occur problems if the sum of the q∗j ’s becomes very large relative to q0 on any

iteration. In order to prevent this problem it is helpful to “remix” the λ∗j ’s

after every step. Conditioning on n∗, consider si = j if λi = λ∗j so that, given

si = j and λ∗j , Xi ∼ Poisson(wλ∗j). The cluster structure is defined by the

set s = {s1, . . . , sn}, the nj = #{si = j} observations in cluster j share the

common value λ∗j . Define Jj as the set of indexes of observations in cluster

j, i.e., Jj = {i|si = j}. Let x(j) = {xi|si = j} be the corresponding cluster

of observations. Then, we use the following posterior distribution to “remix”

the λ∗j ’s in the Gibbs sampling

h(λ∗j |xn, s, n∗) = h(λ∗j |x(j), s, n
∗) =

∏
i∈Jj

g(xi|λ∗j)F0(dλ∗j),

for j = 1, . . . , n∗. In our problem we have

h(λ∗j |xn, s, n∗) ∝ (λ∗j)
θ0−1+

∑
i∈Jj

xie
−
(
nj+

θ0
λ0

)
λ∗j , (5)

which is a gamma distribution. To draw samples of ν(dλn|xn) we use (4) in
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a Gibbs sampling and (5) to “remix” the λ∗j ’s.

For the posterior random mean we have the following representation (Hjort

& Ongaro, 2005, equation 5.3)

λ
(n)

=d Bλ+ (1−B)
n∑
i=1

DiZi,

where B ∼ Beta(α, n) is a beta distribution with mean α/(α + n), Di,

i = 1, . . . , n are the elements of a vector with multivariate uniform distribution

and (Z1, . . . , Zn) ∼ ν(dλn|xn). Taking all these features into account we are

able to simulate samples of λ
(n)

. Similar strategies and results may be used

in the case that the functional of the Dirichlet process is
∫

Λ
k(u)F (du) where

k(u) is a measurable function (Guglielmi et al., 2002; Hjort & Ongaro, 2005).

3 Sample size determination

We use the total cost minimization approach used by Costa et al. (2019a) to

determine the sample size. Under this approach it is necessary to specify a loss

function L(λR, dn) based on a sample X1, . . . , Xn and a decision dn, when the

parameter is λR. In the problem of interval inference, a decision corresponds

to the determination of two quantities, the lower [say, a = a(xn)] and upper

[say, b = b(xn)] limits which form a credible interval for the parameter of

interest λR. For simplicity of notation, we drop the argument xn. In this

context, the posterior Bayes risk may be written as

r(F (n), dn) =

∫
Xn

E[L(λR, dn)|xn]g(xn)dxn. (6)
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The decision d∗n which minimizes r(F (n), dn) among all the possible deci-

sions dn is the so-called Bayes rule. Then, the sample size desired is the one

which minimizes the total cost defined as

TC(n) = r(F (n), d∗n) + cn,

where c is the cost of sampling one aliquot. It is not always possible to

compute r(F (n), d∗n) analytically. We use Monte Carlo simulations to estimate

r(F (n), d∗n) for a set of n’s by drawing samples of xn, computing the expected

value in (6) applied in d∗n and taking the mean of these values. Details are

presented in the Supplementary Material. With the estimates of r(F (n), d∗n)

for each n we fit the following curve which may be linearized and viewed as a

linear regression equation (Costa et al., 2019a)

TC(n) =
E

(1 + n)H
+ cn,

which leads to the required sample size is the largest integer next to

(
Ê Ĥ

c

)1/(Ĥ+1)

− 1, (7)

where Ê and Ĥ are the estimates obtained by the linear regression fitting

(least squares, for example) of E and H, respectively. We use the same loss

functions used by Costa et al. (2019a) defined as follows.
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3.1 Loss function 1

The first loss function we use is

L(λR, dn) = ρτ + (a− λR)+ + (λR − b)+, (8)

where 0 < ρ < 1 is a weight, τ = (b− a)/2 is the radius of the interval, the

function x+ is equals to x if x > 0 and equals to zero, otherwise and a decision

dn = dn(a, b) corresponds to determine the bounds of an credible interval.

The correspondent Bayes rule is the quantiles of probabilities ρ/2 and 1− ρ/2

of the distribution of λ
(n)

(Rice et al., 2008). For this loss function we have

E
[
L(λ

(n)
, d∗n)

]
= E

[
λ

(n)
δ
λ
(n)(Ab∗)

]
− E

[
λ

(n)
δ
λ
(n)(Aa∗)

]
, (9)

where Ab∗ = [b∗,∞), Aa∗ = (0, a∗], a∗ and b∗ are the correspondent bounds of

the Bayes rule d∗n. In Table 1 we present sample sizes computed using the

total cost minimization criterion and loss function 1.

3.2 Loss function 2

The second loss function is

L(λR, dn) = γτ + (λR −m)2/τ,

where γ > 0 is a fixed constant and m = (a + b)/2 is the center of the

credible interval. In this case, the Bayes rule correspond to the quantities

which form the interval [a∗, b∗] = [m − SDγ,m + SDγ], where (m, SDγ) =
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Table 1: Sample size (n) computed with ρ = 0.05 and under the Pois-
son/Dirichlet process (1)-(3) model with F0 a gamma distribution function
with mean λ0 = 10 and shape parameter θ0, and using the loss function 1.

Aliquot Aliquot
α

Shape parameter (θ0)
volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5

0.005

0.5 20 16 14 13 10
1.5 22 18 15 13 12
2.5 23 17 14 12 11
5.0 21 15 12 10 9
10.0 17 12 9 7 6

0.010

0.5 12 10 9 8 8
1.5 14 11 9 8 7
2.5 14 10 8 7 6
5.0 13 9 7 6 5
10.0 10 7 5 4 3

1.0

0.005

0.5 19 15 13 12 11
1.5 22 17 14 12 11
2.5 22 17 13 12 11
5.0 20 15 12 10 9
10.0 17 12 9 7 7

0.010

0.5 12 10 8 7 7
1.5 14 10 9 8 7
2.5 14 10 8 7 6
5.0 13 9 7 6 5
10.0 10 7 5 4 4

(
E
[
λ

(n)
]
, γ−1/2

√
Var

[
λ

(n)
])

. For more details see Rice et al. (2008). For

this loss function we have

E
[
L(λ

(n)
, d∗n)

]
= 2γ1/2

√
Var

[
λ

(n)
]
. (10)

In Table 2 we present sample sizes computed using the total cost mini-

mization criterion and loss function 2.
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4 Discussion

Sample size is directly affected when we vary θ0 with α fixed, or vary α with

θ0 fixed (Tables 1 and 2), Costa et al. (2019a) also observed this behavior

with another model. This change in n is more evident in loss function 2. In

general, the sample sizes obtained via loss function 1 are much smaller than

those obtained via loss function 2 (see Tables 1 and 2), which is also observed

in Costa et al. (2019a). The authors justify this by the fact that loss function

2 seems to provide more conservative intervals.

We also observed that for a fixed θ0 the sample size increases with α until

some value and then decreases, which is more evident in loss function 2. This

may be explained by two facts: (i) as α→∞ the Dirichlet process tends to

concentrate around F0, which in our problem is a gamma distribution; (ii)

Sethuraman & Tiwari (1981) showed that DP(α, F0)→ δλ(λ′) in distribution

as α → 0, where λ′ ∼ F0. Also note that for θ0, α and c fixed, the value

of the aliquot volume w does not affect much the sample size n, suggesting

the choice of smaller w in order to decrease the total volume and the cost

of sampling. On the other hand, when the aliquot cost c increases the n

decreases, which is more evident in loss function 2.
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Table 2: Sample size (n) computed under the Poisson/Dirichlet process (1)-(3)
model with F0 a gamma distribution function with mean λ0 = 10 and shape
parameter θ0, and using the loss function 2.

Aliquot Aliquot
γ α

Shape parameter (θ0)
volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5

0.005

1

0.5 108 92 83 78 74
1.5 133 106 92 84 79
2.5 138 109 92 83 77
5.0 138 106 85 76 69
10.0 126 92 72 61 54

1/4

0.5 69 59 53 49 47
1.5 83 67 58 52 49
2.5 86 68 57 50 47
5.0 84 64 52 45 41
10.0 75 55 42 35 31

0.010

1

0.5 69 59 53 49 47
1.5 84 67 57 52 49
2.5 86 68 57 51 47
5.0 85 64 51 45 41
10.0 75 54 42 36 31

1/4

0.5 45 37 33 31 30
1.5 53 42 36 32 30
2.5 54 42 35 31 28
5.0 52 39 31 27 24
10.0 45 32 24 20 18

1.0

0.005

1

0.5 103 85 75 70 66
1.5 128 100 85 77 72
2.5 135 104 87 77 72
5.0 135 102 82 73 66
10.0 125 91 71 61 55

1/4

0.5 67 54 48 44 42
1.5 82 64 54 49 45
2.5 85 65 54 48 44
5.0 84 62 50 44 40
10.0 74 53 42 36 32

0.010

1

0.5 66 54 47 44 42
1.5 81 64 53 48 45
2.5 85 65 53 48 44
5.0 84 63 50 44 40
10.0 75 53 41 36 32

1/4

0.5 43 34 30 28 27
1.5 52 40 33 30 28
2.5 53 41 33 30 27
5.0 52 38 30 26 24
10.0 44 32 25 21 19
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