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Abstract

With the objective of verifying compliance with international stan-

dards, we employ a Bayesian decision approach to compute minimum

sample sizes for estimating organism concentration in ballast water.

To obtain the minimum sample size, we use a total cost minimization

criterion defined as the sum of the sampling cost and the Bayes risk

either under a Poisson/gamma model with a gamma prior distribution

or under a negative binomial distribution with a Pearson Type VI prior

distribution. We also conduct a simulation study to evaluate credi-

ble interval lengths associated with the proposed minimum sample sizes.

Keywords: Bayes risk, Poisson distribution, negative binomial distri-

bution.
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1 Introduction

With the expansion of maritime traffic, ballast water has become the leading

dispersing agent of invasive organisms with serious environmental, public

health and economic consequences as indicated in Strayer (2010), McCarthy

et al. (1992) and Marbuah et al. (2014). An overview of research in this

field in the last thirty years is presented in Bailey (2015). In order to reduce

these effects the International Maritime Organization (IMO) proposed the

D-2 standard which sets upper limits on the organism concentration in ballast

water discharged by ships. The D-2 standard requires that deballasted water

should contain no more than 10 living organisms (referred to simply as

organisms in the remainder) per mL, for organisms with maximum dimension

between 10 µm and 50µm among other restrictions. Recently, Cohen et al.

(2017) suggested that the standards must be re-evaluated and the limits must

be even smaller. Given the large amount of ballast water carried by some

vessels, it is impractical to analyze the whole water volume and an alternative

is to rely on sampling methods that guarantee some pre-specified acceptable

error rates associated to the decision of whether a given deballasting process

complies with the D-2 standard.

Adopting a frequentist approach, Costa et al. (2015, 2016) addressed the

problem of determining the appropriate sample size either from the point

of view of hypothesis testing or interval inference, respectively. Costa et al.

(2019), on the other hand, adopted a Bayesian approach based on credible

intervals to determine the required sample size using average coverage and

average length criteria. All these approaches take the inherent heterogeneity
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distribution of the organism concentration in ballast tanks into account.

Here we consider a Bayesian decision approach, with a total cost min-

imization criterion which minimizes the sum of the sampling cost and the

Bayesian risk. An advantage of this approach is that the cost of collecting

the sample is explicitly taken into account.

For the Bayes risk, we must specify a loss function based on the specifica-

tion of two quantities, namely, the lower [say, a(xn)] and the upper [say, b(xn)]

limits of a credible interval for the mean organism concentration obtained

from a sample xn of organisms in n aliquots with a given volume w collected

from a ballast water tank.

Once the required minimum sample size, say nm, has been determined,

a real dataset xnm is collected and the ship is declared not compliant with

the D-2 standard if a(xnm) > 10 or compliant, if b(xnm) < 10. Otherwise, if

a(xnm) < 10 < b(xnm), more data are needed to make a decision.

In a different setup, Etzioni & Kadane (1993) use a similar criterion with

quadratic and logarithmic loss functions under a normal model. Sahu &

Smith (2006) consider a loss function for the hypothesis testing problem of

the parameter of a normal model. Islam (2011) and Islam & Pettit (2012,

2014) consider quadratic, linex and bounded linex loss functions for point

estimation of the mean and the variance of a normal model with normal prior

distributions or exponential and Poisson models both with a gamma prior

distribution for point estimation of their respective parameters. Following the

same approach or the one in which a loss function must be specified, we may

cite Pham-Gia & Turkkan (1992), Bernardo (1997), Lindley (1997), Brutti

et al. (2008, 2009), Parmigiani & Inoue (2009), Brutti et al. (2014), De Santis
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& Gubbiotti (2017), among others.

In Section 2 we describe the Bayesian models. Sample size determination

along with a simulation study is presented in Section 3. We conclude with a

discussion in Section 4.

2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Let X be the number of organisms in an aliquot of volume w collected from

a ballast tank with organism concentration λ. The expected number of

organisms in this aliquot is wλ, i.e., E[X|λ] = wλ. Suppose that, given λ,

X follows a Poisson distribution with mean wλ; this essentially corresponds

to the assumption that the organisms are homogeneously distributed in the

ballast tank. A possible and first natural choice for a prior distribution is the

conjugate gamma distribution in which density,

f(λ) ∝ λθ0−1 exp(−θ0λ/λ0),

where λ0 and θ0 are positive and known fixed constants (hyperparameters),

respectively interpreted as a prior estimate for the mean concentration and

the corresponding variability. The larger (smaller) θ0, the smaller (larger) the

prior uncertainty about λ.

Considering a random sample of size n of X|λ and a gamma prior distri-
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bution for λ, we may write the model hierarchically as follows

Xi|λ
iid∼ Poisson(wλ), i = 1, 2, . . . , n; (1)

λ ∼ Gamma(θ0, θ0/λ0). (2)

In this context, the posterior distribution of λ is a gamma distribution

with parameters θ0 + sn and nw + θ0/λ0, where sn =
∑n

i=1 xi, i.e., λ|xn ∼

Gamma(θ0 + sn, nw + θ0/λ0), where xn = (x1, . . . , xn). Details are presented

in the Supplementary Material.

2.2 Negative binomial model with Pearson Type VI

prior distribution

Suppose that the organism concentration in the i-th aliquot is λi and the

corresponding number of organisms is Xi, i = 1, . . . , n. The expected number

of organisms in the i-th aliquot is wλi, i.e., E
[
Xi

∣∣λi] = wλi. For i = 1, . . . , n,

suppose that, given λi, Xi follows a Poisson distribution with mean wλi and

that given a mean concentration λ in the tank, λi ∼ Gamma(φ, φ/λ), so

that E
[
λi
∣∣λ] = λ and Var

[
λi
∣∣λ] = λ2/φ. Thus, given λ and φ, Xi follows

a negative binomial distribution with E
[
Xi

∣∣λ, φ] = wλ and Var
[
Xi

∣∣λ, φ] =

wλ + (wλ)2/φ, where φ is a shape (or agglomeration) parameter assumed

known; we use the notation Xi|λ, φ ∼ NB(wλ, φ).

A natural conjugate prior distribution for the negative binomial distribu-
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tion is the Pearson Type VI distribution (Johnson et al., 1994a,b), i.e.,

f(λ) ∝
(
w

φ
λ

)θ0−1(
1 +

w

φ
λ

)−θ0−(θ0/λ0+1)

,

with location parameter 0, scale parameter φ/w and shape parameters θ0

and θ0/λ0 + 1, where λ0 and θ0 are known positive fixed constants (hyper-

parameters). We use the notation λ ∼ PVI(0, φ/w, θ0, θ0/λ0 + 1). In this

case, E [λ] = (φ/w)λ0 and Var [λ] = (λ2
0/θ0)[φ2(λ0 + 1)/(w2(1− λ0/θ0))], for

λ0 < θ0.

Considering a random sample of size n from X|(λ, φ) and a Pearson Type

VI prior distribution for λ; then we may write the model hierarchically as

Xi|λ, φ
iid∼ NB(wλ, φ), i = 1, 2, . . . , n; (3)

λ ∼ PVI(0, φ/w, θ0, θ0/λ0 + 1). (4)

In this context, the posterior distribution of λ is also a Pearson Type

VI distribution, with the same location and scale parameters of the prior

distribution, and shape parameters θ0 + sn and θ0/λ0 + nφ+ 1, i.e., λ|xn ∼

PVI(0, φ/w, θ0+sn, θ0/λ0+nφ+1). Details are presented in the Supplementary

Material.
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3 Sample size determination

3.1 Total cost minimization

A way to approach the problem of sample size determination is to consider

it as a decision problem (Lindley, 1997; Parmigiani & Inoue, 2009; Islam &

Pettit, 2014). For this purpose, given that λ is the parameter of interest, it is

necessary to specify a loss function L(λ, dn) based on a sample X1, . . . , Xn and

a decision dn. For interval inference, a decision consists of the specification

of two quantities, the lower [say, a(xn)] and the upper [say, b(xn)] limits,

limits of a credible interval for the parameter of interest λ. For simplicity of

notation, we drop the argument xn.

Let f be a prior distribution for the unknown parameter λ and dn a

decision function; then the Bayes risk is (see Parmigiani & Inoue, 2009)

r(f, dn) =

∫
Λ

∫
Xn

L(λ, dn)g(xn|λ)f(λ)dxndλ (5)

where Λ is the parameter space. The Bayes risk r(f, dn) may be viewed as a

mean of the sampling expected loss (as a function of the parameter of interest)

weighted by the prior distribution; this is a way to summarize the sampling

expected loss over all possible values of the parameter of interest (here, the

mean concentration λ).

The decision d∗n that minimizes r(f, dn) among all the possible decisions

dn is called a Bayes rule. Note that if the order of the integration may be

7
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inverted, we have

r(f, dn) =

∫
Xn

[∫
Λ

L(λ, dn)f(λ|xn)dλ

]
g(xn)dxn

=

∫
Xn

E
[
L(λ, dn)

∣∣xn] g(xn)dxn, (6)

so that the decision d∗n that minimizes r(f, dn) is the same that minimizes

the posterior expected value of the loss function, namely, E
[
L(λ, dn)

∣∣xn

]
. In

this context, the required sample size minimizes the total cost

TC(n) = r(f, d∗n) + cn,

where c is the cost of sampling an aliquot. Often it is not possible to compute

r(f, d∗n) analytically. In such cases, we may use Monte Carlo simulations as

an alternative. Since simulation methods are used, the estimates of TC(n)

may show a variation around its true value. We may reduce this variation in

the following ways: (i) taking the number of Monte Carlo replicates as large

as possible and/or, (ii) fitting a curve by least squares or some other method

to the estimates of TC(n) as a function of n. Müller & Parmigiani (1995)

propose to fit the following curve to the estimates of TC(n),

TC(n) =
E

(1 +Hn)G
+ cn,

where E,H, e G are parameters to be estimated. The numerical methods

required to estimate these parameters sometimes do not reach convergence

depending on the initial values for the corresponding algorithms. Because
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(i) the parameters H and G play similar roles and essentially represent a

kind of decreasing rate of the Bayes risk and (ii) taking into account that the

expression (1 + n)G offers more alternatives to a decreasing rate than 1 +Hn,

we propose to fit the function

TC(n) =
E

(1 + n)G
+ cn,

that may be linearized as

log[TC(n)− cn] = logE −G log(1 + n), (7)

where the term − log(1+n) may be interpreted as an explanatory variable and

log[TC(n)− cn], as a dependent variable like in linear regression. Assuming

that an error is added, the estimates of E and G may be computed by least

squares. Then, the required sample size is the largest integer closest to

(
Ê Ĝ

c

)1/(Ĝ+1)

− 1, (8)

where Ê and Ĝ are, respectively, the estimates of E and G obtained by least

squares.

9
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3.2 Loss functions

Loss function 1

Firstly, we consider the following loss function

L(λ, dn) = ρτ + (a− λ)+ + (λ− b)+, (9)

where 0 < ρ < 1 is a weight, τ = (b− a)/2 is the half-length of the desired

interval, the function x+ is equal to x if x > 0 and equal to zero, otherwise.

The smaller is τ , the narrower the interval. The terms (a− λ)+ and (λ− b)+

are included to penalize intervals that do not contain the parameter of interest

(λ). These terms are equal to zero if λ ∈ [a, b] and increase as λ moves away

from the interval. Note that the loss function (9) is a weighted sum of two

terms, τ and (a−λ)++(λ−b)+, where the weights are ρ and 1, respectively. In

this context, Rice et al. (2008) argue that the second term of the loss function

must receive the greatest weight, i.e., ρ < 1. The Bayes rule corresponds

to taking a and b as the quantiles of probabilities ρ/2 and 1 − ρ/2 of the

posterior distribution of λ.

An algorithm to obtain the minimum sample size satisfying the total

cost minimization for this loss function is outlined in the Supplementary

Material. Sample sizes computed under either Poisson/gamma or negative

binomial/Pearson Type VI distributions via loss function 1 are displayed

in Tables 1 and 2, respectively. In Figure 1 we depict a curve fitted to the

estimated Bayes risk as a function of n for the negative binomial/Pearson

Type VI model with θ0 = 11, φ = 10, w = 0.5, c = 0.005 and λ0 = 10(w/φ).
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The vertical line indicates the minimum n at 23. Note that for each n the

estimates (ten for each n) of the Bayes risk do not vary much.

3.2.1 Loss function 2

A second loss function is

L(λ, dn) = γτ + (λ−m)2/τ,

where γ > 0 is a fixed constant and m = (a + b)/2 is the center of the

credible interval. The first term involves the half-width of the interval and

the second, the square of the distance between the parameter of interest and

the center of the interval, which it is divided by the half-width to maintain

the same measurement unit of the first term. The weights attributed to each

term are γ and 1, respectively. If γ < 1, we attribute the greatest weight

to the second term; if γ > 1, the situation is reversed and if γ = 1 the two

terms have the same weight. In this case, the Bayes rule corresponds to the

quantities which define the interval [a∗, b∗] = [m − SDγ,m + SDγ], where

(m, SDγ) = (E
[
λ
∣∣xn] , γ−1/2

√
Var

[
λ
∣∣xn]). For more details see Parmigiani

& Inoue (2009), Rice et al. (2008) and Schervish (1995).

An algorithm to obtain the minimum sample size satisfying the the total

cost minimization for this loss function is also outlined in the Supplementary

Material. Sample sizes computed under either Poisson/gamma or negative

binomial/Pearson Type VI distributions via loss function 2 are displayed in

Tables 3 and 4, respectively.
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3.3 Simulation study

We carried out a simulation study to evaluate the lengths of the credible

intervals associated with the proposed minimum sample sizes. For such

purposes, we considered the sample sizes obtained previously for each w, c,

γ, θ0 (and φ in the negative binomial model with Pearson Type VI prior

distribution). For each scenario and given n, we drew a sample of size 100 of

xn, obtained the corresponding posterior credible intervals and computed the

mean of their lengths. The results are displayed in Tables 1-4.

4 Discussion

The results in Table 1 obtained under the Poisson/gamma model indicate that

n does not decrease much when θ0 increases. Costa et al. (2019) also observed

the same behavior with a different approach to compute the minimum sample

size. This feature is also visible when we compute n under the same model

via loss function 2. Under the negative binomial/Pearson Type VI model, the

sample size is directly affected when we vary θ0 with fixed φ, or vary φ with

fixed θ0 (see Tables 2 and 4). This is also observed in Costa et al. (2019).

In general, the sample sizes computed via loss function 1 are smaller than

those obtained via loss function 2 (see Tables 1-4). This may be justified

by the fact that when we consider ρ = 0.05 in loss function 1, we are giving

a larger weight (equal to 1) to the event in which the parameter λ lies in

the credible interval. Consequently, the length of the interval may be larger,

leading to smaller sample sizes. On the other hand, when we consider loss

function 2 with γ = 1, we are giving the same weight to both the length of
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the credible interval and to the distance between λ and the interval center;

even when γ = 1/4 and the second term receives the greatest weight, this loss

function seems to provide more conservative intervals. Hence, larger sample

sizes are required.

The results in Table 2, obtained under model (3)-(4) via loss function

1 show that the sample sizes increase with the parameter φ. This may be

justified by the fact that φ is a scaling parameter in the prior distribution; the

larger φ the greater the uncertainty about λ. Additionally, the loss function 1

providing the quantiles of the posterior distribution for inference may be an

additional explanation. Note that with loss function 2 this does not happen,

maybe because of the conservative credible intervals generated (posterior

mean ∓ posterior standard deviation), see Table 4.

All the features pointed out previously may also be observed via the

estimated posterior credible intervals lengths obtained via simulation (see

Tables 1-4). From the practical point of view, loss function 2 is preferred

because in general, it seems to provide posterior credible intervals with smaller

lengths than those from loss function 1, specially for γ = 1 in which the

same weight is given for both components that compose the loss function.

In this context, for the negative binomial model, we have the same problem

of considering the φ parameter known as in Costa et al. (2019). However,

since the minimum n is not heavily affected by the increase in φ, and if we

want to be conservative we may consider φ as the smallest possible (φ = 1,

for example) and collect no more than 10 additional aliquots compared to

the case where φ is large. In this sense, we recommend the use of the loss

function 2, and for the negative binomial/Pearson Type VI model setting
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γ = 1, which provide credible intervals with lengths not greater than 3.

Although the focus of this study is ballast water sampling, similar results

may be applied to other problems in which the Poisson or the negative

binomial models underlie the data generating process.
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Table 1: Sample sizes n and estimated mean posterior credible lengths via
simulation (within parentheses), both computed under a Poisson/gamma
(1)-(2) model with λ0 = 10, ρ = 0.05 via loss function 1.

Aliquot Aliquot Shape parameter (θ0)
volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5
0.005 14 (4.47) 14 (4.57) 13 (4.70) 13 (4.66) 12 (4.67)
0.010 9 (5.73) 9 (5.53) 8 (5.83) 8 (5.63) 8 (5.54)

1.0
0.005 11 (3.61) 11 (3.61) 11 (3.62) 11 (3.64) 11 (3.53)
0.010 7 (4.55) 7 (4.63) 7 (4.47) 7 (4.46) 6 (4.66)
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Table 2: Sample sizes n and estimated mean posterior credible lengths via
simulation (between parenthesis), both computed under a negative bino-
mial/Pearson Type VI (3)-(4) model with λ0 = 10(w/φ), ρ = 0.05 via loss
function 1.

Aliquot Aliquot
φ

Shape parameter (θ0)
volume (w) cost (c) 11 25 50 75

0.5

0.005

1.0 9 (14.05) 7 (12.75) 5 (11.13) 4 (10.05)
2.5 12 (8.09) 10 (7.99) 7 (7.61) 6 (6.65)
5.0 16 (5.74) 14 (5.68) 11 (5.37) 9 (5.11)
7.5 20 (4.80) 17 (4.76) 14 (4.63) 11 (4.41)
10.0 23 (4.21) 20 (4.26) 16 (4.23) 14 (4.00)

0.010

1.0 5 (16.95) 4 (15.05) 3 (12.14) 2 (10.58)
2.5 7 (10.24) 6 (9.43) 4 (8.02) 3 (7.21)
5.0 10 (7.10) 8 (6.99) 6 (6.20) 5 (5.54)
7.5 12 (6.18) 10 (5.83) 8 (5.32) 6 (4.93)
10.0 15 (5.22) 12 (5.21) 10 (4.76) 8 (4.47)

1.0

0.005

1.0 6 (17.13) 5 (15.60) 4 (13.93) 3 (12.66)
2.5 8 (9.68) 7 (8.77) 5 (8.89) 5 (7.96)
5.0 10 (6.66) 9 (6.51) 7 (6.20) 6 (5.90)
7.5 12 (5.09) 11 (5.14) 9 (5.14) 8 (4.80)
10.0 14 (4.59) 12 (4.62) 10 (4.48) 9 (4.28)

0.010

1.0 4 (18.22) 3 (19.36) 2 (16.37) 2 (13.38)
2.5 5 (11.30) 4 (10.94) 3 (10.33) 3 (8.66)
5.0 6 (8.14) 5 (7.87) 4 (7.20) 4 (6.47)
7.5 7 (6.44) 6 (6.44) 5 (6.10) 5 (5.37)
10.0 8 (5.79) 7 (5.54) 6 (5.34) 5 (4.99)
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Table 3: Sample sizes n and estimated mean posterior credible lengths via
simulation (within parentheses), both computed under the Poisson/gamma
(1)-(2) model with λ0 = 10 via loss function 2.

Aliquot Aliquot
γ

Shape parameter (θ0)
volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5
0.005

1 94 (0.93) 94 (0.92) 92 (0.93) 90 (0.94) 89 (0.94)
1/4 60 (2.30) 59 (2.32) 58 (2.33) 56 (2.35) 55 (2.37)

0.010
1 60 (1.14) 59 (1.15) 58 (1.15) 56 (1.18) 55 (1.18)

1/4 38 (2.89) 37 (2.90) 36 (2.94) 35 (2.95) 34 (3.00)

1.0
0.005

1 75 (0.73) 75 (0.73) 75 (0.72) 74 (0.73) 73 (0.74)
1/4 48 (1.81) 48 (1.81) 47 (1.84) 46 (1.85) 46 (1.85)

0.010
1 48 (0.91) 48 (0.91) 47 (0.92) 46 (0.93) 46 (0.92)

1/4 30 (2.27) 30 (2.28) 30 (2.30) 29 (2.32) 29 (2.32)
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Table 4: Sample sizes n and estimated mean posterior credible lengths via
simulation (within parentheses), both computed under the negative bino-
mial/Pearson Type VI (3)-(4) model with λ0 = 10(w/φ) via loss function
2.

Aliquot Aliquot
γ φ

Shape parameter (θ0)
volume (w) cost (c) 11 25 50 75

0.5

0.005

1

1.0 205 (2.05) 193 (2.09) 175 (2.20) 158 (2.28)
2.5 202 (2.08) 191 (2.09) 173 (2.20) 157 (2.27)
5.0 201 (2.09) 190 (2.11) 172 (2.22) 156 (2.28)
7.5 201 (2.10) 190 (2.11) 172 (2.21) 156 (2.27)
10.0 201 (2.09) 189 (2.13) 172 (2.19) 156 (2.26)

1/4

1.0 128 (5.09) 118 (5.32) 104 (5.59) 93 (5.75)
2.5 126 (5.32) 117 (5.46) 103 (5.63) 92 (5.76)
5.0 126 (5.31) 116 (5.42) 102 (5.64) 92 (5.77)
7.5 125 (5.20) 116 (5.44) 102 (5.57) 91 (5.76)
10.0 125 (5.22) 116 (5.37) 102 (5.58) 91 (5.76)

0.010

1

1.0 129 (2.66) 119 (2.66) 105 (2.73) 93 (2.89)
2.5 126 (2.62) 117 (2.68) 103 (2.81) 92 (2.90)
5.0 125 (2.62) 116 (2.70) 102 (2.78) 92 (2.89)
7.5 125 (2.61) 116 (2.69) 102 (2.80) 91 (2.87)
10.0 125 (2.63) 116 (2.70) 102 (2.83) 91 (2.90)

1/4

1.0 81 (6.48) 73 (6.84) 63 (6.87) 55 (7.18)
2.5 79 (6.61) 71 (6.77) 61 (7.05) 54 (7.15)
5.0 78 (6.60) 71 (6.79) 61 (6.95) 54 (7.15)
7.5 78 (6.64) 71 (6.77) 61 (7.08) 54 (7.16)
10.0 78 (6.62) 71 (6.82) 61 (6.94) 53 (7.20)

1.0

0.005

1

1.0 167 (1.61) 161 (1.66) 151 (1.71) 143 (1.72)
2.5 164 (1.61) 154 (1.67) 149 (1.68) 141 (1.73)
5.0 163 (1.64) 158 (1.65) 149 (1.70) 140 (1.73)
7.5 163 (1.66) 158 (1.65) 148 (1.68) 140 (1.73)
10.0 163 (1.64) 157 (1.66) 148 (1.70) 140 (1.73)

1/4

1.0 106 (4.03) 101 (4.16) 98 (4.17) 87 (4.17)
2.5 104 (4.11) 99 (4.24) 92 (4.26) 85 (4.39)
5.0 103 (4.12) 98 (4.24) 91 (4.33) 84 (4.41)
7.5 103 (4.13) 98 (4.19) 91 (4.28) 84 (4.38)
10.0 103 (4.17) 98 (4.22) 91 (4.26) 84 (4.39)

0.010

1

1.0 107 (2.08) 101 (2.08) 93 (2.17) 86 (2.24)
2.5 104 (2.05) 99 (2.09) 91 (2.14) 85 (2.18)
5.0 103 (2.07) 98 (2.08) 91 (2.15) 84 (2.18)
7.5 103 (2.06) 98 (2.09) 91 (2.13) 84 (2.22)
10.0 103 (2.06) 98 (2.11) 90 (2.17) 84 (2.19)

1/4

1.0 67 (5.17) 63 (5.16) 57 (5.24) 52 (5.44)
2.5 66 (5.07) 62 (5.36) 56 (5.36) 51 (5.51)
5.0 65 (5.17) 61 (5.32) 55 (5.40) 51 (5.55)
7.5 65 (5.20) 61 (5.27) 55 (5.42) 51 (5.47)
10.0 65 (5.14) 61 (5.25) 55 (5.45) 51 (5.51)
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Figure 1: Curve fitting to the estimated Bayes risk as a function of n for the
negative binomial/Pearson Type VI model with θ0 = 11, φ = 10, w = 0.5,
c = 0.005 and λ0 = 10(w/φ); a vertical mark line is in the minimum n = 23
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Supplementary Material

1 Poisson/gamma model

For simplicity of notation, we drop the argument xn in the limits of the

credible interval, a(xn) and b(xn), for the posterior distribution throughout

the text

1.1 Posterior distribution and properties

Under the Poisson/gamma model each Xi follows marginally a negative bino-

mial distribution with mean wλ0 and parameter θ0, i.e., Xi ∼ NB(wλ0, θ0).

Furthermore, Sn =
∑n

i=1Xi ∼ NB(nwλ0, nθ0). The corresponding likelihood

function is

L(λ;xn) =
n∏
i=1

e−wλ(wλ)xi

xi!
=
e−nwλ(wλ)sn∏n

i=1 xi!
,

where sn =
∑n

i=1 xi and xn = (x1, . . . , xn). If we consider a prior gamma

distribution for λ, the posterior distribution is

f(λ|xn) ∝ λsne−nwλ × λθ0−1e−(θ0/λ0)λ

= λθ0+s−1e−(nw+θ0/λ0)λ, (1)

1
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which is a gamma distribution with parameters θ0 + sn and nw+ θ0/λ0. The

corresponding mean and variance are, respectively,

E
[
λ
∣∣xn] =

θ0 + sn
θ0/λ0 + nw

and Var
[
λ
∣∣xn] =

θ0 + sn
(θ0/λ0 + nw)2

. (2)

1.2 Obtaining the Bayes rule

1.2.1 Loss function 1

To obtain the decision d∗n that minimizes the Bayes risk r(f, dn) is equivalent

to obtaining the one that minimizes the posterior expected value of the loss

function, namely E
[
L(λ, dn)

∣∣xn

]
. For the loss function 1, we have

E
[
L(λ, dn)

∣∣xn] = ρτ +

∫ ∞
0

(a− λ)+f(λ|xn)dλ+

∫ ∞
0

(λ− b)+f(λ|xn)dλ

=

∫ ∞
b

λf(λ|xn)dλ−
∫ a

0

λf(λ|xn)dλ

+
ρ(b− a)

2
+ a

∫ a

0

f(λ|xn)dλ− b
∫ ∞
b

f(λ|xn)dλ. (3)

Note that if a and b are the quantiles of probabilities ρ/2 and 1− ρ/2 of the

posterior distribution of λ, respectively, the sum of the three last terms in

(3) are equal to zero, and the minimum has been reached. For more details

see Rice et al. (2008). Then,

E
[
L(λ, d∗n)

∣∣xn] =

∫ ∞
b∗

λf(λ|xn)dλ−
∫ a∗

0

λf(λ|xn)dλ. (4)

If we consider the Poisson/gamma model, the posterior distribution is a

gamma distribution with parameters κ = θ0 + sn and ψ = nw + θ0/λ0; we

2
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have

∫ a

0

λf(λ|xn)dλ =

∫ a

0

λ
ψκ

Γ(κ)
λκ−1e−ψλdλ =

κ

ψ

∫ a

0

ψκ+1

Γ(κ+ 1)
λκe−ψλdλ.

Note that the last integral is the cumulative probability until the point a of

a gamma distribution with parameters κ+1 and ψ; similarly, we may obtain

the other integral in E
[
L(λ, d∗n)

∣∣xn], and we have

E
[
L(λ, d∗n)

∣∣xn] =
κ

ψ

[∫ ∞
b∗

ψκ+1

Γ(κ+ 1)
λκe−ψλdλ−

∫ a∗

0

ψκ+1

Γ(κ+ 1)
λκe−ψλdλ

]
.

(5)

1.2.2 Loss function 2

For the loss function 2, the posterior expected value is

E
[
L(λ, dn)

∣∣xn] = γτ +

∫ ∞
0

(λ−m)2

τ
f(λ|xn)dλ.

The minimum of the integral in m is reached when m = E
[
λ
∣∣xn]; then,

E
[
L(λ, dn)

∣∣xn] = γτ +
Var

[
λ
∣∣xn]

τ
. (6)

To minimize the posterior expected value in τ , consider τ = th(γ)
√

Var
[
λ
∣∣xn],

for t > 0 and h(γ) a positive function in γ (Rice et al., 2008), then

E
[
L(λ, dn)

∣∣xn] =
√

Var
[
λ
∣∣xn] [th(γ)γ +

1

th(γ)

]
.

Differentiating in t the expression in brackets we obtain the minimum when

3

Page 27 of 32

URL: http://mc.manuscriptcentral.com/lsta E-mail:  LSTA-peerreview@journals.tandf.co.uk

Communications in Statistics ? Theory and Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
t = 1/[γ1/2h(γ)], and replacing this value in τ we obtain

τ = th(γ)
√

Var
[
λ
∣∣xn] =

1

γ1/2h(γ)
f(γ)

√
Var

[
λ
∣∣xn] = γ−1/2

√
Var

[
λ
∣∣xn].

Another way to obtain the minimum is to differentiate (6) in τ directly, set

the derivative equal to zero and solve it in τ . In this case, the Bayes rule is the

interval [a∗, b∗] = [m−SDγ,m+SDγ], where (m, SDγ) = (E
[
λ
∣∣xn] , γ−1/2√Var

[
λ
∣∣xn]).

Then, the posterior expected value is

E
[
L(λ, d∗n)

∣∣xn] = γγ−1/2
√

Var
[
λ
∣∣xn]+

Var
[
λ
∣∣xn]

γ−1/2
√

Var
[
λ
∣∣xn]

= 2γ1/2
√

Var
[
λ
∣∣xn]. (7)

Given the posterior of the Poisson/gamma model and (2), we may easily

compute E
[
L(λ, d∗n)

∣∣xn].
1.3 Algorithm to obtain n

The choice of the set in which n varies is arbitrary, in this way we consider

n = 1, 5, 10, . . . , 95, 100, and for each value of n in this set the estimate of

TC(n) is computed 10 times (also arbitrary), i.e., we obtain 10 estimates

for TC(n). A possible algorithm to obtain the minimum sample size n is

described as follows for loss functions 1 or 2.

Step 1. Set values for λ0, θ0, w, c, and ρ (loss function 1) or γ (loss function

2), in addition choose a set in which n may vary;

Step 2. For each, n draw a sample of size M (e.g., M = 1000) of sn from a

4
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negative binomial distribution with mean nwλ0 and shape parameter

nθ0, compute the respective interval limits a∗ e b∗ (in loss function 1

case), then compute the respective E
[
L(λ, d∗n)

∣∣xn] using (5) or (7), and

finally compute the average of the M posterior expected values. This

value is the estimate of the minimized Bayes risk for the respective n;

Step 3. For each estimated Bayes risk, add the cost cn, keep these values;

Step 4. With the values obtained in Step 3 and the respective values of n, fit

a regression model as stated in equation (7) of the article and compute

the minimum n using expression (8) of the article.

2 Negative binomial/Pearson Type VI model

2.1 Posterior distribution and properties

For the negative binomial model., the corresponding likelihood function is

L(λ;xn) =
n∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

(
wλ

wλ+ φ

)xi ( φ

wλ+ φ

)φ
=

[
n∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

](
w

φ
λ

)sn (
1 +

w

φ
λ

)−sn−nφ
,

where sn =
∑n

i=1 xi and xn = (x1, . . . , xn). If we consider a Pearson Type

VI prior distribution for λ, the posterior distribution is

f(λ|xn) ∝
(
w

φ
λ

)sn (
1 +

w

φ
λ

)−sn−nφ
×
(
w

φ
λ

)θ0−1(
1 +

w

φ
λ

)−θ0−(θ0/λ0+1)

=

(
w

φ
λ

)θ0+sn−1(
1 +

w

φ
λ

)−(θ0+sn)−(θ0/λ0+nφ+1)

,
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which corresponds to a Pearson Type VI distribution with location and scale

parameters equal to 0 and φ/w, respectively, and shape parameters θ0 + sn

and θ0/λ0 + nφ+ 1. The corresponding mean and variance is

E
[
λ
∣∣xn] =

φ

w

θ0 + sn
θ0/λ0 + nφ

, (8)

and the variance is

Var
[
λ
∣∣xn] =

(
φ

w

)2
θ0 + sn

(θ0/λ0 + nφ)2

(
E
[
λ
∣∣xn]+ 1

1− q

)
, (9)

where q = (θ0/λ0 + nφ)−1.

2.2 Obtaining the Bayes rule

2.2.1 Loss function 1

Consider the loss function 1 and according to (4), we have

E
[
L(λ, d∗n)

∣∣xn] =

∫ ∞
b∗

λf(λ|xn)dλ−
∫ a∗

0

λ(λ|xn)dλ,

where a∗ and b∗ are the quantiles of probabilities ρ/2 and 1 − ρ/2 of the

posterior distribution, respectively. Given the negative binomial/Pearson

Type VI model, the posterior distribution is a PVI(0, φ/w, κ, ψ), where κ =

θ0 + sn and ψ = θ0/λ0 + nφ+ 1; then,

∫ a

0

λf(λ|xn)dλ =

∫ a

0

λ

(
w

φ
λ

)κ−1(
1 +

w

φ
λ

)−κ−ψ
dλ

=
φ

w

∫ a

0

(
w

φ
λ

)κ(
1 +

w

φ
λ

)−(κ+1)−(ψ−1)

dλ.

6
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Note that the last integral is the cumulative probability until the point a of

a distribution PVI(0, φ/w, κ+ 1, ψ − 1). Similarly, we may obtain the other

integral in E
[
L(λ, d∗n)

∣∣xn], and we have

E
[
L(λ, d∗n)

∣∣xn] =
φ

w

[∫ ∞
b∗

(
w

φ
λ

)κ(
1 +

w

φ
λ

)−(κ+1)−(ψ−1)

dλ

]

− φ

w

[∫ a∗

0

(
w

φ
λ

)κ(
1 +

w

φ
λ

)−(κ+1)−(ψ−1)

dλ

]
(10)

2.2.2 Loss function 2

If we consider the loss function 2 and according to (7), we have

E
[
L(λ, d∗n)

∣∣xn] = 2γ1/2
√

Var
[
λ
∣∣xn)

]
. (11)

Given the posterior distribution of the negative binomial/Pearson Type VI

model and (9), we may easily compute E
[
L(λ, d∗n)

∣∣xn].
2.3 Algorithm to obtain n

A possible algorithm to obtain the minimum sample size n is described as

follows for loss functions 1 or 2.

Step 1. Set values for λ0, θ0, φ, w, c, and ρ (loss function 1) or γ (loss

function 2), in addition choose a set in which n may vary;

Step 2. For each n, draw a sample of size M (e.g., M = 1000) of sn (sn

may be drawn as follows: drawn a sample of size n of λ from the prior

distribution PVI(0, φ/w, θ0, θ0/λ0 + 1), with these n values drawn a

7
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sample of size n of Xi, i = 1, 2, . . . , n from a negative binomial distri-

bution with mean wλ and parameter φ, then sum the simulated values

of Xi), compute the respective interval limits a∗ and b∗ (in loss function

1 case), then compute the respective E
[
L(λ, d∗n)

∣∣xn] using (10) or (11),

and finally compute the average of the M posterior expected values,

keep these values;

Step 3. For each estimated Bayes risk, add the respective cost cn, keep these

values;

Step 4. With the values obtained in Step 3 and the respective values of n, fit

a regression model as stated in equation (7) of the article and compute

the minimum n using expression (8) of the article.
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