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Abstract

Estimation of microorganism concentration in ballast water tanks is
important to evaluate and possibly to prevent the introduction of invasive
species in stable ecosystems. For such purpose, the number of organisms
in ballast water aliquots are counted and used to estimate their concen-
tration with some precision requirement. Poisson and negative binomial
models have been employed in this context under a frequentist perspective,
the former being appropriate when the organism distribution in the tank
is homogeneous and the latter when the organisms are heterogeneously
distributed. A Bayesian approach is a flexible alternative since it naturally
provides a sequential way of enhancing the estimation procedure by updat-
ing the prior distribution along the ballast water discharging process. We
adopt such an approach by considering a gamma prior distribution for the
mean of the Poisson model and a Pearson type VI prior distribution for
the corresponding parameter of the negative binomial model. We propose
algorithms to obtain minimum sample sizes required to construct high-
est posterior density (HPD) credible intervals satisfying average coverage
and average length criteria. We also conduct a simulation study to verify
whether HPD intervals constructed under either model satisfy the proposed
criteria.

Keywords: sample size, average coverage criterion, average length criterion,
Poisson distribution, negative binomial distribution.

1 Introduction

Evaluation of ballast water discharges from ships is a topic of current interest
because the possible introduction of invasive species in stable ecosystems may
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bring serious environmental and economic consequences. Estimates of damage
costs of invasive species may vary from 0.4 to 220 (depending on the country)
billion USD per year in 2008 prices (Marbuah et al., 2014, Table 1).

The D-2 standard of the International Maritime Organization (IMO) requires
that deballasted water should contain no more than 10 living organisms (referred
to simply as organisms in the remainder) with maximum dimension 10 µm and
50 µm per mL among other restrictions. Recently, Cohen et al. (2017) suggested
that the standards must be re-evaluated and the limits must be even smaller.
Given the large amount of ballast water (up to thousands of tons) transported by
big vessels, one has to rely on sampling methods to verify whether the standard
is satisfied. The sampling process is based on a probabilistic model and on a
criterion according to which one must compute the number of aliquots of ballast
water with volume w mL needed to decide whether the D-2 standard is complied
with. One of the difficulties with this approach relates to the heterogeneous
nature of the organism concentration in the ballast water tank (Murphy et al.,
2002; Carney et al., 2013). An overview of research in ballast water in the last
thirty years is presented in Bailey (2015).

Based on frequentist methods, Costa et al. (2015, 2016) adopted models that
take this heterogeneity into account. In particular, Costa et al. (2015) consider
Poisson and negative binomial distributions and specify probabilities for Type I
and II errors to test the hypothesis that the mean organism concentration in the
tank is smaller than or equal to 10 organisms per mL. Costa et al. (2016), on
the other hand, consider the same probability distributions and specify a lower
bound to the probability that the difference between the mean concentration
and its estimate be less than a fixed value. Although such results are useful,
they are essentially dependent on (some) knowledge about the heterogeneity of
the organism concentration in the ballast water tank. Costa (2017) suggests
the adoption of more flexible models that may possibly incorporate knowledge
acquired over time. Bayesian models are excellent candidates to incorporate
such characteristics given that such information may be considered in the prior
distribution which may also be updated when more data is obtained.

Under a Bayesian approach, two criteria are widely used in the literature for
sample size determination, namely, the average coverage and the average length
of credible intervals (ACC and ALC, respectively). In both cases, we choose
the smallest sample size that satisfies the condition imposed on some specified
average characteristic of the posterior distribution of the parameter of interest.
For the ACC we compute the posterior probability of a highest posterior density
(HPD) interval with fixed length for each sample xn of size n and weigh it by the
marginal distribution of the data. This average probability must be not smaller
than a specified lower bound. For the ALC, on the other hand, we compute the
length of an interval with fixed credible degree for each (xn, n) and weigh it by
the same marginal distribution. The average length must not be larger than a
specified upper bound.

Adcock (1987, 1988) uses ACC (with a different label) to determine sample
sizes to estimate multinomial probabilities under Dirichlet prior distributions as
well as to estimate the mean and the variance of normal distributions with prior
normal or chi-squared distributions for the case where the variance is known or
unknown, respectively. Joseph et al. (1995) and Joseph et al. (1997) use both the
ACC and the ALC, among other Bayesian criteria for estimating the proportion
and the difference between two proportions under binomial distributions with
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beta prior distributions. In problems involving the estimation of the means
of normal, binomial and Poisson distributions or of the slope parameter in
linear regression models, Adcock (1997) discusses the ACC, the ALC and other
Bayesian criteria. Wang & Gelfand (2002) use the same criteria to determine
the sample size for the estimation of parameters of distributions belonging to
the exponential family, of parameters in Weibull survival models as well as of
parameters in logistic regression models. M’Lan et al. (2006) use ACC and
ALC criteria in the context of case-control studies; Stamey et al. (2006) also
consider these criteria to estimate the parameters of Poisson distributions as
well to estimate the difference or the ratio of the parameters of two Poisson
distributions. Nassar et al. (2010, 2011) use the same criteria to estimate the
parameter of geometric distributions under beta prior distributions and the
parameter of Laplace distributions under normal prior distributions. We may
also cite Joseph & Bélisle (1997), Joseph & Wolfson (1997), Rahme et al. (2000),
De Santis (2007), M’Lan et al. (2008) for related work. and the corresponding
volumes In the context of sample size determination, we consider a Bayesian
approach to compute minimum sample sizes required to obtain lower and upper
limits of credible intervals for the mean organism concentration in a ballast
water tank with specified average coverage or average length. For simulated
samples xn of size n computed according to the proposed approach, the credible
intervals defined by the lower [say, a(xn)] and upper [say, b(xn)] limits will
have in average, the specified coverage or length. Once the required minimum
sample size, say nm, has been determined, a real dataset xnm will be collected.
Then a ship is declared not compliant with the D-2 standard if a(xnm

) > 10 or
compliant, if b(xnm

) < 10. Otherwise, if a(xnm
) < 10 < b(xnm

), more data are
needed to make a decision.

In Section 2 we describe the adopted Bayesian models. Sample size deter-
mination under both the ACC and the ALC criteria is discussed in Section 3.
A simulation study to evaluate whether HPD intervals constructed with the
proposed sample sizes satisfy the adopted optimality criteria is presented in
Section 4. We conclude with a discussion in Section 5. Algorithms for sample size
computations, written with the R language (R Core Team, 2016), are presented
in the Supplementary Material.

2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Given a mean organism concentration λ, let X be the number of organisms in an
aliquot of volume w; in this aliquot, we expect to find E [X|λ] = wλ organisms.
Suppose that, given λ, X follows a Poisson distribution with mean wλ, i.e., the
organisms are homogeneously distributed in the ballast water tank.

The natural (conjugate) choice for the prior distribution is a gamma dis-
tribution with parameters θ0 and λ0, namely λ ∼ G(θ0, θ0/λ0), for which the
probability density function is

f(λ) ∝ λθ0−1 exp(−θ0λ/λ0).

This implies that E [λ] = λ0 and Var [λ] = λ20/θ0. In this context, λ0 represents
a prior mean concentration and θ0 controls the variability of λ around λ0. The
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gamma distribution provides ample flexibility to model the shape of the prior
knowledge on the mean concentration λ as depicted in Figure 1.
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Figure 1: Probability density functions for G(θ0, θ0/λ0) distributions.

Consider a random sample xn = (x1, . . . , xn) of size n of X|λ and a gamma
prior distribution for λ. We may write the Bayesian model hierarchically as
follows

Xi|λ
iid∼ Poi(wλ), i = 1, 2, . . . , n; (1)

λ ∼ G(θ0, θ0/λ0). (2)

In this context, the posterior distribution of λ is also gamma, with parameters
θ0+sn and nw+θ0/λ0, where sn =

∑n
i=1 xi, i.e., λ|xn ∼ G(θ0+sn, nw+θ0/λ0).

An example of prior and posterior densities is presented in Figure 2. The
effect of the observed data is clearly observed to lead to a posterior distribution
more concentrated than the prior distribution.

2.2 Negative binomial model with a Pearson Type VI
prior distribution

In contrast with the homogeneity assumption for the organism distribution in
the tank inherent to the Poisson model, consider a more realistic situation where
the organisms are distributed heterogeneously.

Assume that the organism concentration in the i-th aliquot is λi and the
corresponding number of organisms is Xi, i = 1, . . . , n. Then, in the i-th aliquot
we expect to find E [Xi|λi] = wλi organisms. For i = 1, . . . , n, suppose that,
given λi, Xi follows a Poisson distribution with mean wλi and that given λ and
φ, λi ∼ G(φ, φ/λ) so that E [λi|λ] = λ and Var [λi|λ] = λ2/φ. Thus, given λ
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Figure 2: Prior gamma distributionG(θ0, θ/λ0) and posterior gamma distribution
G(θ0 + sn, nw + θ0/λ0) with w = 1, λ0 = 10, θ0 = 12, n = 20 and sn = 240.

and φ, Xi follows a negative binomial distribution with E [Xi|λ, φ] = wλ and
Var [Xi|λ, φ] = wλ+ (wλ)2/φ, where φ is a shape (or agglomeration) parameter,
assumed known. This is denoted as Xi|λ, φ ∼ NB(wλ, φ).

A natural conjugate prior distribution for the negative binomial distribution
is the Pearson Type VI distribution, also known as the beta prime distribution
(Johnson et al., 1994a,b), for which the kernel of the probability density function
is

f(λ) ∝
(
w

φ
λ

)θ0−1(
1 +

w

φ
λ

)−θ0−(θ0/λ0+1)

,

with location parameter 0, scale parameter φ/w and shape parameters θ0 and
θ0/λ0 +1, where λ0 and θ0 are known positive fixed constants (hyperparameters).
We use the notation λ ∼ PV I(0, φ/w, θ0, θ0/λ0+1). In this case, E [λ] = (φ/w)λ0
and Var [λ] = (λ20/θ0)[φ2(λ0 + 1)/(w2(1− λ0/θ0))], for λ0 < θ0.

In the Poisson model with gamma prior distribution, we have E [X] =
E [E [X|λ]] = E [wλ] = wλ0, i.e., the expected number of organisms when
collecting a aliquot depends only on the hyperparameter λ0. This makes sense
since we are assuming homogeneity for the concentration, and regardless of the
location where we collect an aliquot in the ballast water tank, we expect to find
the same number of organisms. On the other hand, if we consider the negative
binomial model with a Pearson Type VI prior distribution, we have E [X] = φλ0
so that the expected number of organisms in an aliquot depends on the parameter
φ that controls the heterogeneity of the organisms in the tank. Note that φ is
also a scale parameter for the prior distribution and the larger its value, the
more spread out is the distribution with the other parameters fixed, indicating a
vague prior knowledge about the parameter of interest. Furthermore, we can set
the other parameters in such a way that the prior distribution may represent
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Figure 3: Probability density functions for PV I(0, φ/w, θ0, θ0/λ0 + 1) distribu-
tions with w = 1, λ0 = 3 and θ0 = 4.

cases where there is high probability associated to an interval even when the
value of φ increases (Figure 4). When λ0 and θ0 are fixed and φ increases, we
have distributions representing cases with large variability (Figure 3).

Consider a random sample of size n from X|λ, φ, and a Pearson Type VI
prior distribution for λ. We may write the model hierarchically as follows

Xi|λ, φ
iid∼ NB(wλ, φ), i = 1, 2, . . . , n; (3)

λ ∼ PV I(0, φ/w, θ0, θ0/λ0 + 1). (4)

In this context, the posterior distribution of λ is Pearson Type VI, with
the same location and scale parameters as the prior distribution, and shape
parameters θ0 +sn and θ0/λ0 +nφ+1, i.e., λ|xn ∼ PV I(0, φ/w, θ0 +sn, θ0/λ0 +
nφ+ 1).

We must emphasize that φ plays two roles in model (3)-(4). In (3), it plays
the role of a dispersion (or agglomeration) parameter. The larger is φ, the more
homogeneous is the organism concentration in the tank. In the prior distribution
(4), φ plays the role of scale parameter. Keeping the other parameters fixed,
the larger is φ, the less precise is the prior knowledge about the parameter of
interest (see Figure 3). This does not mean that if φ (previously known) is large
we may only assign prior distributions with large variability, because we may
specify the parameters λ0 and θ0 to adjust the precision of the prior knowledge
even with large values of φ (see Figure 4).
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Figure 4: Probability density functions of PV I(0, φ/w, θ0, θ0/λ0+1) distributions
with w = 1.

3 Sample size determination

We consider two criteria to determine the minimum sample size required to
estimate λ with a pre-specified precision.

3.1 Average coverage criterion (ACC)

The objective is to obtain the minimum sample size n such that the credible
interval R(xn) for λ has a pre-specified length with posterior probability at least
equal to 1− ρ, i.e., ∫

R(xn)

f(λ|xn)dλ ≥ 1− ρ,

where xn is a sample of size n and R(xn) is a subset (an interval in our case) of
the parameter space. Since the sample size determination precedes the actual
sampling, we must consider all possible outcomes for xn to achieve the objective.
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In this direction we may weigh each outcome by its probability, i.e.,∫
Xn

[∫
R(xn)

f(λ|xn)dλ

]
g(xn)dxn ≥ 1− ρ,

where Xn is the sample space associated to xn and g(xn) is the marginal
probability (or density) function of the outcomes.

For models (1)-(2) and (3)-(4), the credible region may be an interval and
in this case we consider the highest posterior density (HPD) interval to define
R(xn) = [a(xn), b(xn)]. We fix the length ` > 0 of the HPD intervals for λ,
specify the minimum Bayesian coverage probability, 1 − ρ and determine the
minimum sample size as well as the bounds a(xn) and b(xn) = a(xn) + ` such
that ∫

Xn

[∫ b(xn)

a(xn)

f(λ|xn)dλ

]
g(xn)dxn ≥ 1− ρ. (5)

Given a(xn), b(xn) and the parameters of the posterior distribution, the
inner integral in (5) may be obtained computationally; the outer integral may
be estimated via Monte Carlo simulation. An algorithm to obtain the minimum
sample size satisfying the criterion is outlined in the Supplementary Material.

In Tables 1 and 2 we present sample sizes computed using ACC (5) for
models (1)-(2) and (3)-(4). Note that in the case of model (3)-(4) we consider
λ0 = 10(w/φ) to make the prior expected value equal to 10 in order to allow a
comparison with the model (1)-(2) for which we fixed λ0 = 10.

Table 1: ACC (5) based minimum sample size (n) computed under the Pois-
son/gamma model (1)-(2) with λ0 = 10 and ρ = 0.05.

Aliquot Interval Shape parameter (θ0)
volume (w) length (`) 1.0 2.5 5.0 7.5 10.0

0.5
2 77 77 76 76 75
4 20 19 19 18 18

1.0
2 39 39 38 38 38
4 10 10 10 9 9

For illustrative purposes, we obtain HPD intervals based on a set of hypo-
thetical counts generated to mimic real heterogeneously distributed data. We
first determined the sample size required to satisfy the ACC with ` = 2 assuming
a Poisson/gamma model with a prior distribution having λ0 = 10 and θ0 = 0.01
in order to obtain a large variance. Setting w = 1, the required sample size is
nP = 59. We then generated 59 observations via a negative binomial model with
λ = 9, φ = 0.1 and w = 1. The generated counts are displayed in Table 3 where
the heterogeneity induced by the negative binomial/Pearson Type VI model is
evident.

The sum of the counts in Table 3 is snP = s59 = 653 so that the corresponding
HPD intervals (obtained via the algorithms described described in Subsections
1.1.1 and 1.2.1 of the Supplementary Material) are, respectively, (10.08, 12.08) for
the Poisson/gamma model, and (7.11, 9.11) for the negative binomial/Pearson
Type VI model (in this case, we set φ = 0.0899, obtained via maximum likelihood).
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Table 2: ACC (5) based minimum sample size (n) computed under the negative
binomial/Pearson Type VI model (3)-(4) with λ0 = 10(w/φ) and ρ = 0.05.

Aliquot Interval
φ

Shape parameter (θ0)
volume (w) length (`) 11 25 50 75

0.5

2

1.0 462 457 453 444
2.5 229 226 222 216
5.0 152 149 144 140
7.5 127 124 118 114
10.0 113 111 106 101

4

1.0 115 112 106 101
2.5 57 53 49 43
5.0 37 34 29 24
7.5 30 28 22 17
10.0 27 24 19 14

1.0

2

1.0 426 422 417 414
2.5 194 191 188 185
5.0 115 113 111 108
7.5 90 88 85 82
10.0 77 75 72 70

4

1.0 110 107 102 99
2.5 49 46 44 41
5.0 29 27 24 22
7.5 22 20 18 15
10.0 19 17 15 12

Table 3: Simulated counts for the example under the negative binomial model
with φ = 0.1, λ = 9 and w = 1.

0 0 0 3 0 20 0 0 29 4 2 10 3 0 0
97 0 39 0 0 1 0 0 0 0 0 0 0 0 313
0 0 0 3 0 1 1 6 0 0 13 0 0 0 0

18 0 5 0 0 0 5 0 4 0 0 76 0 0

The first interval does not contain the organism concentration λ = 9 and suggest
non-compliance with the D-2 regulation. The second interval, on the other hand,
contains λ = 9 (even with the sample size obtained under the Poisson/gamma
model) and suggests compliance with the D-2 regulation.

3.2 Average length criterion (ALC)

An alternative criterion used to determine sample sizes is based on the average
length of the posterior credible intervals. The rationale here is to set the minimum
Bayesian coverage probability 1− ρ and obtain the minimum sample size n by
requiring that the length of the posterior credible region `′(xn, n) = b(xn)−a(xn)
be such that ∫

Xn

`′(xn, n)g(xn)dxn ≤ `max, (6)

where `max is the maximum admissible length for the posterior credible region.
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The lower and upper bounds of the HPD interval may be obtained via
numerical methods and the integral by Monte Carlo simulation. An algorithm
to obtain the minimum sample size satisfying this criterion is outlined in the
Supplementary Material.

Based on the ideas of M’Lan et al. (2008), who used a binomial model with
a beta prior distribution, we may obtain the sample size using the ALC under
the model (1)-(2) with no need for numerical methods via the following result.

Theorem 1 Consider the Poisson/gamma (1)-(2) model and the average length
criterion (6). The minimum n, based on large sample approximation, to guarantee
that the posterior credible interval average length is smaller than `max is the
smallest integer such that

n ≥ θ0
wλ0

{[
λ0
θ0

2zρ/2

`max

Γ(θ0 + 1/2)

Γ(θ0)

]2
− 1

}
,

where zρ/2 is the quantile of order 1− ρ/2 of the standard normal distribution.

The proof of Theorem 1 is presented in the Supplementary Material. In
Tables 4 and 5 we present sample sizes computed using ALC (6) for models
(1)-(2) and (3)-(4); in Table 4 we present corresponding sample sizes (within
parentheses) computed using Theorem 1.

Table 4: ALC (6) based minimum sample size (n) computed under the Pois-
son/gamma model (1)-(2) (and also using Theorem 1) with λ0 = 10 and ρ = 0.05.

Aliquot Maximum interval Shape parameter (θ0)
volume (w) length (`max) 1.0 2.5 5.0 7.5 10.0

0.5
2 77 (61) 77 (70) 76 (73) 76 (73) 75 (73)
4 19 (15) 19 (17) 19 (18) 18 (18) 17 (17)

1.0
2 38 (31) 38 (35) 38 (37) 38 (37) 38 (37)
4 10 (8) 10 (9) 9 (9) 9 (9) 9 (9)

4 Simulation study

For each (prior distribution) scenario and sample size obtained via the ACC
(5) displayed in Table 1 we drew 1000 samples from a Poisson/gamma model
(1)-(2) with values of λ fixed at the quantiles of order 1/6, 2/6, 3/6. 4/6 and
5/6 of the corresponding prior distribution. Then, for each sample we obtained
the lower [a(xn)] and upper [b(xn)] limits of the HPD credible interval for the
mean organism concentration in a ballast water tank with pre-specified average
coverage probability (1 − ρ = 0.95) and computed the proportion of intervals
containing the fixed value of λ. The results are displayed in Table 6. We expect
that the estimates of the HPD Bayesian coverage probability to be at least 0.95.

Under the same model, but using sample sizes displayed in Table 4, obtained
via the ALC (6), we conducted a similar simulation study, the results of which
are displayed in Table 7. In this case, we expect that the estimates of length of
the HPD intervals to be at most 2 or 4.
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Table 5: ALC (6) based minimum sample size (n) computed under the negative
binomial/Pearson Type VI model (3)-(4) with λ0 = 10(w/φ) and ρ = 0.05.

Aliquot Maximum interval
φ

Shape parameter (θ0)
volume (w) length (`max) 11 25 50 75

0.5

2

1.0 456 456 452 445
2.5 228 226 221 216
5.0 151 150 144 138
7.5 126 123 118 113
10.0 114 110 106 101

4

1.0 113 109 105 99
2.5 55 52 48 43
5.0 37 34 29 23
7.5 30 27 22 17
10.0 27 24 19 14

1.0

2

1.0 414 418 416 410
2.5 191 190 186 185
5.0 115 113 110 108
7.5 89 88 85 82
10.0 76 75 72 70

4

1.0 103 104 100 97
2.5 47 46 43 41
5.0 28 26 24 22
7.5 21 20 18 15
10.0 19 17 15 12

The same strategy was conducted for data obtained via the negative bino-
mial/Pearson VI model (3)-(4) using the sample sizes provided in Tables 2 and
5. The results are provided in Table 8 and in Tables S2-S4 of the Supplementary
Material.

In addition, we applied the same strategy described previously using φ = 0.5
to draw samples xn; we then obtained HPD credible intervals using different
values of φ > 0.5 to see how the coverage probabilities (1− ρ) and HPD interval
lengths (`max) behave in relation to the specified threshold. The results are
displayed in Table 9 and in Tables S5-S7 of the Supplementary Material.

5 Discussion

The results in Table 1 obtained under the Poisson/gamma model indicate that
the sample size does not decrease much when θ0 increases, i.e., when the prior
variance decreases. This may be explained by the homogeneity assumption for
the concentration which is intrinsic to the adopted model. Unless we consider
a precise prior distribution, the sample size required to satisfy the ACC will
not change much. This feature is also visible when we compute the sample size
under the same model using the ALC (see Table 4).

On the other hand, under model (3)-(4) using either the ACC or the ALC
with a fixed value for φ, the precision of the prior knowledge, controlled by
θ0 here, directly affects the required sample size. This also happens when we
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Table 6: ACC based Bayesian coverage probability of HPD intervals estimated
via simulation for some scenarios under the Poisson/gamma model (1)-(2) with
sample sizes displayed in Table 1.

Aliquot Interval
θ0 n

Probability quantile used to fix λ
volume (w) length (`) 1/6 2/6 3/6 4/6 5/6

0.5

2

1.0 77 1.00 1.00 0.98 0.94 0.85
2.5 77 0.99 0.99 0.97 0.95 0.88
5.0 76 0.99 0.98 0.95 0.94 0.92
7.5 76 0.98 0.97 0.96 0.94 0.91
10.0 75 0.97 0.98 0.95 0.95 0.93

4

1.0 20 1.00 1.00 0.99 0.96 0.89
2.5 19 0.99 0.99 0.97 0.94 0.89
5.0 19 0.99 0.98 0.97 0.95 0.90
7.5 18 0.97 0.97 0.97 0.95 0.92
10.0 18 0.97 0.99 0.97 0.95 0.93

1.0

2

1.0 39 1.00 1.00 0.98 0.95 0.86
2.5 39 0.99 0.99 0.97 0.93 0.88
5.0 38 0.99 0.98 0.97 0.94 0.90
7.5 38 0.98 0.98 0.95 0.94 0.90
10.0 38 0.98 0.96 0.95 0.96 0.92

4

1.0 10 1.00 1.00 0.98 0.95 0.88
2.5 10 0.99 0.99 0.97 0.95 0.89
5.0 10 0.99 0.98 0.97 0.95 0.92
7.5 9 0.98 0.97 0.97 0.96 0.92
10.0 9 0.97 0.97 0.97 0.96 0.91

consider a fixed θ0 and vary φ, that plays the role of a scale parameter in the
prior distribution (see Tables 2 and 5).

The convenience of assuming that φ is known is a disadvantage but we
may circumvent this problem in a practical manner without considering a prior
distribution for this parameter. The first and simpler way is to consider φ as
small as possible, e.g., φ = 0.5. Since the sample size n decreases as φ increases,
when we take φ as the minimum, we are being conservative, in the sense that
the corresponding n is enough or more than enough to achieve the pre-specified
criteria settings. The results in Table 9 indicate that in some cases the choice
of the parameter φ has a negligible effect in the computation of the minimum
sample size, n. For example, for ` = 2 and θ0 at most 25, the minimum coverage
probability is satisfied for φ ≤ 10, indicating that we may take n = 111. If
we consider θ0 at most 50, the minimum coverage probability is satisfied for
φ ≤ 2, indicating that we may take n = 222. The same behavior holds for
w = 1 under either the ACC and or the ALC as indicated in Tables S5-S7 of the
Supplementary Material.

The second alternative is to consider a naive sequential procedure in which
samples are selected one by one (or by lots). Observe that sample sizes obtained
under a Poisson/gamma model (nP ) are always smaller than those obtained
by a negative binomial/Pearson VI model (nNB), with respective parameters
fixed and write nNB = nP +K, where K is a positive integer. For fixed w, ` (or
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Table 7: ALC based length of HPD intervals estimated via simulation for some
scenarios under the Poisson/gamma model (1)-(2) with sample sizes displayed
in Table 4.

Aliquot Maximum interval
θ0 n

Probability quantile used to fix λ
volume (w) length (`max) 1/6 2/6 3/6 4/6 5/6

0.5

2

1.0 77 0.85 1.27 1.66 2.09 2.66
2.5 77 1.30 1.60 1.86 2.13 2.49
5.0 76 1.52 1.75 1.93 2.12 2.37
7.5 76 1.61 1.79 1.94 2.10 2.30
10.0 75 1.67 1.83 1.96 2.10 2.27

4

1.0 19 1.70 2.54 3.33 4.18 5.33
2.5 19 2.59 3.20 3.70 4.23 4.94
5.0 19 3.00 3.43 3.78 4.15 4.62
7.5 18 3.24 3.58 3.86 4.18 4.55
10.0 17 3.40 3.71 3.95 4.20 4.52

1.0

2

1.0 38 0.86 1.28 1.67 2.10 2.68
2.5 38 1.31 1.61 1.87 2.14 2.50
5.0 38 1.52 1.74 1.93 2.12 2.37
7.5 38 1.61 1.80 1.95 2.10 2.30
10.0 38 1.66 1.82 1.95 2.08 2.26

4

1.0 10 1.67 2.48 3.25 4.07 5.21
2.5 10 2.53 3.10 3.61 4.12 4.82
5.0 9 3.09 3.52 3.88 4.25 4.75
7.5 9 3.24 3.58 3.88 4.17 4.54
10.0 9 3.32 3.60 3.85 4.09 4.42

`max) and hyperparameters, we may compute the sample size under a Poisson
model, proceed with the sample collection obtaining nP organism counts (xnP

).
Using these nP organism counts we may compute an estimate for φ by maximum
likelihood or by the method of moments (see Ludwig & Reynolds, 1988, eq. 3.5,
for example) and with this estimate we may obtain nNB and consequently K,
which is the required number of additional aliquots. Since the prior distributions
used in both models are different, we must choose the hyperparameters for the
Pearson Type VI distribution which represent “equivalent prior knowledge” to
those fixed in the gamma distribution. Given w, λ0 and the estimate of φ, we
may choose θ0 such that the plot of the Pearson Type VI distribution is similar
to the plot of the gamma distribution with previous hyperparameters used to
obtain nP.

The standard approach would be to consider a prior distribution for φ which
implies setting at least an additional hyperparameter so that we must deal
with another integral in order to obtain the marginal distribution of λ. This
introduces further computational effort and is the object of future research.

As in Inoue et al. (2005), we compare sample sizes obtained under different
perspectives. Under the Bayesian approach fixing either ` or `max (Tables 2
and 5) the sample sizes are, in general, smaller than those computed under a
frequentist approach with εa (maximum absolute error estimation) equal to 1 or 2
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Table 8: ACC based Bayesian coverage probability for HPD intervals estimated
via simulation for some scenarios under the negative binomial/Pearson VI model
(3)-(4) with sample sizes displayed in Table 2 setting w = 0.5.

Interval
φ θ0 n

Probability quantile used to fix λ
length (`) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 462 1.00 1.00 0.99 0.95 0.83
25 457 1.00 1.00 0.98 0.94 0.85
50 453 0.99 0.98 0.95 0.94 0.88
75 444 0.99 0.98 0.96 0.94 0.89

2.5

11 229 1.00 0.99 0.98 0.94 0.87
25 226 0.99 0.98 0.96 0.93 0.87
50 222 0.98 0.97 0.97 0.95 0.90
75 216 0.97 0.97 0.96 0.94 0.92

5.0

11 152 0.99 0.98 0.96 0.94 0.87
25 149 0.98 0.97 0.95 0.92 0.92
50 144 0.96 0.97 0.97 0.95 0.93
75 140 0.96 0.97 0.96 0.96 0.93

7.5

11 127 0.99 0.98 0.96 0.94 0.89
25 124 0.98 0.97 0.96 0.94 0.91
50 118 0.97 0.97 0.96 0.95 0.93
75 114 0.97 0.98 0.96 0.95 0.94

10.0

11 113 0.98 0.99 0.96 0.93 0.89
25 111 0.98 0.97 0.97 0.94 0.93
50 106 0.96 0.96 0.96 0.94 0.93
75 101 0.96 0.97 0.97 0.95 0.95

4

1.0

11 115 1.00 1.00 0.99 0.95 0.84
25 112 1.00 0.99 0.98 0.96 0.86
50 106 0.99 0.98 0.97 0.97 0.91
75 101 0.98 0.97 0.97 0.95 0.91

2.5

11 57 0.99 0.98 0.99 0.94 0.85
25 53 0.98 0.98 0.97 0.95 0.90
50 49 0.97 0.99 0.98 0.97 0.93
75 43 0.96 0.98 0.98 0.99 0.94

5.0

11 37 0.99 0.99 0.98 0.95 0.90
25 34 0.98 0.98 0.97 0.95 0.90
50 29 0.97 0.98 0.98 0.98 0.94
75 24 0.97 0.99 0.99 0.99 0.95

7.5

11 30 0.98 0.99 0.98 0.94 0.90
25 28 0.98 0.98 0.97 0.96 0.93
50 22 0.96 0.98 0.99 0.97 0.95
75 17 0.96 0.99 1.00 0.99 0.96

10.0

11 27 0.98 0.98 0.97 0.95 0.91
25 24 0.98 0.97 0.97 0.95 0.93
50 19 0.97 0.99 0.99 0.98 0.95
75 14 0.97 0.99 1.00 0.99 0.99

(see Tables 2 and 3 in Costa et al., 2016). This may be justified by the additional
information provided by the prior distribution relatively to that considered in
the frequentist approach, where only lower and upper bounds for the parameter
of interest are given.

For the ALC we present a result (Theorem 1) which allows the computation
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of sample sizes under model (1)-(2) without the need for numerical and/or
simulation methods. The corresponding sample sizes are consistently smaller
than those obtained via Monte Carlo replicates, although the differences are not
large. Note that since this theorem is based on large sample approximations, we
expect a difference between the corresponding sample sizes and those obtained
directly from the proposed criterion.

The simulation results (Tables 6-8 and Tables S2-S4 of the Supplementary
Material) show sample sizes similar to those obtained under the simulation study
presented in Costa et al. (2016). For smaller values of λ, the coverage criterion
is attained well above the limit but the results are reversed for the larger values
and the minimum fixed coverage is not attained. A similar conclusion holds
when using the ALC. We also note that for values of λ smaller or equal to the
median, the estimated coverage probability is larger than the proposed one. This
is expected, but may not happen for values of λ greater than the median, mainly
for the quantiles of order 5/6 or higher, i.e., in some cases the posterior interval
does not contain λ, and this happens with estimated coverage probability smaller
than the specified one. This suggests that in a practical situation if we want a
minimum coverage with probability 1− ρ, we should consider a sample size n
corresponding to a minimum coverage probability greater than 1− ρ in order to
prevent or minimize this problem.

Assuming a parametric distribution for the prior distribution may not provide
a realistic picture of the organism distribution in the ballast water tank, especially
given the lack of observational or experimental data. For example, we may
imagine a situation where two different regions of the tank have large organism
concentration, while other regions have not. An alternative is to consider a
nonparametric approach where the form of the distribution of the organism
concentration is not specified. An approach based on a Dirichlet process mixture
as in (Ferguson, 1973; Antoniak, 1974) is currently under investigation.

Practical issues related to the actual collection of the ballast water aliquots
have been addressed by many authors (Carney et al., 2013; First et al., 2013;
Gollasch & David, 2017). Among them we mention the difficulty in accessing
the ballast water tank and the need to submit the sampled aliquots for analysis
in a laboratory. Therefore, some of the proposed sample sizes (e.g., 462 in
Table 2) are unrealistic with the present technology. However, researchers at the
Oceanographic Institute of the University of São Paulo are developing a system
in which part of the discharged water will be conducted through an optical device
where the organisms will be counted by an appropriate software. This will allow
the collection of a very large number of aliquots along the entire deballasting
process. We intend to feed counts acquired according to the proposed sample
sizes to a computer where the the mean concentration may be estimated. A
prototype of the equipment being developed was used for other purposes as
indicated in (Matuszewski et al., 2015). Unfortunately we still do not have
experimental data obtained via the system being developed.

Although the focus of this study is ballast water sampling, similar results
may be applied to other problems in which the Poisson or the negative binomial
models underlie the data generating process. For additional applications in the
context of Biostatistics see Ludwig & Reynolds (1988) and White & Bennetts
(1996), for example.
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Table 9: ACC based Bayesian coverage probability for HPD intervals estimated
via simulation with φ = 0.5 and computed with different values φ > 0.5 under
the negative binomila/Pearson VI model (3)-(4) with sample obtained from
Table 2 with w = 0.5.

Interval
φ θ0 n

Probability quantile used to fix λ
length (`) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 462 1.000 0.999 0.999 0.992 0.940
25 457 1.000 0.997 0.996 0.990 0.957
50 453 0.997 0.995 0.989 0.987 0.963
75 444 0.993 0.987 0.984 0.983 0.954

2.5

11 229 1.000 1.000 0.999 1.000 0.994
25 226 1.000 0.999 0.998 0.996 0.985
50 222 0.989 0.990 0.989 0.984 0.981
75 216 0.948 0.935 0.934 0.926 0.923

5.0

11 152 1.000 1.000 1.000 1.000 0.999
25 149 0.998 0.999 0.999 0.999 0.997
50 144 0.905 0.924 0.934 0.930 0.922
75 140 0.236 0.326 0.348 0.407 0.436

7.5

11 127 1.000 1.000 1.000 1.000 0.999
25 124 1.000 0.998 0.997 0.998 0.994
50 118 0.581 0.626 0.647 0.680 0.720
75 114 0.000 0.001 0.000 0.006 0.018

10.0

11 113 1.000 1.000 1.000 1.000 1.000
25 111 0.997 0.998 0.995 0.999 0.997
50 106 0.163 0.192 0.236 0.305 0.379
75 101 0.000 0.000 0.000 0.000 0.000

4

1.0

11 115 0.999 1.000 0.993 0.983 0.957
25 112 0.998 0.994 0.987 0.972 0.969
50 106 0.985 0.978 0.973 0.965 0.951
75 101 0.959 0.943 0.946 0.955 0.934

2.5

11 57 1.000 0.999 0.998 0.993 0.985
25 53 0.982 0.982 0.979 0.965 0.960
50 49 0.597 0.678 0.726 0.735 0.749
75 43 0.009 0.036 0.082 0.152 0.242

5.0

11 37 0.999 0.999 0.999 0.995 0.989
25 34 0.796 0.843 0.856 0.860 0.877
50 29 0.000 0.000 0.000 0.000 0.001
75 24 0.000 0.000 0.000 0.000 0.000

7.5

11 30 0.995 0.998 0.994 0.991 0.991
25 28 0.353 0.349 0.485 0.571 0.627
50 22 0.000 0.000 0.000 0.000 0.000
75 17 0.000 0.000 0.000 0.000 0.000

10.0

11 27 0.992 0.996 0.997 0.992 0.987
25 24 0.000 0.015 0.034 0.085 0.202
50 19 0.000 0.000 0.000 0.000 0.000
75 14 0.000 0.000 0.000 0.000 0.000
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Supplementary Material

1 Algorithms to obtain n

A possible algorithm to obtain the sample size n is described as follows for

each criterion and model. For simplicity of notation, we drop the argument

xn in the limits of the HPD interval, a(xn) and b(xn), for the posterior

distribution throughout the text

1.1 Poisson/gamma model

1.1.1 Posterior distribution and properties

Under the Poisson/gamma model each Xi follows marginally a negative bino-

mial distribution with mean wλ0 and parameter θ0, i.e., Xi ∼ NB(wλ0, θ0).

Furthermore, Sn =
∑n

i=1Xi ∼ NB(nwλ0, nθ0).

The corresponding likelihood function is

L(λ;xn) =
n∏
i=1

e−wλ(wλ)xi

xi!
=
e−nwλ(wλ)sn∏n

i=1 xi!
,

where sn =
∑n

i=1 xi and xn = (x1, . . . , xn). If we consider a prior gamma

1
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distribution for λ, the posterior distribution is

f(λ|xn) ∝ λsn exp(−nwλ)× λθ0−1 exp

(
− θ0
λ0
λ

)
= λθ0+s−1 exp

[
−
(
nw +

θ0
λ0

)
λ

]
, (1)

which is a gamma distribution with parameters θ0 + sn and nw+ θ0/λ0. The

corresponding mean and variance are, respectively,

E
[
λ
∣∣xn] =

θ0 + sn
θ0/λ0 + nw

and Var
[
λ
∣∣xn] =

θ0 + sn
(θ0/λ0 + nw)2

. (2)

To obtain the HPD interval of length ` for a gamma distribution with

parameters κ and ψ, we denote as G(κ, ψ), it is necessary to solve the equa-

tion g(a) = g(a + `) in a, where g(·) is the corresponding density function

(Stamey et al., 2006). The solution is

a =
`

exp(ψ`/(κ− 1))− 1
. (3)

For the posterior distribution of the Poisson/gamma model we consider

κ = θ0 + sn and ψ = nw + θ0/λ0.

If we want to obtain the HPD interval with probability 1− ρ we need to

solve a system of equations g(a) = g(b) and P [a ≤ λ ≤ b|sn] = 1− ρ, where

a and b are the lower and upper limits of the HPD interval, respectively. To

solve this system we need to use numerical methods (e.g., Newton-Raphson).

2



1.1.2 Average coverage criterion algorithm

Step 1. Set values for `, λ0, θ0, w, ρ and take n = 1;

Step 2. Draw a sample of size M (e.g., M = 1000) of sn from a negative

binomial distribution with mean nwλ0 and shape parameter nθ0; the

size of replicates M must be as large as possible in order to enhance

the estimate of the integral (or expected value) associated with the

criterion;

Step 3. Compute the lower limit a of the HPD interval using (3) and the

posterior probability P [a ≤ λ ≤ a+ `|sn] using (1) for each sn that

was drawn: for each value drawn in Step 2 compute θ0 + sn and nw +

θ0/λ0 corresponding to the posterior gamma distribution of λ, then

compute the lower limit a of the HPD interval using (3). Then, compute

the posterior probabilities using the posterior gamma distribution with

parameters θ0 + sn and nw + θ0/λ0 (1);

Step 4. Compute the average of the M posterior probabilities;

Step 5. If this average is ≥ 1− ρ, stop. The value n obtained in this step is

the required value. Otherwise, set n = n+ 1 and return to Step 2.

1.1.3 Average length criterion algorithm

Step 1. Set values for `max, λ0, θ0, w, ρ and take n = 1;

Step 2. Draw a sample of size M (e.g., M = 1000) of sn from a negative

binomial distribution with mean nwλ0 and shape parameter nθ0;
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Step 3. Compute the length of the HPD interval of probability 1−ρ for each

sn that was drawn: for each value drawn in Step 2 compute θ0 +sn and

nw+θ0/λ0 corresponding to the posterior gamma distribution of λ, and

obtain the lower and upper limits of the HPD interval of probability

1− ρ. Then, compute the difference between the upper and the lower

limits for each value drawn in order to obtain the interval lengths;

Step 4. Compute the average of the M lengths of the HPD intervals;

Step 5. If this average is ≤ `max, stop. The value n obtained in this step is

the required value. Otherwise, set n = n+ 1 and return to Step 2.

1.2 Negative binomial/Pearson Type VI model

1.2.1 Posterior distribution and properties

Consider the negative binomial model. The corresponding likelihood function

is

L(λ;xn) =
n∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

(
wλ

wλ+ φ

)xi ( φ

wλ+ φ

)φ
=

[
n∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

](
w

φ
λ

)sn (
1 +

w

φ
λ

)−sn−nφ
,

where sn =
∑n

i=1 xi and xn = (x1, . . . , xn). If we consider a Pearson Type

VI prior distribution for λ, the posterior distribution is

f(λ|xn) ∝
(
w

φ
λ

)sn (
1 +

w

φ
λ

)−sn−nφ
×
(
w

φ
λ

)θ0−1(
1 +

w

φ
λ

)−θ0−(θ0/λ0+1)

=

(
w

φ
λ

)θ0+sn−1(
1 +

w

φ
λ

)−(θ0+sn)−(θ0/λ0+nφ+1)

,
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which corresponds to a Pearson Type VI distribution with location and scale

parameters equal to 0 and φ/w, respectively, and shape parameters θ0 + sn

and θ0/λ0 + nφ+ 1. The corresponding mean and variance is

E
[
λ
∣∣xn] =

φ

w

θ0 + sn
θ0/λ0 + nφ

and Var
[
λ
∣∣xn] =

(
φ

w

)2
θ0 + sn

(θ0/λ0 + nφ)2

(
E
[
λ
∣∣xn]+ 1

1− q

)
,

(4)

where q = (θ0/λ0 + nφ)−1. To obtain the HPD interval of length ` for the

Pearson Type VI distribution, we denote as PV I(0, φ/w, κ, ψ), it is necessary

to solve the equation g(a) = g(a + `) in a, where g(·) is the corresponding

density function. The solution is obtained from the equation

(κ− 1) log

[
1 +

`

a

]
− (κ+ ψ) log

[
1 +

w`

φ+ wa

]
= 0, (5)

which may be solved by numerical methods (e.g., Newton-Raphson). For the

posterior distribution obtained from the negative binomial/Pearson Type VI

model we have κ = θ0 + sn and ψ = θ0/λ0 + nφ+ 1.

If we want to obtain the HPD interval with probability 1− ρ we need to

solve a system of equations g(a) = g(b) and P [a ≤ λ ≤ b|sn] = 1− ρ, where

a and b are the lower and upper limits of the HPD interval, respectively.

To solve this system we also need to use numerical methods (e.g., Newton-

Raphson).

1.2.2 Average coverage criterion algorithm

Step 1. Set values for `, φ, λ0, θ0, w, ρ and take n = 1;

Step 2. Draw a sample of size M (e.g., M = 1000) of sn; to draw sn, first

5



draw a sample of size n of λ from the prior distribution PV I(0, φ/w, θ0, θ0/λ0+

1), and given these values draw a sample of size n of Xi from the nega-

tive binomial distribution with mean wλ and shape parameter φ, then

add the Xi’s that were drawn;

Step 3. Compute the lower limit a of the HPD interval using (5) and the

posterior probability P [a ≤ λ ≤ a+ `|sn] using (4) for each sn that was

drawn: for each value drawn in Step 2, compute θ0 + sn and θ0/λ0 +

nφ + 1 corresponding to the Pearson Type VI posterior distribution

of λ, then compute the lower limit a of the HPD interval using (5).

Then, compute the posterior probabilities using the Pearson Type VI

distribution with parameters θ0 + sn and θ0/λ0 + nφ+ 1 (1);

Step 4. Compute the average of the M posterior probabilities;

Step 5. If this average is ≥ 1− ρ, stop. The value n obtained in this step is

the required value. Otherwise, set n = n+ 1 and return to Step 2.

1.2.3 Average length criterion algorithm

Step 1. Set values for `max, φ, λ0, θ0, w, ρ and take n = 1;

Step 2. Draw a sample of size M (e.g., M = 1000) of sn; to draw sn, first

draw a sample of size n of λ from the prior distribution PV I(0, φ/w, θ0, θ0/λ0+

1), and given this values, draw a sample of size n of Xi from the nega-

tive binomial distribution with mean wλ and shape parameter φ, then

add the Xi’s that were drawn;
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Step 3. Compute the length of the HPD interval of probability 1−ρ for each

sn that was drawn: for each value drawn in Step 2, compute θ0 + sn

and θ0/λ0 + nφ + 1 corresponding to the Pearson Type VI posterior

distribution of λ, then obtain the lower and upper limits of the HPD

interval of probability 1 − ρ. Then, compute the difference between

the upper and lower limits for each value drawn in order to obtain the

interval lengths;

Step 4. Compute the average of the M HPD interval lengths;

Step 5. If this average is ≤ `max, stop. The value n obtained in this step is

the required value. Otherwise, set n = n+ 1 and return to Step 2.
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2 Proof of Theorem 1

Before presenting the proof of Theorem 1 we need some results.

Lemma 1. Let {Xn}n≥1 be a sequence of random variables. If supn E [|Xn|1+ε] <

∞ for some ε > 0, then Xn is uniformly integrable.

Proof. See Billingsley (1995, p. 338).

Theorem 2. If Xn → X in distribution as n → ∞ and Xn is uniformly

integrable, then X is integrable and E [Xn]→ E [X], as n→∞.

Proof. See Billingsley (1995, Theorem 25.12).

Theorem 3. Suppose that Xn → X in distribution as n → ∞ and that

hn(x) and h(x) are Borel functions. Let E ⊆ R be a set in which, for some

sequence xn → x, the statement hn(x) → h(x) as n → ∞ does not hold.

Suppose that P [X(ω) ∈ E] = 0. Then, hn(Xn) → h(X) in distribution as

n→∞.

Proof. See Billingsley (1995, p. 340).

Consider the Poisson/gamma model (1)-(2) and the average length crite-

rion, then we have that `′(xn, n) may be approximated by 2zρ/2

√
Var

[
λ
∣∣xn],

where Var
[
λ
∣∣xn] = (θ0+sn)/(nw+θ0/λ0)

2 and zρ/2 is the quantile of proba-

bility 1−ρ/2 of the standard normal distribution, since the posterior variance

may be implicitly related with the length of the corresponding HPD interval

(Joseph et al., 1995).
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Proposition 1. Consider the Poisson/gamma model (1)-(2) and define Sn =∑n
i=1Xi. Then,

lim
n→∞

(
nw +

θ0
λ0

)1/2 E [`′(Xn, n)]

2zρ/2
=

Γ(θ0 + 1/2)

Γ(θ0)

(
λ0
θ0

)1/2

. (6)

Proof. Define Yn = Sn/nw and let F be the set of points in which Yn has

positive probability. Using Theorem B.1 of M’Lan et al. (2006), we have

Sn/n− wλ→ 0 in probability as n→∞. Then, Yn − λ→ 0 in distribution

as n→∞ (see Sen et al., 2009, Theorem 6.2.7).

Let hn(y) =
[

θ0+nwy
nw+θ0/λ0

]1/2
and h(y) = y1/2 = limn→∞ hn(y). Consider the

Lemma 1 with ε = 1; then,

E
[
|Yn|1+ε

]
=

E [|Sn|1+ε]
(nw)1+ε

=
E [|Sn|2]
(nw)2

=
1

(nw)2
[Var [Sn] + (E [Sn])2]

=
1

(nw)2

[
nwλ0 +

n(wλ0)
2

θ0
+ (nwλ0)

2

]
=

λ0
nw

+ λ20

(
1 +

1

nθ0

)
.

Thus,

sup
n

E
[
|Yn|1+ε

]
= sup

n

[
λ0
nw

+ λ20

(
1 +

1

nθ0

)]
=
λ0
w

+ λ20

(
1 +

1

θ0

)
<∞,

and by Lemma 1, Yn is uniformly integrable. Using Theorem 2, we have

E [Yn] → E [λ] as n → ∞ and by Theorem 3, hn(Yn) → h(λ) in distribution
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as n→∞. Then, we have

(
nw +

θ0
λ0

)1/2 E [`′(Xn, n)]

2zρ/2
∼=

∞∑
sn=0

[
θ0 + sn

nw + θ0/λ0

]1/2
fSn(sn) =

∑
yn∈F

hn(yn)fYn(yn)

= E [h(Yn)]→ E [h(λ)]

=

∫ ∞
0

h(λ)
(θ0/λ0)

θ0

Γ(θ0)
λθ0−1 exp(−θ0λ/λ0)dλ

=

∫ ∞
0

(θ0/λ0)
θ0

Γ(θ0)
λθ0+1/2−1 exp(−θ0λ/λ0)dλ

=

(
λ0
θ0

)1/2
Γ(θ0 + 1/2)

Γ(θ0)
.

Finally, we consider the proof of Theorem 1. According to Proposition 1,

the average length criterion may be approximated by (6). Thus, it is enough

to obtain the smallest n which satisfies

2zρ/2

(nw + θ0/λ0)
1/2

Γ(θ0 + 1/2)

Γ(θ0)

(
λ0
θ0

)1/2

≤ `max,

and solving the inequality in n we obtain the result of the Theorem 1.
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3 Tables

In some cells of Table S6 the symbol “-” means that in this case any simulated

HPD interval contains the fixed value of λ.
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Table S1: ACC based Bayesian coverage probability of the HPD interval
estimated through simulation for some scenarios under the model (3)-(4)
using the sample sizes in Table 2 with w = 1.

Interval
φ θ0 n

Probability quantile used to fix λ
length (`) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 426 1.00 1.00 1.00 0.97 0.85
25 422 1.00 1.00 0.99 0.96 0.84
50 417 1.00 0.99 0.97 0.93 0.84
75 414 0.99 0.99 0.97 0.94 0.85

2.5

11 194 1.00 1.00 0.99 0.95 0.82
25 191 1.00 0.99 0.97 0.94 0.86
50 188 0.99 0.97 0.98 0.93 0.88
75 185 0.99 0.98 0.96 0.94 0.91

5.0

11 115 1.00 0.99 0.98 0.94 0.86
25 113 1.00 0.99 0.97 0.93 0.88
50 111 0.98 0.97 0.97 0.94 0.89
75 108 0.97 0.98 0.96 0.95 0.92

7.5

11 90 1.00 0.99 0.97 0.93 0.86
25 88 0.99 0.98 0.97 0.94 0.90
50 85 0.98 0.97 0.95 0.94 0.90
75 82 0.97 0.96 0.96 0.97 0.92

10.0

11 77 0.99 0.98 0.97 0.92 0.89
25 75 0.99 0.97 0.97 0.95 0.90
50 72 0.98 0.98 0.96 0.94 0.92
75 70 0.98 0.97 0.96 0.95 0.92

4

1.0

11 110 1.00 1.00 1.00 0.99 0.86
25 107 1.00 0.99 0.99 0.97 0.86
50 102 0.99 0.99 0.98 0.95 0.88
75 99 0.99 0.99 0.98 0.96 0.88

2.5

11 49 1.00 1.00 0.99 0.97 0.88
25 46 0.99 0.98 0.97 0.96 0.88
50 44 0.98 0.98 0.97 0.95 0.90
75 41 0.98 0.98 0.98 0.97 0.92

5.0

11 29 0.99 0.98 0.99 0.95 0.87
25 27 0.98 0.99 0.98 0.96 0.89
50 24 0.97 0.97 0.98 0.97 0.93
75 22 0.97 0.97 0.99 0.97 0.94

7.5

11 22 0.99 0.98 0.96 0.94 0.89
25 20 0.98 0.99 0.97 0.96 0.90
50 18 0.98 0.98 0.98 0.97 0.94
75 15 0.96 0.99 0.98 0.98 0.95

10.0

11 19 0.99 0.98 0.98 0.95 0.90
25 17 0.98 0.98 0.98 0.96 0.93
50 15 0.98 0.99 0.98 0.98 0.96
75 12 0.97 0.99 0.99 0.98 0.96
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Table S2: ALC based length of the HPD interval estimated through simu-
lation for some scenarios under the model (3)-(4) using the sample sizes in
Table 4 with w = 0.5.

Maximum interval
φ θ0 n

Probability quantile used to fix λ
length (`max) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 456 0.91 1.20 1.54 2.00 2.85
25 456 1.21 1.48 1.76 2.12 2.71
50 452 1.42 1.65 1.87 2.14 2.55
75 445 1.52 1.73 1.92 2.14 2.46

2.5

11 228 1.22 1.50 1.77 2.12 2.70
25 226 1.47 1.68 1.89 2.14 2.50
50 221 1.62 1.79 1.95 2.12 2.36
75 216 1.69 1.84 1.96 2.10 2.29

5.0

11 151 1.40 1.65 1.87 2.14 2.55
25 150 1.60 1.77 1.93 2.11 2.37
50 144 1.72 1.85 1.97 2.09 2.26
75 138 1.79 1.89 1.99 2.08 2.22

7.5

11 126 1.48 1.70 1.91 2.14 2.48
25 123 1.66 1.82 1.96 2.11 2.32
50 118 1.77 1.88 1.98 2.08 2.23
75 113 1.81 1.91 1.99 2.07 2.18

10.0

11 114 1.52 1.72 1.91 2.12 2.42
25 110 1.69 1.84 1.97 2.11 2.30
50 106 1.79 1.89 1.97 2.07 2.19
75 101 1.83 1.91 1.98 2.05 2.15

4

1.0

11 113 1.84 2.42 3.06 3.98 5.69
25 109 2.47 3.00 3.54 4.27 5.43
50 105 2.89 3.33 3.76 4.28 5.04
75 99 3.14 3.51 3.85 4.27 4.86

2.5

11 55 2.49 3.03 3.58 4.24 5.37
25 52 3.00 3.42 3.81 4.29 4.98
50 48 3.31 3.62 3.89 4.21 4.63
75 43 3.48 3.73 3.91 4.15 4.47

5.0

11 37 2.81 3.28 3.71 4.23 5.01
25 34 3.24 3.57 3.85 4.19 4.66
50 29 3.52 3.73 3.91 4.13 4.40
75 23 3.71 3.86 3.98 4.13 4.32

7.5

11 30 2.99 3.41 3.80 4.24 4.89
25 27 3.37 3.66 3.92 4.19 4.59
50 22 3.63 3.80 3.95 4.13 4.33
75 17 3.76 3.87 3.97 4.09 4.22

10.0

11 27 3.07 3.45 3.81 4.21 4.79
25 24 3.43 3.69 3.92 4.16 4.50
50 19 3.66 3.82 3.94 4.10 4.28
75 14 3.78 3.88 3.96 4.05 4.16
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Table S3: ALC based length of the HPD interval estimated through simu-
lation for some scenarios under the model (3)-(4) using the sample sizes in
Table 4 with w = 1.

Maximum interval
φ θ0 n

Probability quantile used to fix λ
length (`max) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 414 0.66 0.92 1.25 1.74 2.79
25 418 0.97 1.26 1.58 2.02 2.84
50 416 1.22 1.49 1.77 2.12 2.71
75 410 1.35 1.60 1.85 2.15 2.62

2.5

11 191 0.99 1.28 1.60 2.04 2.81
25 190 1.28 1.54 1.80 2.13 2.66
50 186 1.48 1.70 1.91 2.14 2.50
75 185 1.57 1.75 1.93 2.13 2.40

5.0

11 115 1.22 1.49 1.77 2.12 2.68
25 113 1.46 1.69 1.90 2.14 2.50
50 110 1.63 1.80 1.94 2.12 2.36
75 108 1.69 1.84 1.96 2.10 2.28

7.5

11 89 1.33 1.58 1.83 2.13 2.60
25 88 1.54 1.74 1.92 2.12 2.41
50 85 1.68 1.83 1.96 2.10 2.29
75 82 1.75 1.87 1.98 2.08 2.24

10.0

11 76 1.40 1.64 1.87 2.14 2.54
25 75 1.59 1.77 1.94 2.11 2.37
50 72 1.73 1.85 1.97 2.09 2.26
75 70 1.78 1.88 1.97 2.07 2.19

4

1.0

11 103 1.33 1.86 2.49 3.46 5.54
25 104 1.94 2.52 3.14 4.00 5.59
50 100 2.48 3.00 3.55 4.23 5.34
75 97 2.77 3.25 3.70 4.28 5.15

2.5

11 47 2.00 2.57 3.20 4.08 5.59
25 46 2.59 3.09 3.60 4.22 5.21
50 43 3.03 3.42 3.81 4.22 4.87
75 41 3.23 3.55 3.84 4.18 4.68

5.0

11 28 2.46 3.00 3.54 4.20 5.29
25 26 3.01 3.42 3.82 4.27 4.94
50 24 3.34 3.62 3.88 4.18 4.59
75 22 3.46 3.68 3.90 4.10 4.40

7.5

11 21 2.72 3.21 3.69 4.27 5.19
25 20 3.16 3.51 3.86 4.20 4.74
50 18 3.42 3.66 3.88 4.11 4.41
75 15 3.63 3.81 3.93 4.11 4.31

10.0

11 19 2.77 3.22 3.66 4.16 4.93
25 17 3.26 3.57 3.85 4.19 4.63
50 15 3.48 3.69 3.87 4.03 4.31
75 12 3.67 3.80 3.93 4.06 4.23
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Table S4: ACC based Bayesian coverage probability of the HPD interval es-
timated through simulation of data using φ = 0.5 and applying the method-
ology with the scenarios specified bellow under the model (3)-(4) using the
sample sizes in Table 2 with w = 1.

Interval
φ θ0 n

Probability quantile used to fix λ
length (`) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 426 1.000 1.000 1.000 1.000 0.947
25 422 1.000 1.000 0.997 0.986 0.947
50 417 1.000 0.997 0.992 0.987 0.959
75 414 0.998 0.992 0.991 0.979 0.967

2.5

11 194 1.000 1.000 1.000 1.000 0.998
25 191 1.000 1.000 0.999 0.992 0.994
50 188 1.000 1.000 0.991 0.995 0.989
75 185 0.989 0.996 0.986 0.986 0.980

5.0

11 115 1.000 1.000 1.000 1.000 0.997
25 113 1.000 1.000 1.000 0.998 0.998
50 111 0.997 0.994 0.989 0.989 0.991
75 108 0.898 0.904 0.905 0.909 0.898

7.5

11 90 1.000 1.000 1.000 1.000 1.000
25 88 1.000 1.000 1.000 0.998 0.998
50 85 0.967 0.968 0.968 0.955 0.954
75 82 0.319 0.360 0.452 0.483 0.493

10.0

11 77 1.000 1.000 1.000 1.000 1.000
25 75 1.000 0.999 1.000 1.000 0.999
50 72 0.810 0.807 0.819 0.865 0.865
75 70 0.004 0.012 0.024 0.035 0.077

4

1.0

11 110 1.000 0.999 0.999 0.994 0.972
25 107 1.000 0.996 0.997 0.991 0.962
50 102 0.996 0.988 0.987 0.972 0.958
75 99 0.990 0.980 0.984 0.961 0.955

2.5

11 49 1.000 1.000 0.999 0.998 0.977
25 46 0.996 0.996 0.992 0.988 0.971
50 44 0.957 0.939 0.938 0.948 0.928
75 41 0.671 0.655 0.768 0.771 0.826

5.0

11 29 0.999 1.000 0.996 0.995 0.992
25 27 0.976 0.976 0.973 0.967 0.962
50 24 0.115 0.207 0.335 0.406 0.454
75 22 0.000 0.000 0.000 0.000 0.000

7.5

11 22 1.000 1.000 0.997 0.997 0.993
25 20 0.831 0.858 0.877 0.883 0.878
50 18 0.000 0.000 0.000 0.000 0.000
75 15 0.000 0.000 0.000 0.000 0.000

10.0

11 19 1.000 0.998 0.996 0.998 0.994
25 17 0.442 0.563 0.671 0.733 0.716
50 15 0.000 0.000 0.000 0.000 0.000
75 12 0.000 0.000 0.000 0.000 0.000
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Table S5: ALC based length of the HPD interval estimated through simula-
tion of data using φ = 0.5 and applying the methodology with the scenarios
specified below under the model (3)-(4) using the sample sizes in Table 4
with w = 0.5.

Maximum interval
φ θ0 n

Probability quantile used to fix λ
length (`max) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 456 0.528 0.677 0.847 1.077 1.515
25 456 0.683 0.824 0.966 1.150 1.447
50 452 0.799 0.913 1.026 1.163 1.373
75 445 0.856 0.959 1.054 1.167 1.332

2.5

11 228 0.427 0.497 0.566 0.648 0.777
25 226 0.499 0.553 0.603 0.657 0.742
50 221 0.551 0.593 0.628 0.670 0.726
75 216 0.575 0.612 0.643 0.678 0.724

5.0

11 151 0.382 0.425 0.466 0.509 0.571
25 150 0.432 0.466 0.494 0.524 0.562
50 144 0.476 0.495 0.519 0.535 0.565
75 138 - - - - -

7.5

11 126 0.358 0.394 0.423 0.454 0.501
25 123 0.407 0.430 0.451 0.474 0.505
50 118 - - - - 0.512
75 113 - - - - -

10.0

11 114 0.341 0.369 0.395 0.424 0.459
25 110 0.389 0.408 0.428 0.443 0.466
50 106 - - - - -
75 101 - - - - -

4

1.0

11 113 1.082 1.381 1.704 2.177 3.024
25 109 1.435 1.697 1.988 2.339 2.911
50 105 1.702 1.922 2.148 2.409 2.790
75 99 1.860 2.049 2.252 2.459 2.764

2.5

11 55 0.921 1.048 1.183 1.341 1.601
25 52 1.126 1.230 1.320 1.435 1.592
50 48 - 1.322 1.402 1.495 1.606
75 43 - - - - 1.636

5.0

11 37 0.870 0.949 1.019 1.098 1.224
25 34 - - 1.139 1.189 1.275
50 29 - - - - -
75 23 - - - - -

7.5

11 30 0.863 0.940 0.997 1.051 1.138
25 27 - - - - -
50 22 - - - - -
75 17 - - - - -

10.0

11 27 - 0.916 0.942 1.008 1.066
25 24 - - - - -
50 19 - - - - -
75 14 - - - - -
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Table S6: ALC based length of the HPD interval estimated through simula-
tion of data using φ = 0.5 and applying the methodology with the scenarios
specified below under the model (3)-(4) using the sample sizes in Table 4
with w = 1.

Maximum interval
φ θ0 n

Probability quantile used to fix λ
length (`max) 1/6 2/6 3/6 4/6 5/6

2

1.0

11 414 0.658 0.921 1.247 1.744 2.794
25 418 0.966 1.253 1.577 2.026 2.832
50 416 1.213 1.485 1.765 2.124 2.716
75 410 1.351 1.608 1.847 2.141 2.624

2.5

11 191 0.990 1.289 1.605 2.038 2.831
25 190 1.276 1.538 1.808 2.129 2.659
50 186 1.483 1.702 1.901 2.140 2.515
75 185 1.572 1.765 1.939 2.124 2.401

5.0

11 115 1.220 1.489 1.760 2.111 2.691
25 113 1.467 1.680 1.889 2.131 2.496
50 110 1.635 1.789 1.968 2.126 2.356
75 108 1.700 1.838 1.954 2.098 2.288

7.5

11 89 1.327 1.579 1.843 2.132 2.606
25 88 1.547 1.746 1.906 2.111 2.418
50 85 1.689 1.827 1.966 2.102 2.278
75 82 1.762 1.870 1.987 2.079 2.226

10.0

11 76 1.397 1.634 1.877 2.138 2.540
25 75 1.591 1.776 1.928 2.114 2.368
50 72 1.728 1.852 1.971 2.077 2.264
75 70 1.787 1.868 1.956 2.070 2.197

4

1.0

11 103 1.332 1.854 2.490 3.502 5.476
25 104 1.950 2.493 3.094 4.009 5.619
50 100 2.474 3.014 3.566 4.205 5.363
75 97 2.757 3.227 3.706 4.252 5.214

2.5

11 47 1.996 2.598 3.185 4.082 5.622
25 46 2.586 3.071 3.592 4.224 5.202
50 43 3.026 3.419 3.807 4.194 4.885
75 41 3.233 3.572 3.836 4.194 4.659

5.0

11 28 2.475 2.977 3.532 4.171 5.381
25 26 3.017 3.389 3.813 4.241 4.926
50 24 3.314 3.624 3.917 4.168 4.584
75 22 3.487 3.693 3.914 4.105 4.386

7.5

11 21 2.711 3.222 3.697 4.260 5.155
25 20 3.143 3.502 3.777 4.246 4.773
50 18 3.411 3.684 3.893 4.107 4.388
75 15 3.599 3.804 3.916 4.086 4.322

10.0

11 19 2.749 3.217 3.661 4.154 4.873
25 17 3.221 3.526 3.867 4.188 4.678
50 15 3.473 3.653 3.852 4.049 4.300
75 12 3.666 3.833 3.974 4.083 4.186
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