AIR POLLUTION: STATISTICAL AND COMPUTATIONAL METHODS

DR SHANE O'SULLIVAN

Daytime in London, 1952

Particulate levels $-3,000 \mu g/m^3$

Designer Smog Masks - London 1950's

Daily mortality:

Plume Dispersion

Objectives:

Assess environmental impact of an emission source in terms of legislated standards

Using statistics we can estimate the impact of an emission source from an industrial plant:

Z-axis starts from ground level

Plume dispersion occurs in the y- and z-directions

Turbulent dispersion:

y-direction:

$$\mathbf{C} \propto \exp \left\{ -\frac{1}{2} \left(\frac{\mathbf{y}}{\sigma_{\mathbf{y}}} \right)^{2} \right\}$$

z-direction:

$$\mathbf{C} \propto \exp \left\{ -\frac{1}{2} \left(\frac{\mathbf{z}}{\sigma_{\mathbf{z}}} \right)^{2} \right\}$$

Where σ_y and σ_z are dispersion parameters that must be estimated

Particle diffusion:

$$C = \frac{Q}{\sigma \sqrt{2 \pi}} \exp \left\{ -\frac{1}{2} \frac{y^2}{\sigma^2} \right\}$$
where $\sigma^2 = 2 D t$

D is the particle

diffusivity

Transverse turbulent dispersion

 $\sigma_{\!\scriptscriptstyle y}$ and $\sigma_{\!\scriptscriptstyle z}$ must be estimated

Ground-level concentrations will depend on ...

Wind ...

Wind rose shows average direction and magnitude of the wind vector

Hourly Wind Rose from Nashville, TN NWS Meteorological Data

Years: 1991-1995

LEGEND (mph)

Calms included at center.
Rings drawn at 5% intervals.
Wind flowis FROM the directions shown

Atmospheric stability

Dry adiabatic lapse rate (stable, neutral atmosphere)

$$\frac{dT}{dZ} = -1^{\circ} C/100 m$$

Natural balance between hydrostatic head, ρ g dA dZ, and pressure forces

Super-adiabatic lapse rate:

A "buoyant" atmosphere

Sub-adiabatic lapse rate:

The Gaussian plume model:

The concentration of material downwind in the x-direction varies as the inverse of the local transport velocity, i.e.,

$$C \propto \frac{1}{U}$$

A Gaussian type distribution is used in the y-direction:

$$C \propto A \exp \left\{ -\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 \right\}$$

Starting to look like a Normal distribution!

If we choose
$$A = \frac{1}{\sqrt{2\pi} \sigma_y}$$

The distribution will provide an integrated concentration of unity across the transverse cross-section

$$\frac{1}{\sqrt{2\pi} \sigma_{y}} \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} \left(\frac{y}{\sigma_{y}} \right)^{2} \right\} dy = 1$$

Z- direction requires special treatment ...

When the "edge" of the plume reaches the ground ... we assume perfect "reflection"!

Plume model almost complete

$$C \propto \frac{1}{\sqrt{2 \pi}} \left[exp \left(-\frac{1}{2} \left\{ \frac{z - H}{\sigma_z} \right\}^2 \right) + exp \left(-\frac{1}{2} \left\{ \frac{z + H}{\sigma_z} \right\}^2 \right) \right]$$

(z - H) term accounts for the above ground contribution

(z + H) term accounts for the imaginary source below ground

Final form of the Gaussian plume model:

$$C(x, y, z, H) = \frac{Q}{2 \pi \sigma_{y} \sigma_{z} U} \exp \left\{ -\frac{1}{2} \left(\frac{y}{\sigma_{y}} \right)^{2} \right\}$$

$$\times \left[\exp \left(-\frac{1}{2} \left\{ \frac{z - H}{\sigma_z} \right\}^2 \right) + \exp \left(-\frac{1}{2} \left\{ \frac{z + H}{\sigma_z} \right\}^2 \right) \right]$$

- Product of the y- and z-direction distributions
- Q is the emission rate in mass per unit time

Variation of C with x is contained in the behaviour of σ_y and σ_z with downstream position, x, from the emission source.

$$C(x, y, z, H) = \frac{Q}{2 \pi \sigma_y \sigma_z U} \exp \left\{ -\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 \right\}$$

$$\times \left[\exp \left(-\frac{1}{2} \left\{ \frac{z - H}{\sigma_z} \right\}^2 \right) + \exp \left(-\frac{1}{2} \left\{ \frac{z + H}{\sigma_z} \right\}^2 \right) \right]$$

Stability classes A - F

Surface wind speed (at 10 m) in m sec ⁻¹	Day Incoming solar radiation			Night		
				Thinly overcast	.0/0 (1) 1	
	Strong	Moderate	Slight	or ≥ 4/8 low cloud	≤ 3/8 Cloud	
< 2	A	A-B	В			
2-3	А-В	В	С	Е	F	
3-5	В	В-С	С	D	E	
5-6	С	C-D	D	D	D	
> 6	С	D	D	D	D	

Mathematical models for σ_y

$$\sigma_{y} = a x^{p}$$

Mathematical models for σ_z

$$\sigma_z = b x^q$$

- for class C, and
- piecewise (in x) for other different classes

Detailed dispersion parameter estimates for model forms: σ_y and σ_z

	σ _y		σ_{z}		Range of
Dispersion Class	a	P	b	q	Application for σ_z , x , meters
A	0.55202	0.85927	0.07791	1.1148	100 - 300
			0.01036	1.4787	300 - 500
			0.000218	2.1057	500 - 3000
В	0.38267	0.87024	0.1186	0.9711	100 - 500
			0.05419	1.1028	500 - 20000
С	0.22759	0.88812	0.11486	0.9074	100 - 20000
D	0.16209	0.87944	0.09261	0.8529	100 - 500
			0.25616	0.6927	500 - 3000
			0.52179	0.6020	3000 - 20000
E	0.11826	0.88167	0.08182	0.8178	100 - 500
			0.22387	0.6575	500 - 3000
			0.74895	0.5052	3000 - 20000
F	0.07948	0.88144	0.05498	0.8101	100 - 500
			0.1549	0.6485	500 - 3000
			0.92323	0.4234	3000 - 20000

But ...

The accuracy of these parameters depends on the weather conditions and downstream distance from the emission source. In general, errors in the estimate of σ_z on the order of 3 can occur for longer distances under unstable and stable cases. Errors in σ_z are expected to be correct within a factor of 2 for the cases:

- (i) all stability classes for distances out to a few 100 meters.
- (ii) neutral to moderately unstable conditions out to a few km.
- (iii) Unstable conditions in the lower 1000 m of the atmosphere with a marked inversion for distances out to 10 km or more.

The errors in σ_y are generally less than those for σ_z . The estimates of σ for both directions are based on a 10-minute time average, the dispersion tends to be greater for longer times due to meandering of the plume in the cross-stream directions.