Diagnostic and treatment for linear mixed models

Julio M. Singer

in collaboration with Francisco M.M. Rocha and Juvêncio S. Nobre

Departamento de Estatística Universidade de São Paulo, Brazil www.ime.usp.br/~jmsinger

Ozone example

- Ozone concentration: measured with expensive instruments
- Alternative: reflectance in passive filters / calibration curve
- Details in André et al. (2014, Atm. Environ.)

Ozone example

• Experiment LPAE/FMUSP: predict period expected reflectance (latent value) accounting for possible outliers

Period	Reflectance	Period	Reflectance
1	27.0	6	47.9
1	34.0	6	60.4
1	17.4	6	47.3
2	24.8	7	50.4
2	29.9	7	50.7
2	32.1	7	55.9
3	35.4	8	54.9
3	63.2	8	43.2
3	27.4	8	52.1
4	51.2	9	38.8
4	54.5	9	59.9
4	52.2	9	61.1
5	77.7		
5	53.9		
5	48.2		

• Linear mixed model:

$$y_{ij} = \mu + a_i + e_{ij}, \quad i = 1, \dots, 9, \ j = 1, 2, 3$$

- $a_i \sim N(0, \sigma_a^2)$ independent
- $e_{ij} \sim N(0, \sigma^2)$ independent
- a_i and e_{ij} independent
- Consequently
 - $\mathbb{V}(y_{ij}) = \sigma_a^2 + \sigma^2$
 - $\mathbb{Cov}(y_{ij}, y_{ik}) = \sigma_a^2$
 - $\mathbb{Cov}(y_{lj}, y_{ik}) = 0$
 - Intraclass correlation coefficient: $\rho=\sigma_a^2/(\sigma_a^2+\sigma^2)$

Gaussian LMM (matrix notation)

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i \ \text{with} \ \mathbb{V}(\mathbf{b}_i) = \mathbf{G} \ \text{and} \ \mathbb{V}(\mathbf{e}_i) = \mathbf{R}_i$$
 so that

$$\mathbb{E}(\mathbf{y}_i) = \mathbf{X}_i oldsymbol{eta}$$
 and $\mathbb{V}(\mathbf{y}_i) = \mathbf{\Omega}_i = \mathbf{Z}_i \mathbf{G} \mathbf{Z}_i^ op + \mathbf{R}_i$

Ozone example

$$\mathbf{y}_{i} = \begin{pmatrix} y_{i1} \\ y_{i2} \\ y_{i3} \end{pmatrix}, \ \mathbf{X}_{i} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\beta} = \mu, \ \mathbf{b}_{i} = a_{i}, \ \mathbf{e}_{i} = \begin{pmatrix} e_{i1} \\ e_{i2} \\ e_{i3} \end{pmatrix}$$

$$\mathbb{V}(a_i) = \sigma_a^2, \ \mathbb{V}(e_{ij}) = \sigma^2, \ \mathbf{\Omega}_i = \begin{pmatrix} \sigma_a^2 + \sigma^2 & \sigma_a^2 & \sigma_a^2 \\ \sigma_a^2 & \sigma_a^2 + \sigma^2 & \sigma_a^2 \\ \sigma_a^2 & \sigma_a^2 & \sigma_a^2 + \sigma^2 \end{pmatrix}$$

Gaussian LMM (matrix notation)

$$y = X\beta + Zb + e$$

with

$$\mathbf{y} = (\mathbf{y}_{1}^{\top}, \cdots, \mathbf{y}_{n}^{\top})^{\top} \quad (N \times 1, \ N = \sum_{i=1}^{n} m_{i})$$
$$\mathbf{X} = (\mathbf{X}_{1}^{\top}, \cdots, \mathbf{X}_{n}^{\top})^{\top} \quad (N \times p)$$
$$\mathbf{Z} = \bigoplus_{i=1}^{n} \mathbf{Z}_{i} \quad (N \times nq)$$
$$\mathbf{b} = (\mathbf{b}_{1}^{\top}, \cdots, \mathbf{b}_{n}^{\top})^{\top} \quad (nq \times 1)$$
$$\mathbf{e} = (\mathbf{e}_{1}^{\top}, \cdots, \mathbf{e}_{n}^{\top})^{\top} \quad (N \times 1)$$
$$\mathbf{\Gamma} = \mathbf{I}_{n} \otimes \mathbf{G}(\theta) \quad (nq \times nq)$$
$$\mathbf{R} = \bigoplus_{i=1}^{n} \mathbf{R}_{i}(\theta) \quad (N \times N)$$
Consequently

 $\mathbb{V}(\mathbf{y}) = \mathbf{V} = \mathbf{Z} \boldsymbol{\Gamma} \mathbf{Z}^\top + \mathbf{R}$

Maximum likelihood methodology

• (E)BLUE of
$$\boldsymbol{\beta}: \ \widehat{\boldsymbol{\beta}} = \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \widehat{\boldsymbol{\Omega}}_{i}^{-1} \mathbf{X}_{i}\right)^{-1} \sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \widehat{\boldsymbol{\Omega}}_{i}^{-1} \mathbf{y}_{i}$$

• (E)BLUP of $\mathbf{b}_{i}: \ \widehat{\mathbf{b}}_{i} = \widehat{\mathbf{G}} \mathbf{Z}_{i}^{\top} \widehat{\boldsymbol{\Omega}}_{i}^{-1} [\mathbf{I}_{m_{i}} - \mathbf{X}_{i} \left(\mathbf{X}_{i}^{\top} \widehat{\boldsymbol{\Omega}}_{i}^{-1} \mathbf{X}_{i} \right)^{-1} \mathbf{X}_{i}^{\top} \widehat{\boldsymbol{\Omega}}_{i}^{-1}] \mathbf{y}_{i}$ Ozone example $\widehat{\boldsymbol{\beta}} = \overline{y}, \quad \widehat{\mathbf{b}}_{i} = \widehat{k} (\overline{y}_{i} - \overline{y}), \quad \widehat{k} = \widehat{\sigma}_{a}^{2} / (\widehat{\sigma}_{a}^{2} + \widehat{\sigma}^{2} / 3)$ $\widehat{k}: \text{ shrinkage constant}$

Predicted latent value for period i

$$\widehat{y}_i = \overline{y} + \widehat{k}(\overline{y}_i - \overline{y}) = \widehat{k}\overline{y}_i + (1 - \widehat{k})\overline{y}$$

Diagnostics

- Global influence
 - Leverage analysis [Nobre and Singer (2011, J. Applied Stat.)]
 - Case deletion analysis [Tan et al. (2001, The Statistician)]
- Local influence [Lesaffre and Verbeke (1998, Biometrics)]
- Residual analysis [Nobre and Singer (2007, Biom. Journal)]
- Three types of residuals to accommodate the extra source of variability present in LMM:

i) Marginal residuals, $\hat{\boldsymbol{\xi}}_i = \mathbf{y}_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}$ predictors of marginal errors, $\boldsymbol{\xi}_i = \mathbf{y}_i - \mathbb{E}[\mathbf{y}_i] = \mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} = \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i$ $\hat{\boldsymbol{\xi}}_{ij} = y_{ij} - \overline{y}$

ii) Conditional residuals, $\widehat{\mathbf{e}}_i = \mathbf{y}_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}} - \mathbf{Z}_i \widehat{\mathbf{b}}_i$ predictors of conditional errors $\mathbf{e}_i = \mathbf{y}_i - \mathbb{E}[\mathbf{y}_i | \mathbf{b}_i] = \mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i$ $\widehat{e}_{ij} = y_{ij} - \widehat{y}_i$

iii) Random effects residuals, $\mathbf{Z}_i \hat{\mathbf{b}}_i$, predictors of random effects, $\mathbf{Z}_i \mathbf{b}_i = \mathbb{E}[\mathbf{y}_i | \mathbf{b}_i] - \mathbb{E}[\mathbf{y}_i] = (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta} - \mathbf{Z}_i \mathbf{b}_i) - (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})$ $\hat{b}_{ij} = \hat{y}_i - \overline{y}$

LMM Residual analysis

• Standardized marginal residual: $\widehat{\boldsymbol{\xi}}_{ij}^* = \widehat{\boldsymbol{\xi}}_{ij} / [diag_{ij}(\widehat{\mathbb{V}}(\widehat{\boldsymbol{\xi}}_i))]^{1/2}$

$$\widehat{\mathbb{V}}(\widehat{\boldsymbol{\xi}}_i) = \widehat{\boldsymbol{\Omega}}_i - \mathbf{X}_i (\mathbf{X}_i \widehat{\boldsymbol{\Omega}}_i^{-1} \mathbf{X}_i)^{-1} \mathbf{X}_i^\top$$

• Standardized conditional residual: $\widehat{\mathbf{e}}_{ij}^* = \widehat{\mathbf{e}}_{ij} / [diag_j(\widehat{\mathbf{R}}_i \widehat{\mathbf{Q}}_i \widehat{\mathbf{R}}_i)]^{1/2}$

$$\widehat{\mathbb{V}}(\widehat{\mathbf{e}_{i}}) = \widehat{\mathbf{R}}_{i} \widehat{\mathbf{Q}}_{i} \widehat{\mathbf{R}}_{i} \text{ with } \widehat{\mathbf{Q}}_{i} = \widehat{\mathbf{\Omega}}_{i}^{-1} - \widehat{\mathbf{\Omega}}_{i}^{-1} \mathbf{X}_{i} \left(\mathbf{X}_{i}^{\top} \widehat{\mathbf{\Omega}}_{i}^{-1} \mathbf{X}_{i} \right)^{-1} \mathbf{X}_{i}^{\top} \widehat{\mathbf{\Omega}}_{i}^{-1}$$

Modified Lesaffre-Verbeke index:

$$\mathcal{V}_i = ||\mathbf{I}_{m_i} - \widehat{\mathbb{V}}(\widehat{\boldsymbol{\xi}}_i)^{-1/2} \widehat{\boldsymbol{\xi}}_i \widehat{\boldsymbol{\xi}}_i^\top \widehat{\mathbb{V}}(\widehat{\boldsymbol{\xi}}_i)^{-1/2} ||^2, \quad \mathcal{V}_i^* = \sqrt{\mathcal{V}_i}/m_i$$

• Mahalanobis distance: $\mathcal{M}_i = \widehat{\mathbf{b}}_i^{\top} [\widehat{\mathbb{V}}(\widehat{\mathbf{b}}_i - \mathbf{b}_i)]^{-1} \widehat{\mathbf{b}}_i$

• $\widehat{\mathbf{e}} = \widehat{\mathbf{R}}\widehat{\mathbf{Q}}\mathbf{e} + \widehat{\mathbf{R}}\widehat{\mathbf{Q}}\mathbf{Z}\mathbf{b}$

- Hilden-Minton (1995, PhD thesis, UCLA): ability to check for normality of e, using $\hat{\mathbf{e}}$, decreases as $\mathbb{V}[\mathbf{R}\mathbf{Q}\mathbf{Z}^{\top}\mathbf{b}] = \mathbf{R}\mathbf{Q}\mathbf{Z}\mathbf{G}\mathbf{Z}^{\top}\mathbf{Q}\mathbf{R}$ increases in relation to $\mathbb{V}[\mathbf{R}\mathbf{Q}\mathbf{e}] = \mathbf{R}\mathbf{Q}\mathbf{R}\mathbf{Q}\mathbf{R}$
- Fraction of confounding for the k-th conditional residual \widehat{e}_k

$$0 \leq F_k = \frac{\mathbf{u}_k^\top \mathbf{R} \mathbf{Q} \mathbf{Z} \mathbf{\Gamma} \mathbf{Z}^\top \mathbf{Q} \mathbf{R} \mathbf{u}_k}{\mathbf{u}_k^\top \mathbf{R} \mathbf{Q} \mathbf{R} \mathbf{u}_k} = 1 - \frac{\mathbf{u}_k^\top \mathbf{R} \mathbf{Q} \mathbf{R} \mathbf{Q} \mathbf{R} \mathbf{u}_k}{\mathbf{u}_k^\top \mathbf{R} \mathbf{Q} \mathbf{R} \mathbf{u}_k} \leq 1$$

- Least confounded residual: linear transformation $c^{\top}\widehat{e}$ that minimizes Fraction of Confounding
- Least confounded residuals: homoskedastic, uncorrelated
- Useful for constructing QQ plots to check for normality

Diagnostic for	Residual	Plot
Linearity of effects fixed $(\mathbb{E}[\mathbf{y}] = \mathbf{X}oldsymbol{eta})$	Marginal	$\widehat{\xi}_{ij}^*$ vs fitted values or explanatory variables
Presence of outlying observations	Marginal	$\widehat{\xi}_{ij}^*$ vs observation indices
Within-subjects covariance matrix (\mathbf{V}_i)	Marginal	\mathcal{V}_i^{*} vs unit indices
Presence of outlying observations	Conditional	\hat{e}_{ij}^* vs observation indices
Homoskedasticity of conditional errors (\mathbf{e}_i)	Conditional	\hat{e}_{ij}^{*} vs predicted values
Normality of conditional errors (\mathbf{e}_i)	Conditional	Normal QQ plot for $\mathbf{c}_k^{ op}\widehat{\mathbf{e}}^*$
Presence of outlying units	Random effects	\mathcal{M}_i vs unit indices
Normality of the random effects (\mathbf{b}_i)	Random effects	χ^2_q QQ plot for ${\mathfrak M}_i$

• Diagnostic tools depend on correct specification of covariance structure

Post diagnostic treatment

• Fine tuning of the model based on diagnostic tools

- Examination of individual profiles [Rocha and Singer (2014), submitted]
- Plots of correlations vs lags [Grady and Helms (1995, SIM)]
- Use of covariates to model covariance structure [Cúri and Singer (2006), Environ Ecol Stat]

• Elliptically symmetric distributions

- Useful to accommodate outliers (multivariate t, slash, contaminated normal)
- Estimation similar but more complicated than gaussian case
- Local influence [Osorio et al. (2007, CSDA)]
- Residual analysis?

Skew-elliptical distributions

- Fitting is difficult in practice; usually must consider Bayesian methods
- Local influence [Jara et al. (2008, CSDA)]
- Residual analysis?

• Robust estimation [Koller (2013), PhD thesis, ETH Zürich]

- M-methods
- Limited choices for covariance structure

Library	Function	Fits	Random effects distribution	${f G}$ or ${f R}_W$ matrix	Error distribution	\mathbf{R}_i matrix
						0
lme4	lmer	LMM	gaussian	unstructured ${f G}$	gaussian	$\sigma^2 \mathbf{I}_{m_i}$
	nlmer	NLMM	gaussian	unstructured ${f G}$	gaussian	structured
	glmer	GLMM	gaussian	unstructured G	exponential	NA
					family	
nlme	lme	LMM	gaussian	structured G	gaussian	structured
	nlme	NLMM	gaussian	structured G	gaussian	structured
	gls	LM	NA	NA	gaussian	structured
gee	gee	GEE-based	NS structured \mathbf{R}_W		exponential	NA
		model			family or NS	
geepack	geeglm	GEE-based	NS	structured \mathbf{R}_W	exponential	NA
		model			family or NS	
heavy	heavyLme	ES-LMM	elliptically	unstructured ${f G}$	elliptically	NA
			symmetric		symmetric	
robustlmm	rlmer	Robust LMM	symmetric	diagonal or	symmetric	$\sigma^2 \mathbf{I}_{m_i}$
				unstructured ${f G}$		Ĺ

NA: not applicable NS: not specified

- NS: not specified
- Some functions for diagnostic available only from authors
- Difficult to use in more complicated problems
- First version of functions for residual diagnostic based on Ime4 and nlme available from www.ime.usp.br/~jmsinger/Immdiagnostics.zip

Ozone example - standard model (A)

Results (standard model): $\hat{\mu} = 46.4$, $\hat{\sigma}_a^2 = 100.4$, $\hat{\sigma}^2 = 104.8$, $\hat{k} = 0.75$

Standardized marginal residuals - standard model

Ozone example - standard model (B)

Ozone example standard model (C)

QQ plot for Mahalanobis distance - standard model

Ozone example standard model (D)

Modified Lesaffre-Verbeke index - standard model

Ozone example - standard model (E)

Standardized conditional residuals - standard model

Ozone example - standard model (F)

Standardized least confounded conditional residuals - standard model

Ozone example - heteroskedastic model 1 (A)

• Suggested (heteroskedastic) model

$$y_{ij} = \mu + a_i + e_{ij}$$
 with $e_{ij} \sim N(0, \sigma_i^2)$

- \bullet For parsimony: $\sigma_i^2=\tau^2, i=3,5,\,\sigma_i^2=\sigma^2,$ otherwise
- Shrinkage constant: $k_i = \sigma_a^2/(\sigma_a^2 + \sigma_i^2/3)$
- Predicted latent value for period i

$$\widehat{y}_i = \widehat{\mu} + \widehat{k}_i (\overline{y}_i - \widehat{\mu}), \quad \widehat{\mu} = \sum_{i=1}^9 (w_i / \sum_{i=1}^9 w_i) \overline{y}_i, \quad w_i = (\sigma_a^2 + \sigma_i^2)^{-1}$$

Results

- Heteroskedastic model 1: $\hat{\mu} = 45.9$, $\hat{\sigma}_a^2 = 114.3$, $\hat{\sigma}^2 = 49.6$, $\hat{\tau}^2 = 274.0$, $\hat{k}_{i\neq3,5} = 0.87$, $\hat{k}_{i=3,5} = 0.56$
- Homoskedastic model: $\hat{\mu} = 46.4$, $\hat{\sigma}_a^2 = 100.4$, $\hat{\sigma}^2 = 104.8$, $\hat{k} = 0.75$

Ozone example - heteroskedastic model 1 (B)

Modified Lesaffre-Verbeke index - heteroskedastic model 1

Ozone example - heteroskedastic model 2 (A)

• Suggested (heteroskedastic) model 2

$$y_{ij} = \mu + a_i + e_{ij}$$
 with $e_{ij} \sim N(0, \sigma_i^2)$

•
$$\sigma_i^2 = \tau^2$$
, $i = 3, 5$,
• $\sigma_i^2 = \nu^2$, $i = 1, 9$
• $\sigma_i^2 = \sigma^2$, $i = 2, 4, 6, 7, 8$.

• Results:

•
$$\hat{\mu} = 46.2$$
,
• $\hat{\sigma}_a^2 = 103.8$,
• $\hat{\sigma}^2 = 123.6$, $\hat{\tau}^2 = 270.0$, $\hat{\nu}^2 = 23.3$
• $\hat{k}_{i=1,9} = 0.72$,
• $\hat{k}_{i=3,5} = 0.54$,
• $\hat{k}_{i=2,4,6,7,8} = 0.93$

• Homoskedastic model: $\hat{\mu} = 46.4$, $\hat{\sigma}_a^2 = 100.4$, $\hat{\sigma}^2 = 104.8$, $\hat{k} = 0.75$

Ozone example heteroskedastic model 2 (B)

Standardized conditional residuals - heteroskedastic model 2

Ozone example - heteroskedastic model 2 (C)

Standardized least confounded conditional residuals heteroskedastic model 2

Ozone example - data revisited

Period	Reflectance	Period	Reflectance
1	27.0	6	47.9
1	34.0	6	60.4
1	17.4	6	47.3
2	24.8	7	50.4
2	29.9	7	50.7
2	32.1	7	55.9
3	35.4	8	54.9
3	63.2	8	43.2
3	27.4	8	52.1
4	51.2	9	38.8
4	54.5	9	59.9
4	52.2	9	61.1
5	77.7		
5	53.9		
5	48.2		

Ozone example – Latent value predictions

	Sample	Homoskedastic	Heteroskedastic		
Period	mean	LMM	LMM (3 variances)	t (df=21.8)	Robust
1	26.1	31.4	31.9	31.8	29.2
2	28.9	33.4	30.2	33.8	31.6
3	42.0	43.1	44.0	43.3	39.4
4	52.6	51.0	52.2	50.9	51.5
5	59.9	56.4	53.5	56.3	54.4
6	51.9	50.4	51.5	50.4	50.9
7	52.3	50.8	51.9	50.8	51.3
8	50.1	49.1	49.8	49.1	49.4
9	53.3	51.5	51.3	51.4	52.7
Mean	46.4	46.4	46.2	46.6	45.7

Shrinkage towards mean (sample mean-latent value prediction)						
Homoskedastic Heteroskedastic						
Period	LMM	LMM (3 variances)	t(df=21.8)	Robust		
3	-1.1	-2.0	-1.3	2.6		
5	3.5	6.4	3.6	5.5		
Period 3 5	LMM -1.1 3.5	LMM (3 variances) -2.0 6.4	t(df=21.8) -1.3 3.6	Rob 2. 5.		

JM Singer (USP)

- Data originally from Harrison and Rubinfeld (1978, J Environ Econ & Manag)
- Used as example of heavy-tailed data Belsley et al. (1980, Wiley), Longford (1993, Oxford)
- Objective: Willingness to pay for better air quality based on the analysis of housing market
- Data on 14 variables obtained from 506 SMSA arising form 92 towns
- Belsley et al. (1980) fitted standard linear model via OLS

$$y_i = explanatory variables + e_i, e_i \sim N(0, \sigma^2)$$

 $i=1,\ldots,506$ and suggested that error distribution should have heavier tails than the gaussian distribution

Boston example: Belsley et al. model

Standardized conditional residuals - Belsley et al. model

- Observations in the same town should be considered as clusters
- Re-analyzed data introducing random effect for towns

$$\begin{split} y_{ij} &= \text{explanatory variables} + a_i + e_{ij} \\ a_i &\sim N(0, \tau^2) \\ e_{ij} &\sim N(0, \sigma^2) \end{split}$$

 a_i and e_{ij} independent $i = 1, \ldots, 92, j = 1, \ldots m_i$

• Concluded that heavy-tailedness of error distribution is attenuated

Boston example: Longford model

Least confounded residuals - Longford model

Boston example: Longford model

QQ plot for Mahalanobis distance - Longford model

Boston example: Longford model diagnostics

Modified Lesaffre-Verbeke index - Longford model

• Diagnostics re-examined after fitting alternative models

Final model

$$\begin{split} y_{ij} &= \text{explanatory variables} + a_i + e_{ij} \\ a_i &\sim N(0, \tau^2) \\ \mathbf{e}_i &\sim N_{m_i}(\mathbf{0}, \mathbf{R}_i), \ \mathbf{R}_i \text{ compound symmetry} \\ \mathbf{R}_i &= \mathbf{R}_i^*, i = 4, 15, \dots, 91, 92: \text{ selected towns} \\ \mathbf{R}_i &= \mathbf{R}^*, \text{ otherwise} \end{split}$$

 a_i and e_i independent $i = 1, \ldots, 92, j = 1, \ldots, m_i$

- Compound symmetry to allow for possible within-unit spatial correlation
- Different within-unit covariance matrix for selected SMSAs

Standardized marginal residuals - final model

Mahalanobis distance - final model

QQ plot for Mahalanobis distance - final model

Standardized conditional residuals - final model

Least confounded residuals - final model

Boston example: estimates of fixed effects

			Gaussian LMM			t -LMM		Robust		
	Bels	sley	Longford		Final		df=2.19		LMM	
Var	Estim	SE	Estim	SE	Estim	SE	Estim	SE	Estim	SE
(Int)	9.756	0.150	9.672	0.214	9.669	0.125	9.682	0.250	9.612	0.158
crim	-0.012	0.001	-0.007	0.001	-0.006	0.002	-0.006	0.002	-0.006	0.001
zn	0.000	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.001
indus	0.000	0.002	0.002	0.005	0.003	0.003	0.003	0.006	0.004	0.003
chasyes	0.091	0.033	-0.014	0.029	0.017	0.018	0.016	0.042	-0.004	0.022
nox	-0.006	0.001	-0.006	0.001	-0.005	0.001	-0.005	0.003	-0.005	0.001
rm	0.006	0.001	0.009	0.001	0.018	0.001	0.018	0.002	0.014	0.001
age	0.000	0.001	-0.001	0.001	-0.002	0.000	-0.002	0.001	-0.002	0.000
dis	-0.191	0.033	-0.125	0.047	-0.116	0.029	-0.117	0.058	-0.109	0.035
rad	0.096	0.019	0.098	0.030	0.062	0.018	0.073	0.027	0.078	0.022
tax	-0.000	0.000	-0.000	0.000	-0.000	0.000	-0.000	0.000	-0.000	0.000
ptratio	-0.031	0.005	-0.030	0.010	-0.024	0.006	-0.025	0.011	-0.026	0.008
blacks	0.364	0.103	0.582	0.101	0.657	0.088	0.639	0.186	0.659	0.076
lstat	-0.371	0.025	-0.282	0.024	-0.113	0.016	-0.099	0.032	-0.195	0.018