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ABSTRACT
The selectionof suitable terms in randomcoefficient regressionmod-
els is a challenging problem to practitioners. Although many tech-
niques, ranging from those with a theoretical flavour to those with
an exploratory spirit, have been proposed for such purposes, no par-
ticular one may be considered as a paradigm. In fact, many authors
advocate that they should be used in a complementary way. We
consider exploratory methods based on fitting standard regression
models to the individual response profiles or to the rows of the sam-
ple within-units covariancematrix (for balanced data) thatmay serve
as additional tools in the process of selecting an appropriate model.
We evaluate the performance of the proposal via a simulation study
and consider applications to twoexamples in the field of Biostatistics.
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1. Introduction

Linear mixed models have gained popularity because of their flexibility to represent
repeatedmeasures data. In particular, they have been extensively used in longitudinal stud-
ies in the form of random coefficient regression models, where the response for different
sample units is modelled by specific polynomials.

Since both the estimation of the parameters associated to the fixed coefficients and the
prediction of the random effects rely on an appropriate specification of the within-unit
covariance structure induced by the latter, their choice is intimately related to the efficiency
of estimators and predictors. In this context, a crucial portion of the analysis effort is related
to the choice of the fixed and random coefficients to be included in the model.

Many alternatives have been proposed to solve this challenging problem. Pu and Niu
[12] suggest the use of the extended generalized information criterion and Orelien and
Edwards [10] consider R2 statistics to select fixed coefficients. Although both criteria may
be used quite efficiently for such purposes, the performance of the procedure proposed by
Pu and Niu [12] is relatively poor with respect to the selection of random coefficients, as
observed by these authors. Other simple analytical tools have been considered in the liter-
ature for the selection of both fixed and random terms. Fearn [4], for example, highlights
the importance of examining the nature of the individual profiles for the selection of the
random coefficients. Simultaneous plots of such profiles, known as profile plots or parallel
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plots, introduced by Rao and Rao [13] for describing longitudinal data along with a loess
smoothed average profile, constitute a widely used graphical technique for an initial selec-
tion of the terms in a linear mixed model as well as for checking some model assumptions
(see, e.g. [20]).

Tests of hypotheses regarding the significance of the variance components have been
suggested by Stram and Lee [17]. This, however, is associated with some technical prob-
lems related to the fact that the null hypothesis places the parameter on the border of the
parametric space, as indicated in [5] among others. Grady and Helms [6] suggest a plot of
within-units covariances as a function of the lag between observations to identify possi-
ble auto-correlation structures. Other graphical diagnostic tools include residual as well as
global or local influence analyses considered in [16].

None of the available alternatives should be used as the only procedure to select the fixed
and random coefficients in linear mixed models. In fact they should be taken as comple-
mentary and the decision should be based on simultaneous analyses. Our objective is to
propose two additional procedures for such purposes.

As in [11,14], we consider the analysis of the individual profiles through simple within-
unit regression models as a tool for better understanding the information contained in the
profile plots. Rutter and Elashoff [14] propose an evaluation of the within-unit individ-
ual regressions via R2 and via an examination of the profile plots to identify, for example,
an heteroskedastic behaviour (fanning), but they do not propose specific tools to select
random coefficients. We also build upon the ideas of Suyama [18], who suggested that
the rows of the sample covariance matrix behave as the individual profiles. Specifically, we
show how to select fixed and random coefficients through an analysis of the estimated indi-
vidual regression parameters. The data may be collected at irregularly spaced time points,
that is, data for different units may be collected at different time points, but the number
of repeated measurements for each unit has to be greater than the number of individual
parameters. Also, the functional form of the relation between response and explanatory
variable should be the same for every unit. When the data are collected at the same time
points (not necessarily equally spaced) for all units, we may use the rows of the within-
units sample covariance matrix as an additional tool to identify random coefficients to be
included in the model.

The random coefficient regressionmodel is described in Section 2. In Section 3 we show
how standard regression methods may be employed for the selection of fixed and random
coefficients to be included in homoskedastic conditional independence regressionmodels.
First we consider the analysis of the individual response profiles and then we show how
the analysis of the rows of the sample covariance matrix may be employed for selecting the
random coefficients in the case of balanced data. In Section 4 we illustrate the methods by
means of simulated examples and in Section 5, we apply the results to examples in the field
of Biostatistics. We conclude with a brief discussion in Section 6.

2. Themodel

The well known linear mixed model introduced by Laird and Ware [8] for the analysis of
longitudinal data is

yi = Xiβ + Zibi + ei, (1)
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where yi is ami × 1 vector of observations on the ith unit, i = 1, . . . , n, β = (β1, . . . ,βp)
�

is a p × 1 vector of unknown population parameters (fixed coefficients), Xi is a mi × p
known specification matrix (or regression design matrix) corresponding to the fixed
coefficients, bi = (bi1, . . . , biq)� is a q × 1 vector of unknown random effects (random
coefficients), Zi is a mi × q known specification matrix (or matrix of within-unit regres-
sors) corresponding to the random coefficients and ei is anmi × 1 vector of random error
terms. Usual assumptions include independence between the bi and the ei, bi ∼ N (0,G),
where G = G(θ) is a q × q positive-definite covariance matrix, and ei ∼ N (0,Ri), where
Ri = Ri(θ) is a mi × mi positive-definite covariance matrix and θ is an r × 1 vector of
covariance parameters, functionally independent of β . When the columns of Xi and Zi
correspond to values of powers of the explanatory variable, the model is known as random
coefficient regression model.

Frequently, one sets Ri = σ 2Imi , with Ir denoting an r-dimensional identity matrix; the
resulting model is known as the homoskedastic conditional independence model because
given the random coefficients bi, the corresponding conditional model implies indepen-
dence of the observations on the ith unit. The marginal distribution of the vector of
observations from the ith unit has mean vector Xiβ and within-unit covariance matrix

V(yi) = ZiGZ�
i + σ 2Imi . (2)

The first component of (2) corresponds to the dispersion of the observations of indi-
vidual response profiles around the mean response profile and the second component
corresponds to the conditional within-unit dispersion of the response. The simplest case,
where a single random intercept is included, induces a uniform within-unit covariance
matrix (i.e. with equal variances and equal covariances). The most complex case, where
the maximum number of possible random terms are included in the model, induces an
unstructured (i.e. with possibly different variances and covariances) covariance matrix. If
on the one hand, the simplicity of the uniform structure may not be adequate to model
real data, on the other, the excessive number of parameters associated to the unstructured
covariancematrixmay jeopardize the efficiency of estimators, specially for small ormoder-
ate sample sizes. Models with a small number (e.g. 2, 3 or 4) of random coefficients are thus
interesting alternatives to the two extreme cases mentioned above; they relax the strong
restrictions on the covariance structure imposed by the single random intercept model
without the over-parametrization required by the more general case.

These models has been widely used for analysing longitudinal data not only because
of their simplicity, but also because they can accommodate cases where observations are
incomplete or collected irregularly along time. For details, the reader is referred to Verbeke
and Molenberghs [19], Diggle et al. [3] or Demidenko [2], among others. Random coeffi-
cient regression models are also attractive because of their straightforward interpretation
as pointed by Fearn [4], for example.

3. Selection of fixed and random coefficients

Assuming homoskedastic conditional independence, we observe that (1) may be re-
expressed as

yi = X∗
i β

∗
i + ei, (3)
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where X∗
i is a matrix with p∗ columns obtained from the elements of Xi and Zi; the

columns of X∗
i are those common to Xi and Zi plus those that are unique either to Xi or to

Zi. In many practical problems, the columns of Zi correspond to a subset of the columns
of Xi. The elements of β∗

i are given by βk + bik if column k is common to Xi and Zi, by βk
if column k is unique to Xi or by bik if column k is unique to Zi. We can therefore write
β∗
i = β∗ + b∗

i , where null elements may be added to the original β and bi vectors, so that
they have the same dimension. For example, letting

Xi =

⎛
⎜⎜⎝
1 xi1
1 xi2
1 xi3
1 xi4

⎞
⎟⎟⎠ , Zi =

⎛
⎜⎜⎜⎝
1 x2i1
1 x2i2
1 x2i3
1 x2i4

⎞
⎟⎟⎟⎠ , β = (β0,β1)

�, b = (bi0, bi3)�,

then

β∗
i =

⎛
⎝β0 + bi0

β1
bi3

⎞
⎠ and X∗

i =

⎛
⎜⎜⎜⎝
1 xi1 x2i1
1 xi2 x2i2
1 xi3 x2i3
1 xi4 x2i4

⎞
⎟⎟⎟⎠ , β∗ = (β0,β1, 0)�,

b∗
i = (bi0, 0, bi3)�.

Regarding (1) as a two-stage model, it follows that yi | bi ∼ N (X∗
i β

∗
i ; σ 2Imi), so in

the first stage we may consider a set of standard regression models for which the esti-
mated parameters, β̂

∗
i = (X∗�

i X∗
i )

−1X∗�
i yi are normally distributed with mean β∗

i and
covariance matrix σ 2(X∗�

i X∗
i )

−1. In the second stage, we assume that β∗
i ∼ N (β ;G∗),

where G∗ consists of G augmented with null rows and/or columns corresponding to
null elements in the random vectors b∗

i so that the marginal distribution of β̂
∗
i is N (β∗;

σ 2(X∗�
i X∗

i )
−1 + G∗).

3.1. Selection of fixed coefficients based on the individual response profiles

An unbiased estimator of β∗ obtained from the individual parameter estimates β̂
∗
i is the

sample average

β̄
∗ = (β̄∗

1 , . . . , β̄
∗
p∗)� = n−1

n∑
i=1

(X∗�
i X∗

i )
−1X∗�

i yi (4)

for which the (unconditional) variance is

V(β̄
∗
) = n−2

n∑
i=1

[σ 2(X∗�
i X∗

i )
−1 + G∗]. (5)

To test whether the kth element of β∗ is zero, we propose the statistic

t = β̄
∗
k

n−1
√

σ̂ 2diagk[(
∑n

i=1 X
∗�
i X∗

i )
−1]

, (6)
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where diagk(A) denotes the kth element of the main diagonal of a square matrix A and

σ̂ 2 =
n∑

i=1

mi − p∗

ν
σ̂ 2
i (7)

with

σ̂ 2
i = 1

mi − p∗ y
�
i [Imi − X∗

i (X
∗�
i X∗

i )
−1X∗�

i ]yi and ν =
n∑

i=1
mi − np∗.

We refer Equation (6) to the t distribution with ν degrees of freedom, observing that its
denominator is expected to be smaller than the square root of the corresponding element in
the estimator of (5). This provides a conservative test, in the sense that it will identify more
candidates for fixed coefficients than the final model would possibly have, a feature that is
recommendable at the model selection stage. By using only ordinary regression results, the
analysis maintains the simplicity convenient for exploratory analysis.

3.2. Selection of random coefficients based on the individual response profiles

The variance of β̂∗
ik, i = 1, . . . , n is expected to be equal to the kth diagonal term of

σ 2(X∗�
i X∗

i )
−1 when the variance of the corresponding random coefficient, bik, is null.

Otherwise, we might expect a larger variability of the β̂∗
ik around its mean. Now, under

model (3), the kth element of β̂
∗
i , namely, β̂∗

ik, follows a N (β∗
ik; vikσ

2) distribution
where vik = diagk{(X∗�

i X∗
i )

−1}. Therefore β̂∗
ik/

√
vik ∼ N (β∗

ik/
√

vik; σ 2). Letting ŵik =
β̂∗
ik/

√
vik and w̄k = n−1 ∑n

i=1 ŵik, it follows that

t(ŵk) =
√
n/(n − 1)(ŵik − w̄k)/σ̂ ∼ tν . (8)

Thus, for each k we expect around α% of the values of t(ŵk) outside the corresponding
global significance level α∗ = α/(np∗) Bonferroni-corrected confidence interval, namely
[tν(α∗/2), tν(1 − α∗/2)] where tν(δ) denotes the 100δ% percentile of the t distribution
with ν degrees of freedom. A larger percentage of points outside that interval suggests that
bik may be a random coefficient.

Although the method we propose should be viewed with an exploratory spirit, a guide-
line to include a coefficient as a fixed or a random term in the model is outlined in Table 1.
The choice of the significance level α is arbitrary, but we recommend setting α = 1%when
the sample size is small, especially for the selection of the random coefficients, given that
profile plots are excellent tools for the specification of the fixed coefficients.

Table 1. Guidelines for inclusion of fixed and random coefficients in the linear mixed model.

Proportion of β̂∗
ik outside [tν(α

∗/2), tν(1 − α∗/2)]
Significance of β̄∗

k as
obtained via (6) ≤ α∗ > α∗

YES Include only βk as a fixed coefficient Include βk as a fixed coefficient and bik as a
random coefficient

NO Include neither βk nor bik in the model Include only bik as a random coefficient
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3.3. Selection of random coefficients based on the columns of the sample
covariancematrix

Under the homoskedastic conditional independence random coefficients model, the
covariance structure of the observed values is governed by the random coefficients, as can
be deduced from the corresponding marginal covariance matrix (2). The measurement
error variance (σ 2) is only related to the marginal variances. Letting z�

is denote the sth
row of Zi, it follows that the random coefficients contribution to the sth column of the
marginal covariance matrix is given by ZiGzis which has the same form as the individual
profiles Zibi. When the data for all subjects are collected at the same time points, that is,
mi = m, we haveZi = Z so thatV = ZGZ�. Forwell specifiedmodels,Vmay be estimated
by S − σ̂ 2Im where

S = (n − 1)−1
n∑

i=1
(yi − ȳ)(yi − ȳ)�).

We propose to fit polynomial models (of the same degree) to each of them rows of the
sample covariance matrix S and to analyse the results along the same lines considered for
the response profiles with the objective of providing an additional tool for the selection of
random coefficients.

4. Simulation studies

To evaluate the performance of the proposed procedures under three different speci-
fications of the underlying distributions and and error term covariance structure, we
conducted two simulation studies.

In the first study, the data were generated from a linear mixed model with fixed and
random intercepts and slopes, that is, from model (1) with

Xi = Zi =
[
1 1 1 1 1
1 2 3 4 5

]�
, β = (40, 5)�, and

G =
[

σ 2
a ρabσaσb

ρabσaσb σ 2
b

]
, i = 1, . . . , n,

under the following distributions

(A) bi ∼ N (0,G) and ei ∼ N (0, σ 2I5);
(B) bi ∼ N (0,G) and ei ∼ N (0, σ 2R), with

R = 1
1 − ρ2

⎡
⎢⎢⎢⎢⎣
1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎤
⎥⎥⎥⎥⎦ , 0 < ρ < 1;

(C) bi ∼ t4(0,G) and ei ∼ N (0, σ 2R).
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The objective is to verify whether the proposed procedures can correctly identify that
the adopted model should include fixed and random intercepts and slopes.

We set σ 2 = 1 and ρ = 0.6 and considered 80 different settings (see Table 2) based on
combinations of different values for n, σ 2

a , σ 2
b and ρab. For each setting we simulated 1000

samples and in each case we fitted second degree polynomials to the individual profiles and
to the rows of the sample covariance matrices. We considered a significance level of 5% for
the selection of fixed coefficients because the average profile plot is already a useful tool for
such purpose; given that tools for the selection of random coefficients are not so simple,
we set the significance level at 1% to be more rigorous, especially for the smaller sample
sizes. The percentages of correct decisions (identification of first degree polynomials for
the fixed and random coefficients) are presented in Table 2.

Table 2. Percentage of correct decisions for analysis based on individual profiles (ind) and rows of the
covariance matrices (cov).

Settings A B C Settings A B C

n σ 2
a σ 2

b ρab ind cov ind cov ind cov n σ 2
a σ 2

b ρab ind cov ind cov ind cov

5 4 2 0.75 74 56 78 72 82 81 25 1 1 0.75 94 92 80 98 80 98
5 4 2 0.25 72 60 78 74 81 81 25 1 1 0.25 94 96 80 98 81 98
5 2 2 0.75 71 61 78 75 80 81 25 1 0.5 0.75 85 68 80 94 80 97
5 2 2 0.25 70 60 78 76 80 84 25 1 0.5 0.25 80 74 80 95 79 98
5 2 1 0.75 51 41 67 56 76 73 25 0.5 1 0.75 95 96 81 98 80 98
5 2 1 0.25 48 44 65 58 75 69 25 0.5 1 0.25 94 96 80 98 82 98
5 1 2 0.75 72 63 78 77 80 84 25 0.5 0.5 0.75 85 75 80 95 82 97
5 1 2 0.25 72 63 77 78 82 85 25 0.5 0.5 0.25 83 75 81 96 80 98
5 1 1 0.75 47 41 66 59 75 71 50 4 2 0.75 95 100 77 99 76 98
5 1 1 0.25 47 42 65 61 74 72 50 4 2 0.25 95 100 76 99 77 98
5 1 0.5 0.75 24 21 48 39 59 53 50 2 2 0.75 94 100 77 99 79 98
5 1 0.5 0.25 23 23 47 41 62 55 50 2 2 0.25 95 100 76 99 77 98
5 0.5 1 0.75 49 41 65 61 72 72 50 2 1 0.75 95 99 76 99 76 99
5 0.5 1 0.25 46 45 65 62 73 75 50 2 1 0.25 95 100 76 99 78 99
5 0.5 0.5 0.75 23 23 48 42 61 57 50 1 2 0.75 94 100 77 99 76 98
5 0.5 0.5 0.25 21 24 46 43 59 55 50 1 2 0.25 94 100 76 99 77 98
10 4 2 0.75 93 82 83 93 83 96 50 1 1 0.75 94 100 76 99 78 99
10 4 2 0.25 93 85 83 93 84 95 50 1 1 0.25 96 100 76 99 74 99
10 2 2 0.75 92 86 84 94 86 96 50 1 0.5 0.75 92 92 77 99 77 99
10 2 2 0.25 92 88 83 94 82 96 50 1 0.5 0.25 94 93 77 99 76 99
10 2 1 0.75 80 62 81 83 82 92 50 0.5 1 0.75 95 100 76 99 77 99
10 2 1 0.25 80 69 81 84 82 90 50 0.5 1 0.25 94 100 76 99 76 98
10 1 2 0.75 93 88 83 94 84 95 50 0.5 0.5 0.75 94 91 77 100 79 99
10 1 2 0.25 92 88 84 94 85 96 50 0.5 0.5 0.25 94 94 77 99 78 98
10 1 1 0.75 81 65 82 85 81 92 100 4 2 0.75 95 100 85 100 87 99
10 1 1 0.25 82 71 82 86 82 92 100 4 2 0.25 96 100 84 100 85 99
10 1 0.5 0.75 51 38 75 67 80 81 100 2 2 0.75 95 100 84 100 86 99
10 1 0.5 0.25 55 45 74 68 83 81 100 2 2 0.25 95 100 85 100 84 99
10 0.5 1 0.75 81 69 82 87 80 93 100 2 1 0.75 95 100 85 100 83 100
10 0.5 1 0.25 80 71 82 87 82 92 100 2 1 0.25 95 100 85 100 86 99
10 0.5 0.5 0.75 53 43 75 69 81 85 100 1 2 0.75 95 100 85 99 84 98
10 0.5 0.5 0.25 50 46 75 69 79 84 100 1 2 0.25 95 100 85 99 84 99
25 4 2 0.75 95 99 80 98 78 98 100 1 1 0.75 95 100 85 100 85 100
25 4 2 0.25 94 99 81 98 82 98 100 1 1 0.25 95 100 85 100 84 99
25 2 2 0.75 95 99 80 98 80 98 100 1 0.5 0.75 95 99 85 100 84 100
25 2 2 0.25 95 99 80 98 78 98 100 1 0.5 0.25 93 99 84 100 85 100
25 2 1 0.75 93 92 80 98 80 98 100 0.5 1 0.75 94 100 84 100 86 99
25 2 1 0.25 94 95 80 98 79 98 100 0.5 1 0.25 96 100 85 100 84 100
25 1 2 0.75 93 99 80 98 79 97 100 0.5 0.5 0.75 95 99 84 100 83 100
25 1 2 0.25 95 100 79 98 80 97 100 0.5 0.5 0.25 95 100 85 100 85 99
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The results in the columns corresponding to Assumption A in Table 2 suggest that it is
more difficult to identify the correct model when σ 2

a and σ 2
b are smaller than σ 2. In such

cases, V(β̂∗
i ) = σ 2(X∗�

i X∗
i )

−1 + G∗ is dominated by σ 2(X∗�
i X∗

i )
−1, masking the extra

variability introduced by the presence of random coefficients. The high percentage (above
80%) of correct identification of the first degree polynomial for both fixed and random
coefficients when an inappropriate model (a second degree polynomial) is adopted high-
lights the efficiency of the proposed procedure even for small sample sizes or misspecified
underlying distributions, as suggested in the columns corresponding to the specifications
B and C.

In the second study, we evaluated the performance of the proposed procedure in situ-
ations with missing observations. We considered similar settings as in the first study with
three different values for ρ, namely, 0.4, 0.6 and 0.8. We assumed that each unit had a 50%
probability of missing one observation; the position of the missing observation was cho-
sen at random among the five available. In this study we did not consider the procedure
based on the sample covariance matrix. The results, presented in Tables S1, S2 and S3 in
the Supplementary Material and suggest that

(i) for n=5 and σ 2
a , σ 2

b > σ 2, the procedure leads to correct decisions in 50% of the
cases when the data were generated according to specification A and in 50% to 60%
of the cases for specifications B or C.

(ii) for n=5 and σ 2
a , σ 2

b ≤ σ 2, the rate of correct decisions for specification A may be as
low as 10%, while for specifications B and C, the percentage of correct decisions is of
the order of 40% to 70%. This apparently unexpected result is possibly attributed to
the fact that serial correlation may be confounded with random coefficients as sug-
gested by Jones [7]. The extra variability imposed on the generated data by assuming
serial correlation in specifications B and C is detected by the proposed procedure.

(iii) for n ≥ 25, the rate of correct decisions is greater than 70% for all specifications.

5. Analyses of real examples

The data in Table 3 (and in Table S4 in the Supplementary Materials) were extracted from
a study conducted at the Heart Institute of the University of São Paulo (Incor), Brazil and is
related to the growth of the systolic aorta diameter (measured echocardiographically) per
unit weight of 29 pre-term neonates (PN) classified as adequate for gestational age (AGA)
and of 32 PN classified as small for gestational age (SGA) according to their weight at birth.
The PN were observed at irregularly spaced intervals (weeks) from birth to week 39 after
presumed conception and one of the objectives was to estimate the corresponding growth
curves. Details on the study may be obtained in [1].

The average and individual response profiles as well as a loess smoothed mean profile
are displayed in Figures 1 and 2. The choice of a specific polynomial to represent the data
is somewhat hampered because of the irregular pattern of the profiles, although quadratic
polynomial models with random intercept, linear and quadratic termsmay be a reasonable
guess. We started by fitting a quadratic polynomial to each individual profile, excluding
subjects with three or less observations: 6 subjects (ID 10, 12, 13, 15, 23 and 25 in Table 3)
in the AGA group and 9 subjects (ID 34, 38, 43, 44, 45, 46, 49, 51 and 60 in Table S4 in
the Supplementary Materials) in the SGA group. To reduce possible problems related to
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Table 3. Aorta diameter per unit weight (mm/kg) of AGA PN.

Week post-conception

Subject ID 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 7.33 9.39 10.31 8.72 8.16 6.70 6.12 5.56 5.06 4.91
2 6.11 6.06 6.21 5.45 5.22 4.92
3 5.75 6.26 5.78 5.07 4.88 4.58
4 9.72 9.22 9.47 7.25 6.12 5.36 4.78 4.48
5 6.38 5.79 5.18 4.74
6 5.44 4.94 4.57 4.32
7 8.28 8.51 8.64 7.90 6.22 5.47 4.23
8 7.67 8.60 7.90 6.57 5.74
9 5.88 6.13 5.44 4.13
10 7.01 6.52
11 5.20 4.76 4.22 4.07 3.69
12 7.80 9.86
13 6.84 7.73
14 7.31 6.22 6.16 5.49 5.11 4.27
15 5.56 5.39
16 5.14 5.69 5.16 4.68 5.03 4.97
17 6.09 6.61 6.12 4.70
18 5.92 5.77 5.61 5.03
19 4.82 6.30 6.89 6.17 5.38 4.46
20 5.80 6.39 5.81 5.52 4.86
21 7.17 6.94 5.74 4.82
22 8.33 8.84 8.59 7.90 6.00
23 4.84 4.76 4.40
24 6.50 6.03 5.47 4.97
25 6.17 5.90 5.51
26 7.06 6.49 5.77 5.34 4.29
27 5.78 5.76 5.21 5.03 4.58
28 6.34 7.17 7.33 5.93 5.32
29 6.23 6.12 6.24 6.03 5.28

Figure 1. Profile plots for the aorta diameter per unit weight (mm/kg) of AGA PN (dashed line: mean
profile; bold line: loess).
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Figure 2. Profile plots for the aorta diameter per unit weight (mm/kg) of SGA PN (dashed line: mean
profile; bold line: loess).

multicollinearity, we rescaled the time variable by taking t∗ij = (tij − 33)/4.29 so that the
time origin is week 33 and the time unit is month instead of week (note that 4.29=30 days
/ 7 days per week). For the selection of the fixed coefficients we adopted a 5% significance
level; for the construction of the reference Bonferroni-corrected confidence intervals used
to identify random coefficients we adopted significance levels of 5% and also of 1%, to be
more rigorous.

The parameter estimates and t-values for the quadratic polynomials fitted to the subjects
in the AGA group are displayed in Table 4. Those corresponding to the subjects in the SGA
group are presented in Table S5 in the Supplementary Materials.

Since only the means of the individual intercepts and slopes for the subjects in the AGA
group are significant [(α = 1.67% (= 0.05/3)], these are the two terms that should be con-
sidered as candidates for fixed coefficients in the model. Adopting an overall significance
level α = 5%, the Bonferroni-corrected individual significance level for the 69 = (23 × 3)
comparisons isα∗ = 0.0003623 (= 0.05/69) so that the corresponding reference interval is
(−3.6, 3.6) derived from the t distribution with ν = 54 (= 123 − 69) degrees of freedom.
FromTable 4, we note that 52% (=12/23) of estimated individual intercepts, 13% (=3/23)
of the estimated individual slopes and no estimated quadratic coefficients fall outside of
Bonferroni-corrected reference interval, suggesting that the intercepts and slopes are the
only two candidates for random coefficients. To be more rigorous, we also considered
an overall significance level α = 1% for which the corresponding Bonferroni-corrected
reference interval is (−4.1, 4.1), obtaining the same conclusions. With a confirmatory
spirit, we fitted models with both fixed and random intercepts, slopes and quadratic coeffi-
cients to the data and considered tests of hypotheses to verify whether the quadratic terms
could be dropped from themodel. A standard test for the fixed quadratic coefficient yielded
p=0.30; for the variance component corresponding to the quadratic term, we considered
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Table 4. Estimates of the individual intercepts, slopes and quadratic coefficients and corresponding
t-values for the subjects in the AGA group (aorta diameter example).

Intercept Slope Quadratic

Subject ID Estim t-value Estim t-value Estim t-value

1 6.90 11.82 −1.50 −6.56 −0.06 0.32
2 5.84 −0.86 −0.92 0.14 −0.69 0.09
3 5.37 0.19 −1.53 −0.04 −0.94 0.07
4 7.89 11.34 −2.29 −5.68 −0.05 0.51
5 5.76 −1.79 −2.53 0.62 0.70 0.81
6 4.90 −5.16 −1.22 0.70 −0.12 0.62
7 7.21 5.36 −1.94 −5.51 −0.66 −1.00
8 6.88 0.94 −2.25 −0.64 −1.08 −0.45
9 5.91 −9.98 0.55 2.50 −1.01 −0.12
11 4.58 −2.90 −0.96 0.22 −0.04 0.61
14 6.68 5.49 −1.63 0.58 −0.05 0.59
16 5.14 −0.53 −0.44 1.61 0.14 0.75
17 6.26 −2.04 −1.59 0.23 −3.86 −0.74
18 5.35 −3.32 −1.21 1.43 −0.57 0.45
19 6.32 5.09 0.45 3.29 −1.39 −2.28
20 6.04 1.60 0.37 2.61 −1.24 −0.50
21 6.19 −4.51 −1.71 −1.30 −0.38 0.39
22 5.96 −5.03 −6.07 −0.85 −3.39 −1.44
24 5.19 −3.71 −1.20 1.44 1.01 1.03
26 5.54 −2.55 −1.88 −1.70 0.27 0.88
27 5.86 −4.37 −1.23 1.67 0.10 0.72
28 6.91 5.61 1.05 3.29 −1.32 −1.19
29 6.29 −0.73 −0.16 1.94 −0.56 −0.12
Estimate 6.04 −1.30 −0.66
Std. error 0.09 0.23 0.39
p-value < 0.001 < 0.001 0.094

the test proposed by Stram and Lee [17], obtaining p = 0.94. Both results suggest that the
first degree polynomials selected for both the fixed and the random components of the
model for the AGA group are adequate.

A similar analysis was performed for the SGA group. The parameter estimates and
t-values for the quadratic polynomials fitted to the subjects in the SGA group are displayed
in Table S5 in the Supplementary Materials and suggest that fixed and random intercepts,
linear and quadratic coefficients should be included in the selected random coefficient
regression model.

We fitted a jointmodel for both the AGA and SGA groups incorporating the suggestions
from the exploratory analysis. The correponding results are displayed in Table 5 under
the label ‘Model 1’. This model suggests that the aorta diameter growth patternis differ-
ent according to whether the PN are classified as having weight adequate or not to the
gestational age at birth.

We also compared the results obtained by fitting the model suggested by the pro-
posed procedure with those of 21 homoskesdastic conditionally independent competitors
obtained from a comprehensive model by omitting or combining some terms. The terms
included in each model are indicated in Table S6 of the Supplementary Materials. The
comprehensive model is

yijk = αi + βit∗ijk + γit∗2ijk + aij + bijt∗ijk + cijt∗2ijk + eijk,

i = 1, 2, j = 1, . . . , ni, k = 1, . . . ,mij, (9)
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Table 5. Parameter estimates for competing models for the aorta diameter exemple (index 1: AGA and
index 2: SGA).

Model 1 Model 4 Model 8 Model 22

Parameter Estim Std error Estim Std error Estim Std error Estim Std error

intercept (α1) 6.04 0.15 6.04 0.17 6.09 0.18 6.04 0.15
intercept (α2) 7.04 0.18 6.95 0.16 6.91 0.16 7.04 0.18
slope (β1) −1.23 0.12 −1.30 0.15 −1.20 0.18 −1.22 0.12
slope (β2) −1.36 0.2 −1.57 0.13 −1.63 0.13 −1.36 0.20
quadratic (γ1) – – – – −0.17 0.12 – –
quadratic (γ2) −0.33 0.12 – – – −0.33 0.12
V(a) = σ 2

a – 0.712 0.779 –
V(b) = σ 2

b – 0.287 0.563 –
V(c) = σ 2

c – – 0.085 –
Cov(a, b) = σab – −0.074 0.062 –
Cov(a, c) = σac – – −0.115 –
Cov(b, c) = σbc – – −0.203 –
V(a1) = σ 2

a1 0.565 – – 0.599
V(a2) = σ 2

a2 0.893 – – 0.894
V(b1) = σ 2

b1
0.191 – – 0.212

V(b2) = σ 2
b2

0.926 – – 0.931
V(c1) = σ 2

c1 – – – 0.008
V(c2) = σ 2

c2 0.128 – – 0.129
Cov(a1, b1) = σab11 −0.232 – – −0.208
Cov(a1, c1) = σac11 – – – −0.045
Cov(b1, c1) = σbc11 – – – −0.01
Cov(a2, b2) = σab22 0.217 – – 0.218
Cov(a2, c2) = σac22 −0.260 – – −0.261
Cov(b2, c2) = σbc22 −0.277 – – −0.278
V(eijk) = σ 2 0.304 0.346 0.307 0.300
AIC 707.5 714.2 714.3 713.0
BIC 762.1 743.3 758.0 778.5

where yijk denotes the kth observation of the aorta diameter for the jth subject in the
ith group (i=1: AGA, i=2: SGA), t∗ijk denotes the time (in months centred at week 33)
in which this observation occurred, αi, βi and γi denote the fixed intercept, slope and
quadratic coefficients, aij, bij and cij, respectively represent the corresponding randomcoef-
ficients associated to the jth subject in the ith group and eijk denotes a random error term.
We assume that the covariance matrix for the random terms is unstructured with vari-
ances denoted by σ 2

ai, σ
2
bi and σ 2

ci and covariances, by σabi, σaci and σbci. The variance of
the random error term is denoted by σ 2. Results for 3 other models selected among the 21
considered for comparison are also presented in Table 5. The proposed model has a bet-
ter fit than all the alternative ones according to the AIC criterion but not according to the
BIC criterion. A residual analysis along the lines suggested in [16] is recommended to shed
further light on the model selection.

The data analysed in the second example were extracted from a study analysed by Singer
and Andrade [15] and are presented for illustrative purposes. The relative mucociliary
transportation speed of frog palates was observed 5, 10, 15, 20, 25, 30 and 35 minutes after
they were immersed in a solution of hydrogen peroxide with a concentration of 16μM.
The goal was to model the expected response as a function of time. The data are shown in
Table 6.
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Table 6. Relative mucociliary transportation speed.

Time in minutes

Row 5 10 15 20 25 30 35

1 0.88 0.73 0.61 0.58 0.61 0.48 0.52
2 0.87 0.69 0.50 0.42 0.38 0.38 0.44
3 1.43 0.98 0.70 0.54 0.43 0.41 0.43
4 1.30 1.00 0.67 0.68 0.53 0.67 0.62
5 0.92 0.86 0.88 0.85 0.79 0.66 0.82
6 1.21 1.01 0.75 0.79 0.69 0.70 0.82
7 0.68 0.86 0.86 0.59 0.57 0.61 0.66
8 0.75 0.74 0.96 0.87 1.00 0.90 1.14
9 0.97 0.84 0.71 0.83 0.67 0.73 0.72
10 1.08 1.12 0.86 1.02 0.85 0.90 0.89

Figure 3. Profile plots for the relative mucociliary transportation speed data (dashed line: mean profile;
bold line: loess).

To avoidmulticollinearity problems, we rescaled the time variable, expressing it in terms
of hours instead of minutes by taking t∗ij = tij/60. The average and loess fitted profiles dis-
played in Figure 3 suggest that a quadratic polynomial may be adequate to represent the
data. We fitted such a model to each individual response profile and considered a 5% sig-
nificance level to select the candidates for both random and fixed coefficients. The results
are displayed in Table 7.

All coefficients for the fixed coefficients were significant at the 5% level, confirming
that a quadratic polynomial is adequate to represent the average profile. Furthermore,
40% (= 4/10) of the estimated individual intercepts, 30% (= 3/10) of the estimated indi-
vidual slopes and 10%(= 1/10) of the estimated individual quadratic coefficients fall
outside the corresponding Bonferroni-corrected reference interval (−3.4, 3.4), obtained
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Table 7. Estimates of the individual intercept, slope and quadratic coefficients and corresponding
t-values (mucociliary speed data).

Intercept Slope Quadratic

Unit Estim t-value Estim t-value Estim t-value

1 1.00 −1.75 −1.84 0.68 1.75 −0.75
2 1.13 −0.53 −3.42 −1.42 3.82 1.14
3 1.87 6.19 −6.18 −5.09 6.43 3.50
4 1.66 4.24 −4.97 −3.48 5.62 2.77
5 0.98 −1.95 −0.67 2.24 0.50 −1.89
6 1.50 2.80 −3.84 −1.99 4.58 1.82
7 0.82 −3.42 −0.42 2.57 0.09 −2.26
8 0.70 −4.48 0.55 3.87 0.15 −2.20
9 1.07 −1.15 −1.56 1.05 1.70 −0.80
10 1.20 0.04 −1.17 1.58 1.10 −1.34
Estimate 1.19 −2.35 2.57
Std. error 0.04 0.25 0.37
p-value < 0.001 < 0.001 < 0.001

from the t distribution with 40 (= 70 − 30) degrees of freedom, suggesting that the inter-
cept, slope and quadratic coefficients are also candidates for random coefficients. The same
conclusion is reached if we use a 1% significance level for the decision. The corresponding
Bonferroni-corrected reference interval is (−3.9, 3.9).

The sample covariance matrix for the data in Table 6 is

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.059 0.024 −0.009 −0.001 −0.016 −0.007 −0.017
0.024 0.020 0.005 0.012 0.003 0.010 0.004

−0.009 0.005 0.020 0.019 0.022 0.020 0.026
−0.001 0.012 0.019 0.034 0.031 0.031 0.034
−0.016 0.003 0.022 0.031 0.036 0.031 0.040
−0.007 0.009 0.020 0.031 0.031 0.033 0.037
−0.017 0.004 0.026 0.034 0.040 0.037 0.049

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The profile plots for the rows of (10), displayed in Figure 4, suggest that they may be
represented by quadratic polynomials.

In Table 8 we present estimates and corresponding t-values for the coefficients of sec-
ond degree polynomials fitted to the rows of (10) and observe that 57% of the estimated
individual intercepts, 57% of the individual slopes and 14% of the estimated individual

Figure 4. Profile plots of the rows of the sample covariance matrix (mucociliary speed data).
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Table 8. Estimates of the intercept, slope and quadratic coefficients of the second degree polynomials
fitted to the rows of the sample covariance matrix and corresponding t-values (mucociliary speed data).

Intercept Slope Quadratic

Subject Estim t-value Estim t-value Estim t-value

1 0.09 13.08 −0.008 −11.57 0.00014 8.30
2 0.04 5.05 −0.002 −4.35 0.00003 2.86
3 −0.03 −2.76 0.003 2.03 −0.00006 −1.63
4 −0.02 −1.86 0.003 2.14 −0.00006 −1.59
5 −0.04 −5.11 0.005 4.32 −0.00008 −3.04
6 −0.02 −2.96 0.004 2.69 −0.00006 −1.82
7 −0.04 −5.43 0.005 4.74 −0.00008 −3.11

quadratic coefficients fall outside the corresponding Bonferroni-corrected reference inter-
val (−3.3, 3.3). This also suggests that the intercept, slope and quadratic coefficients are
candidates for random coefficients. A standard test for the hypotheses of a null quadratic
coefficient yielded p<0.003; for the variance component corresponding to the quadratic
term, we considered the test proposed by Stram and Lee [17], obtaining p=0.008.

The estimated within-unit covariance matrix obtained from fitting the suggestedmodel
is given in Equation (11) and is quite close to the sample covariance matrix (10). The
average relative absolute difference between their non-redundant elements is 1.6%.

V̂(yi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.051 0.022 0.005 −0.007 −0.014 −0.014 −0.010
0.022 0.021 0.010 0.007 0.005 0.005 0.007
0.005 0.010 0.019 0.017 0.019 0.021 0.021

−0.007 0.007 0.017 0.030 0.030 0.031 0.030
−0.014 0.005 0.019 0.030 0.041 0.038 0.036
−0.014 0.005 0.021 0.031 0.038 0.046 0.039
−0.010 0.007 0.021 0.030 0.036 0.039 0.042

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

We compared the proposed model to alternative ones as in the first example. The
results, displayed in Table 9 also suggest that the proposed model has a better fit that the
competitors.

Table 9. Parameter estimates for competing models (mucociliary speed example).

Model 1 Model 2 Model 3 Model 4

Parameter Estim Std error Estim Std error Estim Std error Estim Std error

intercept (α) 0.98 0.06 1.19 0.12 0.82 0.04 1.19 0.07
slope (β) −0.64 0.21 −2.35 0.69 −0.03 0.11 −2.35 0.37
quadratic (γ ) – – 2.57 0.76 – – 2.57 0.46
V(ai) = σ 2

a 0.03 0.13 0.26 0.03
V(bi) = σ 2

b 0.36 4.14 9.04 0.39
V(ci) = σ 2

c – 4.42 10.38 –
Cov(ai , bi) = σab −0.080 −0.69 −1.49 −0.09
Cov(ai , ci) = σac – 0.72 1.6 –
Cov(bi , ci) = σbc – −4.27 −9.68 –
V(eij) = σ 2 0.01 0.01 0.01 0.01
AIC −47.6 −86.7 −79.2 −70.6
BIC −34.3 −64.7 −59.2 −55.2
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To understand how profile plots like those in Figure 3 may be used in the process of
selecting the random coefficients, we simulated data with the same fixed coefficients as
those estimated under themodel adopted for themucociliary speed data with the following
structure for the random coefficients: (i) only intercept, (ii) intercept and slope and (iii)
intercept, slope and quadratic coefficient. The plots are presented in Figures S1, S2 and S3
in the Supplementary Materials and exhibit patterns corresponding to polynomials of the
same degrees with which the data were generated. This indicates that examination of such
plots may suggest the degree of the polynomial with which to start the analysis.

6. Discussion

In many problems where linear or nonlinear mixed models constitute the appropriate
alternative to represent longitudinal data, the underlying information required for their
specification is not available. In such cases, linear mixed models may be employed as
reasonable approximations, provided the range for which we expect to conduct infer-
ence is limited. Such models are quite flexible and extensively studied in the statistical
literature. Furthermore, stable and efficient software is available for their computational
implementation. The associated flexibility, however, poses some difficulties for the practi-
tioner, specially with respect to the choice of the fixed and random terms to be included in
the model.

Selection of the appropriate model may depend on subject matter specific information
which is lacking inmany practical problems and onemust rely on statistical tools to choose
a reasonable one. The choice of the fixed coefficients can be handled quite simply by an
examination of profile plots and well established hypothesis tests. Selection of the appro-
priate covariance structure, on the other hand, is not so straightforward. Likelihood ratio
tests are not recommended to comparemodels with different fixed and random coefficients
in view of REML estimation of the covariance parameters. Furthermore, AIC and BIC cri-
teria are also subject to debate as mentioned in [9], so that the available selection tools
should be used in a complementary manner.

We propose some simple exploratory tools that may be used along with other methods
to identify potential candidates. In particular, they include fitting simple linear regression
models to the individual response profiles as well as to the rows of the sample covari-
ance matrix when it is available (for balanced data) and examining the distribution of the
estimated coefficients.

Even for moderate sample sizes, the proposed tools may be useful, as shown by a lim-
ited simulation study. For samples of 25 units observed at 5 points in time, for example,
the correct model was identified in around 80% or more cases, both with the analysis of
the individual response profiles and of the rows of the sample covariance matrix. In two
examples with data obtained from practical problems, the identified model fitted the data
adequately. In particular, for the example with balanced data, the random terms included
in the selectedmodel were able to reproduce the sample covariancematrix up to reasonable
differences.

In many instances, a model selected naively, either by experience with similar data or
by the examination of profile plots may lead to the appropriate choice. This is clear from
the plots in Figure 3. In cases like those depicted in Figures 1 and 2, however, the decision
is not so straigtforward. The exploratory tools we consider may not be a panacea for all
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problems but may help in such situations and should be employed in the spirit of residual
analysis to reassure that the chosen model is a reasonable one. Also, they are restricted to
homoskedastic conditional independence linear mixed models; extension to other classes,
like generalized linear mixed models is a challenging problem, given the ample range
of functions that may be employed to represent the data. This seems to be a promising,
although difficult research topic.
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