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1 Introduction

Our objective is to illustrate the use of a function written in the R language (R Development

Core Team, 2009) for residual analysis in linear mixed models as presented in Nobre and Singer

(2007). To use the routines it is necessary install the basic R software and the packages Matrix,

lattice and lme4 that may be obtained from

www.r-project.org/.

The function may be obtained from www.dema.ufc.br/~juvencio.

The model we are interested in may be expressed as

yi = Xiβ + Zibi + ei, (1)

where yi is a mi × 1 vector of observations (response profile) for the i-th unit, i = 1, . . . , n,

β = (β1, . . . , βp)
> is a p × 1 vector of unknown population parameters (fixed effects), Xi is a

mi× p known specification matrix corresponding to the fixed effects, bi = (bi1, . . . , biq)
> is a q× 1

vector of unknown random parameters (random effects), Zi is a mi×q known specification matrix

corresponding to the random effects and ei is an mi × 1 vector of random errors. Usually one

assumes that

b1, ...,bn
iid∼ Nq(0, σ

2G) e ei
ind∼ Nmi

(0, σ2Ri), i = 1, ..., n, (2)

with bi and ei independent, G and Ri being (q × q) and (mi × mi) positive definite matrices

respectively, with elements expressed as functions of a vector of covariance parameters, θ, not
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functionally related to β. Letting y = (y>1 , · · · ,y>n )>, X = (X>1 , · · · ,X>n )>, Z =
⊕n

i=1 Zi, where⊕
represents the direct sum, b = (b>1 , · · · ,b>n )> and e = (e>1 , · · · , e>n )>, we can write model (1)

more compactly as

y = Xβ + Zb + e. (3)

This implies that [
b

e

]
∼ NM+N

([
0M

0N

]
,

[
σ2D 0M×N

0n×M σ2Σ

])
,

where N =
∑n

i=1mi, M = nq, D = In
⊗

G and Σ =
⊕n

i=1 Ri, with
⊗

denoting the Kronecker

product and In, , the identity matrix of order n.

Given the model specification and assuming that the covariance matrix Ω(θ) = σ2(ZDZ> +

Σ), with D and Σ known, then the best linear unbiased estimators (BLUE) of the fixed effects

parameters β and best linear predictors (BLUP) of the random effects bi may be obtained as the

solutions to Henderson’s equations(
X>Σ−1X X>Σ−1Z

Z>Σ−1X X>Σ−1Z + D−1

)(
β̂

b̂

)
=

(
X>Σ−1y

Z>Σ−1y

)
, (4)

namely,

β̂ = (X>Ω−1X)−1X>Ω−1y

b̂ = DZ>Ω−1(y −Xβ̂).

In practice the covariance matrices D and Σ are unknown. Empirical BLUE or BLUP may

be obtained by using consistent estimates of D and Σ.

2 Residual analysis for linear mixed models

Residuals are frequently used to evaluate the validity of the assumption of models. For example,

in normal linear models residuals are used to verify linearity of effects, normality, independence,

homoskedasticity of the errors and presence of outliers or influent observations. Since mixed

models have two sources of variation (e and b), different types of residuals may be defined and

the corresponding analysis is more complex. In linear mixed models, there are three types of

residuals, namely

i) Marginal residuals, ξ̂ = y −Xβ̂, that predict the marginal errors ξ = y − IE[y] = y −Xβ.
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ii) Conditional residuals, ê = y−Xβ̂−Zb̂, that predict the conditional errors e = y−IE[y|b] =

y −Xβ − Zb.

iii) The BLUP, Zb̂, that predicts the random effects, Zb = IE[y|b]− IE[y].

According to Hilden-Minton (1995) a residual is said to be confounded for a specific type of error

if it also depends on errors different from those that it is supposed to predict. In linear mixed

models like (3), conditional residuals and the BLUP are confounded (Nobre and Singer, 2007). This

implies, for example, that ê may not be adequate to check for normality of e since when b is grossly

non-normal, ê may not present a normal beahavior even when e is normal (Nobre and Singer,

2007, Section 4). Following the suggestion of Hilden-Minton (1995) we consider conditional least

confounded residuals, obtained as linear combinations of the conditional residuals that minimize

the proportion of their variance due to the random effects. For details, see Nobre and Singer

(2007).

Each type of residual is useful to evaluate some assumption of model (1), as indicated in Table

1, where R̂i = V̂
−1/2
i ξ̂i, ξ̂i = yi−Xiβ̂, ê∗k represents the k-th element of the vector of standardized

conditional residuals and |dmax| represents the normalized eigenvector associated with the direction

of largest normal curvature of the influence graph under the perturbation of the covariance matrix

of the random effects (see Nobre and Singer, 2007, for details).

Table 1: Uses of residuals for diagnostic purposes

Diagnostic for Type of residual Plot

Linearity of effects (IE[y] = Xβ) Marginal ξ̂k vs. explanatory variables

Within-subjects covariance matrix (Vi) Marginal ||Ini
− R̂iR̂

>
i ||2 vs. subject indices

Presence of outlying observations Conditional ê∗k vs. observation indices

Homoskedasticity of conditional errors (ei) Conditional ê∗k vs. fitted values

Normality of conditional errors (ei) Conditional QQ for least confounded residuals

Presence of outlying subjects EBLUP b̂iV̂[b̂i − bi]b̂i vs. subject indices

Random effects covariance structure (G) EBLUP |dmax| vs. subject indices

Normality of the random effects (bi) EBLUP Weighted QQ for b̂i
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3 Use of the lmmresid function

i) The data should be organized according to the format in Table 2 and loaded into R.

ii) The package lme4 should be loaded via the command require(lme4).

iii) The model of interest should be fitted via the lme4 package and placed in an object (fit,

for example).

iv) A variable with the labels of subjects should be created (subject, for example).

v) The residual plots are then obtained via the function lmmresid with fit and subject as

arguments.

Table 2: Data organization

Variable1 Variable2 . . . Variablep

a11 a21 . . . ap1
...

...
... . . .

a1n a2n . . . apn

As an illustration, consider the data set in Nobre and Singer (2007):

data<-read.csv2("http://www.dema.ufc.br/~juvencio/dadost.csv",dec=”,”,header=T)

The data set is organized as follows

To reproduce the plots in Nobre and Singer (2007), use the following commands

require(lme4)

attach(data)

toot<-as.factor(Tootbrush)

session<-as.factor(Session)

subject<-as.factor(subject)

data<-data.frame(data)

fit<-lmer(log(y)~log(x)+toot-1+(1|subject),method="REML")

lmmresid(fit,subject).
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Toothbrush Session x y Subject

Conventional 1st 1.05 1.00 1

Conventional 2nd 1.13 0.84 1

Conventional 3rd 1.15 0.86 1

Conventional 4th 1.13 0.94 1
...

...
...

...
...

Monoblock 1st 1.15 1.00 32

Monoblock 2nd 1.23 1.11 32

Monoblock 3rd 1.15 1.07 32

Monoblock 4th 1.26 1.00 32
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